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Differential inequality and non-oscillation
of fourth order differential equation

The oscillatory theory of fourth order differential equations has not yet been developed well enough. The
results are known only for the case when the coefficients of differential equations are power functions. This
fact can be explained by the absence of simple effective methods for studying such higher order equations. In
this paper, the authors investigate the oscillatory properties of a class of fourth order differential equations
by the variational method. The presented variational method allows to consider any arbitrary functions as
coefficients, and our main results depend on their boundary behavior in neighborhoods of zero and infinity.
Moreover, this variational method is based on the validity of a certain weighted differential inequality of
Hardy type, which is of independent interest. The authors of the article also find two-sided estimates of the
least constant for this inequality, which are especially important for their applications to the main results
on the oscillatory properties of these differential equations.
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1 Introduction

Let I = (0,00). Let v be a positive function twice differentiable on I and u be a non-negative function
continuous on I.
We consider the following fourth order differential equation

(v(t)y" ()" = Au(t)y(t) =0, t € I, (1)

where A > 0 is a real number.

The oscillatory properties of equation (1) have not yet been studied sufficiently. The obtained results are
mainly the case where v or u are power functions. There are also results where equation (1) has been studied
by its reduction to a Hamiltonian system and application of the Riccati technique using unknown fundamental
solutions of the system. The development of the oscillation theory of equation (1) is given in the works [1-3],
and references therein. For more details, we also refer to the monograph [4].

One more method to investigate the oscillatory properties of (1) is the variational method. This method
is based on the fact that non-oscillation of equation (1) is equivalent to the validity of a certain second order
differential inequality, which allows to obtain non-oscillation conditions in terms of the functions v and wu.
However, the known results on this differential inequality are not suitable for using them by this method. In
this paper, under some assumptions on the function v in neighborhoods of zero and infinity, we find suitable
characterizations for the validity of this second order differential inequality, and then apply them to obtain
non-oscillation conditions of equation (1).

Let us note that the study of differential equations of fourth and higher orders by the variational method
began in the works [5] and [6] under assumptions on the function v different from those presented here. More
precisely, characterizations of the corresponding inequality depend on the number of zero boundary conditions at
each endpoint of the interval, where this inequality is considered. This number, in turn, depends on assumptions
on v. In the work [6], the corresponding second order inequality is studied on the interval It = (T, 00), T > 0,
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under assumptions on v providing the existence of exactly two boundary conditions both at T'. In this paper, we
consider the interval I and assumptions on v are such that they also provide the existence of exactly two boundary
conditions but one condition is at zero while the second is at infinity. In addition, the equation considered in
[6] contains the differential operation D2y(t) = %r(t) d@il(tt), where r is a positive function sufficiently time
continuously differentiable on I. This operation becomes 3" (t) for r = 1.

This paper is organized as follows. Section 2 contains all the auxiliary statements necessary to prove the
main results. Section 3 establishes the validity of the required second order differential inequality. In Section 4,

on the basis of this inequality we find non-oscillation conditions of equation (1). Section 5 contains an example.

2 Auxiliary statements

Let 0 < a < b < co. From the work [7], we have the following lemma.
Lemma A. (i) The inequality

/bu(a:) ]f(t) dt de < C/bv(t)fQ(t)dt (2)

holds if and only if

b z
AT = sup /u(x)dx/vil(t) dt < o0,
a<z<b

in addition, AT < C <4AT, where C is the best constant in (2).

(#i) The inequality
2

/bu(a:) /bf(t) dt | dr < C/bv(t)f2(t)dt (3)

holds if and only if
z b

A = sup /u(x)dm/vil(t) dt < oo,
a<z<b

in addition, A~ < C < 4A~, where C is the best constant in (3).

Denote by W3, = W3, (I) the space of functions f : I — R twice differentiable on the interval I, for which
the norm

I llwz, = 1" 20 + [F D+ 1£(D)] (4)

oo

is finite, where ||gl|2,, = (f U()f)gQ(t)dt>

0
Let C§°(I) be the set of finitely supported functions infinitely differentiable on the interval I. By the
conditions on the function v we have that C§°(I) C W3, (I). Denote by W3, = W3, (I) the closure of the set
C§°(I) with respect to norm (4).
For f € W3, we assume that tl_i>I(r)1+ f@) = f(0) and tli>nolo 1'(@®) = f'(c0).

Denote by W3 ,(0,1) and W ,(1,00) the contraction sets of functions from W3, on the intervals (0,1] and
[1,00), respectively.
Assume that
Py(0,1) = {Cx(,(t) : CER},

Pi(1,00) = {Cx(1,00) (1)t : CER},
LoW ={f e W, : f(0) =0},
RIW ={feW},: f(oc0)=0}.

