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On Discrete Solutions for Elliptic Pseudo-Differential Equations

We consider discrete analogue for simplest boundary value problem for elliptic pseudo-differential equation
in a half-space with Dirichlet boundary condition in Sobolev–Slobodetskii spaces. Based on the theory of
discrete boundary value problems for elliptic pseudo-differential equations we give a comparison between
discrete and continuous solutions for certain model boundary value problem.
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Introduction

As soon as boundary value problems for partial differential equations were formulated, then at the same
time the necessity of solving methods has appeared. Since finding exact solution for these problems is a very
seldom phenomenon, numerical and approximate methods are extensively used. According to development of
computer technologies, a preference is given to such methods which can be easily realized by computers.

There are a lot of approximate methods for solving boundary value problems in mathematical literature
(see, for example, classical books [1–4] and many others) All authors consider a priori given boundary value
problem and construct for it certain approximate structures. As a rule this way leads to final system of linear
algebraic equations and the solution of the latter system us declared as an approximate solution for the starting
problem.

In our opinion there is a reason to study discrete objects initially and then to apply their properties for
studying approximation of starting continuous objects. This approach was started from papers [5–10] and further
it was developed in [11–15]. We based on Eskin’s approach for elliptic model pseudo-differential equations in a
half-space [5] and have developed appropriate discrete theory. This report is devoted to a special case how we
can approximate the infinite discrete objects by finite ones.

Digital Operators and Discrete Equations

We will use the following notations. Let Tm be m-dimensional cube [−π, π]m, h > 0, ~ = h−1. We will
consider all functions defined in the cube as periodic functions in Rm with the same cube of periods.

If ud(x̃), x̃ ∈ hZm is a function of a discrete variable, then we call it “discrete function”. For such discrete
functions one can define the discrete Fourier transform

(Fdud)(ξ) ≡ ũd(ξ) =
∑

x̃∈hZm
e−ix̃·ξud(x̃)hm, ξ ∈ ~Tm,

if the latter series converges, and the function ũd(ξ) is a periodic function on Rm with the basic cube of periods
~Tm. This discrete Fourier transform preserves basic properties of the integral Fourier transform, particularly
the inverse discrete Fourier transform is given by the formula

(F−1
d ũd)(x̃) =

1

(2π)m

∫
~Tm

eix̃·ξũd(ξ)dξ, x̃ ∈ hZm.
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Let Tm = [−π, π]m, h > 0, Ad(ξ), ξ ∈ Rm be a periodic function with basic cube of periods ~Tm, D ⊂ Rm

be a domain. We introduce a digital pseudo-differential operator

(Adud)(x̃) =
∑

ỹ∈hZm

∫
~Tm

Ad(ξ)e
i(ỹ−x̃)·ξud(ỹ)dξhm, x̃ ∈ Dd ≡ D ∩ hZm,

which is defined for functions of a discrete variable x̃ ∈ hZm.
We study operator equations

Adud = vd, (1)

its solvability and approximate properties for small h.

Let us denote ζ2 = h−2
m∑
k=1

(e−ih·ξk − 1)2, S(hZm) is a discrete analogue of the Schwartz space S(Rm) [7]

and introduce the following:
Definition 1. The space Hs(hZm) is a closure of the space S(hZm) with respect to the norm

||ud||s =

 ∫
~Tm

(1 + |ζ2|)s|ũd(ξ)|2dξ

1/2

.

Further, let D ⊂ Rm be a domain, and Dd = D ∩ hZm be a discrete domain.
Definition 2. The space Hs(Dd) consists of discrete functions from Hs(hZm) which supports belong to Dd.

A norm in the space Hs(Dd) is induced by a norm of the space Hs(hZm). The space Hs
0(Dd) consists of discrete

functions ud with a support in Dd, and these discrete functions should admit a continuation into the whole
Hs(hZm). A norm in the Hs

0(Dd) is given by the formula

||ud||+s = inf ||`ud||s,

where infimum is taken over all continuations `.
Of course, all such norms are equivalent to the L2-norm but this equivalence depends on h. Let us note that

all constants below in our considerations do not depend on h.
To study the equation (1) in a discrete half-space (D = Rm

+ ≡ {x ∈ Rm : x − (x′, xm), xm > 0}) we use a
special factorization for the symbol Ad(ξ)

Ad(ξ) = Ad,+(ξ) ·Ad,−(ξ)

where the factors Ã±(ξ) admit a holomorphic continuation into half-strips ~Π±,

Π± = {z ∈ C : z = ξm + iτ, ξm ∈ [−h−1π, h−1π], ±τ > 0}.

with respect to the last variable ξm under fixed (ξ1, · · · , ξm−1) ∈ ~Tm−1 and satisfy some estimates [1–3].

Discrete Equations

We consider the class Eα, which includes symbols satisfying the following condition

c1(1 + |ζ2|)α/2 ≤ |Ad(ξ)| ≤ c2(1 + |ζ2|)α/2

with universal positive constants c1, c2 non-depending on h and the symbol Ad(ξ).
Definition 3. Periodic factorization of an elliptic symbol Ad(ξ) ∈ Eα is called its representation in the form

Ad(ξ) = Ad,+(ξ)Ad,−(ξ),

where the factors Ad,±(ξ) admit an analytical continuation into half-strips ~Π± on the last variable ξm for
almost all fixed ξ′ ∈ ~Tm−1 and satisfy the estimates

|A±1
d,+(ξ)| ≤ c1(1 + |ζ̂2|)±æ

2 , |A±1
d,−(ξ)| ≤ c2(1 + |ζ̂2|)±

α−æ
2 ,
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with constants c1, c2 non-depending on h,

ζ̂2 ≡ ~2

(
m−1∑
k=1

(e−ihξk − 1)2 + (e−ih(ξm+iτ) − 1)2

)
, ξm + iτ ∈ ~Π±.

The number æ ∈ R is called an index of periodic factorization.
Such a representation can be constructed effectively and it fully determines a solvability picture for the

equation (1).

Conditions for a Unique Solvability

Some auxiliaries Firstly, for an elliptic symbol Ad(ξ) such periodic factorization exists always [5, 8].
Secondly, the index æ of periodic factorization determines how much additional conditions for the solution

ud or for the right hand side vd we need [7, 9].
Thirdly, the equation (1) is uniquely solvable in the discrete half-space Hs(Dd) for arbitrary right hand side

vd ∈ Hs−α
0 (Dd) only under the condition

|æ− s| < 1/2, (2)

Kernel of elliptic digital operator in a discrete half-space

In this paper we consider more complicated case when the condition (2) does not hold. There are two
possibilities in this situation, and we consider one case which leads to typical boundary value problems. We use
the following result from [7] in a simplest form.

Theorem 1. Let æ − s = n + δ, n ∈ N, |δ| < 1/2. Then the Fourier image for a kernel of the operator Ad
consists of the following functions

ũd(ξ) = Ã−1
d,+(ξ)

n−1∑
k=0

ck(ξ′)ζ̂km,

where ck(ξ′), k