From the work [8], we have one more statement.
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Lemma B. (i) If v=! ¢ L1(0,1) and t?v=1(t) € L1(0,1), then VDV227U(O7 1) = LoW; in addition, W3 ,(0,1) =
W2 ,(0,1)+P(0,1).
(1) If v~ € Ly(1,00) and t20~1(t) ¢ L1(1, 00), then W3, (1, 00) = Ry W in addition, W3, (1, 00) = W3, (1, 00)+
—i—Pl(l, OO) )
Here the sign + means the direct sum of subspaces.

8 Differential inequality

Function y : I — R is called a solution of equation (1) if it is four times continuously differentiable on the
interval and satisfies equation (1) for all ¢ > 0.

Equation (1) is called oscillatory at infinity (at zero) if for any 7' > 0 there exists a solution of this equation
having more than one double zero to the right (to the left) of T. Otherwise, equation (1) is called non-oscillatory.

Let us consider the following second order differential inequality

o0 o0

3 [utol s < Cr @l ©Fde f e W3, (100, )

T T

In the work [9], on the basis of the variational principle [10] there was established the following lemma.

Lemma C. Let Cp be the least constant in (5). The equation (1) is non-oscillatory at infinity if and only if
for some T > 0 we have that 0 < Cr < 1.

If we consider the inequality

T T
/\/U(t)lf(t)|2dt < CT/v(t)lf”(t)\th, feWs,(0,1), (6)
0 0

we can write the statement similar to Lemma C for non-oscillation of equation (1) at zero.

Lemma C yields that non-oscillation of equation (1) depends on the constant Cr in (5) and (6). Therefore,
we need to find the value of C or at least estimate it from above and below.

We investigate equation (1) under the following conditions at zero and infinity:

1 1 e’} [o'e)
/v_l(t)dt = o0, /t%—l(t)dt < o0, /v_l(t)dt < o0, /t2v_1(t)dt = 0. (7)
0 0 1 1
Under these assumptions we consider the inequality
A [utor@Pd < o [l ©Fd £ e W3, (®)
0 0
Let - 3
E = sup/u(t)dt/s%_l(s) ds,
z>0
z 0
E, = Sup/tgu(t)dt/v_l(s) ds,
z2>0

E = )\max{El, E2}

Theorem 1. Let (7) hold. Then inequality (8) holds if and only if E' < oo; in addition, E < Cy < 8FE, where
Cy is the best constant in (8).
Proof. From condition (7) and Lemma B, it follows that

W3,(I) = {f € Wi, : f(0) =0; f/(c0) =0} = LRW.
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Hence, for f € W22U(I) we have f(t) ff )ds and f'(s) = Tf”(x)dx. Then f(t) = —fo”(x)dxds =
s 0 s
ftftf x)drds —t f f(x)dx = —fxf”(x x — tf f"(z)dx. Using this relation, we get
0 s 0
00 e} t o} 2
A u@®)|f))Pdt = [ ut)| | of(x)de +t | f'(x)dz| dt
! [rofferene]
00 t 2 oo 0o 2
<M [ u) | | af(x)de| dt+2X) | tut)| [ ' (x)dz| dt. (9)
[l Jeelf
The latter gives that if ,
o} t 00
w(t) | | af(x)dz| dt <Oy [ v(t)|f"(t)|*dt (10)
[l /
and
o0 (o] 2 o0
2u(t) | [ f(x)dx| dt < Co [ v(t)|f"(t)2dt (11)
[eolf /

with the least constants Cy and Cs, respectively, then Cp < 2Amax{C7, Cs}, where Cj is the least constant in
(8). From Lemma A we have that C7 < 4F; and Cy < 4E5. Therefore,

C, < SE. (12)
Now, assuming f” > 0 in (9), we get that if (8) holds, then (10) and (11) also hold and Cy > Amax{Cy, Cs}.

From Lemma A, it follows that E; < Cy and Ey < Cy, which together with (12) yields that £ < Cy < 8E. The
proof of Theorem 1 is complete.

4 Non-oscillation of equation (1)

Theorem 2. Let (7) hold. Then equation (1) is non-oscillatory at infinity and zero if

sup [ w(t)dt | s*v™(s)ds < i, (13)
z>0 8A
z 0
2 ~1 1
sup [ t*u(t)dt | v (s)ds < —. (14)
z>0 8A
0 z

1

Proof. From assumption ( ) it follows that the function v~ is non-singular at the point T > 0, i.e., for any

finite N > T we have f v=1(t) dt < co. Therefore, for any f € W2 (T, 00) we get f(T) = f'(T') = 0 and

W3, (T,00) = {f € W3, (T,00) : f(T) = f'(T) = f'(c0) = 0} = L*RW.

We expand the function f € L?RW by zero on the interval (0,7, i.e., we assume that f(t) =0 for 0 <t < T.
This gives that f € W3, (I). Therefore, LRW D L*RW. Then

T u(®) ()Pt T a2t
CO = sup 0 > sup oo()

fELRW f f”( )‘de fEL2RW f f”( )|2dx
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Fu(®)f ()Pt
T =Cr. (15)

= sup
TELZRW. [y ()| £ () 2dx
T

From (13) and (14), it follows that £ < g;. Hence, by Theorem 1 we have that 0 < Cg < 1. Therefore, due
to (15), we get that 0 < Cp < 1. Thus, by Lemma C, it follows that equation (1) is non-oscillatory at infinity.

Now, we turn to non-oscillation of equation (1) at zero. In this case, at the point 7' > 0 we have that
f(T) = f(T) =0 for f € W3,(0,T) and

W3,(0,T) = {f € W3,(0,T) : f(0) = f(T) = f'(T) = 0} = LR*W.

We expand the function f € Wiv(O,T) by zero on the interval (T,o0) and get LRW D LR?W. Arguing as
above in (15), we establish that from 0 < Cy < 1 it follows 0 < Cr < 1. By Theorem 1 from (13) and (14) we
have 0 < Cy < 1. Thus, Lemma C written for inequality (6) yields that equation (1) is non-oscillatory at zero.
The proof of Theorem 2 is complete.

5 Example
As an example, let us consider the following differential equation
(" ()" — Xt Py(t) =0, t eI, (16)

where A > 0 is a real number. Assume that 1 < «,8 < 3. It is easy to see that the function v=1(¢) = ¢t~
satisfies condition (7). Then

® 2 1-8 3—a 4—a—p
Ei(z)= [tPat [ > ods=2—. 2 - __Z .
1) /t ‘“/5 R B R [ Ry
z 0

E; = supEq(z) < oo if and only if 4 —a — 8 = 0 that is § = 4 — a. Then E; = (ﬁfl)l(?)foz) = (Sfa)Q.
z>0

Similarly, we can find that Fy = ﬁ By Theorem 2 equation (16) is non-oscillatory at infinity and zero if
E, = ﬁ < % and Fy = ﬁ < ﬁ. Therefore, equation (16) is non-oscillatory at infinity and zero if
A < ¢ min{(a — 1)%, (3 — a)?}. Thus, we can write the following proposition.

Proposition. Let 1 < a < 3 and 8 = 4 — a. Then equation (16) is non-oscillatory at infinity and zero if
A < tmin{(a —1)%,(3 — @)%}
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A.A. Kanpibait', A.O. Baitapbicranos?

YKHMASII yrusepcumemi, Aamamo, Kaszaxcman;
2JI.H. Dymuses amwindaen, Bypasua yammows yrusepcumemi, Hyp-Cyaman, Kazaxcman

ldunddepennmanaabiK TEHCI3AIK »KOHE TOPTIHII pPeTTi
anddepeHInaJIIbIK, TeHAeYaiH TepOeaiMci3Iairi

Teprinamti perti quddepeHmaIabK, TeHACYIePAiH, TePOETIMITIK TEOPUSIChI XKETKITIKTI Typ/Ie JaMbIMaraH.
Horuxkenep nuddepennmanibik, TeHaeyaep KoadduuenTrepi opexkestik QyHKIUsIapbl OOJFaH Kar ai-
na raHa Oesrisi Gosazpl. Bysr dakTini KOrapbl Jopexkesi TeHjeysepil 3epTTeyiH KaparaibiM THIMI
omicTepinin 6oaMaybIMeH TYCiHIIpyre 60/Iabl. MaKaaaaa TOPTIHIN PeTTi AuddepeHITnaIIbIK, TEHIEYIED
KJIACBIHBIH TepOeMesti KaCHeTTepl BapUAIUSIIBIK, O/[iCIIEH 3ePTTEreH. Y CHIHBIIFAH BAPUAIIUAIIBIK 9iC T€H-
neyiep KoadduimeHTTepi Ke3 KesireH yHKIns 60JIybl peTiHie KapacThipyFa MyMKIH/IIK Gepesi KoHe Heris-
ri HOTHMZKEJIep OJIAPJBIH, HOJITe YKOHE IIEKCI3/IKKe YKAKBbIH IMeKapasbIK dpekerTepine OaitmanbicTel. COHBI-
MeH KaTap, OyJl BapUAIUSAIBIK OJIC TOYeJICi3 KbI3BIFYIIBLIBIK TYIBIPATHIH XapAu TUNTI CAJIMAKTBI dud-
depeHIaIbIK, TeHCI3AIriHIH Heri3aitirine Tagakpiaaradn. OCkbl TEHCI3IIK YIMH eH, Killli KOHCTAHTAHbIH €Ki
KaKThl Darayiaybl TaObLIFAH, OYJI OJIAPIBIH OCbI Iud@EPEHINAIBIK TeHACYIEPIiH TepOeIMesTiK Kacuer-
TepiHiH HEri3ri HoTMKeJIepiHe KOJIJIAHbLIYbl VIIIH €PeKIlle MaHbI3/bI.

Kiam cesdep: Teprinmn perTi muddepeHInaiblK, TeH ey, TepOeTiMIIK, TepOeTiMCi3 K, BapUAIUSIIBIK,
MPUHIIAT, CAJIMAKTBI TEHCI3/IIK, KEHICTIK.

A.A. Kanwibait', A.O. Baitapoictanos?

! Viusepcumem KHUMSII, Aamamuo, Kasazeman;
2 Bepasutickutl mayuonaisruiti yrnueepcumem umenu JIH. Dymuaesa, Hyp-Cyaman, Kazaxcman

HdnddepeniimanbHoe HEPaABEHCTBO U HEOCIIUJIJISTOPHOCTD
andpepeHImaIbHOTO YpaBHEHUsI Y€TBEPTOTO MOPAIKA

Teopus ocrmnnsumit tuddepeHnnaIbHbIX ypPaBHEHNH YE€TBEPTOIO IOPsIKA HEIOCTATOYHO XOPOIIO U3y te-
Ha. I3BecTHBI pe3ysbTaThl TOJIBKO JJIs Ciydasi, Korga KoddduimenTtsl nuddepeHnuaabHbIX ypaBHEHNN

SIBJISTIOTCST CTEIIEHHBIMU (DYHKIUSIMA. DTOT (PAKT MOKHO OOBSICHAUTH OTCYTCTBUEM MPOCTHIX IPDEKTUBHBIX
METOJIOB JIJIsl M3yYeHUsl YPaBHEHUI BBICOKOIO NOPsIKa. B crarbe uccie0BaHbl OCIMILISIIIUOHHBIE CBOWCTBA
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OTHOTO KJjacca auddepeHnnaabHbIX YPaBHEHII Y€TBEPTOrO MOPsIKa BApUAIIMOHHBIM MeTooM. [Ipercras-
JICHHBII BapPUAIMOHHBIN METO/T IIO3BOJIsIET PACCMATPUBATEH JIIOObIE TTPOU3BOJILHBIE (DYHKIINN B KAYECTBE KO-
3bUIIEHTOB, & OCHOBHBIE PE3YJIbTATHl 3aBUCAT OT WX I'PDAHUYHOIO IIOBEJEHUS] B OKPECTHOCTAX HYyJIS U
GeckoHeuHocTu. Bojtee TOro, 3TOT BapHAIMOHHBIA METOJI OCHOBAH HA BBIMTOJTHEHUU HEKOTOPOTO BECOBOTO
juddepeHnraIbLHOr0 HePABEHCTBA THUIIA, Xap/Iid, IIPEJICTABJIAIONIEr0 CAMOCTOITE/bHBINA uHTEpec. ABTOpa-
MU HaliJIeHbl JBYCTOPOHHUE OIEHKU HAMMEHbINEH KOHCTAHTBI JIJI 9TON0 HEPABEHCTBA, KOTOPBHIE OCOOEHHO
BaXKHBI JJIs WX MPUJIOKEHUN K OCHOBHBIM PE3YJIBTaTaM I10 OCIHUJIISTOPHOCTH PAaCCMATPUBAEMBIX audde-
PEHIINAJIbHBIX yPaBHEHHIA.

Karouesvie crosa: muddepeHnnaabHoe ypaBHEHHE YETBEPTOTO MOPAIKA, OCIUIIATOPHOCTD, HEOCIIUILISTOP-
HOCTb, BAPUAIMOHHBIA IIPUHIIUII, BECOBOE HEPABEHCTBO, IIPOCTPAHCTBO.
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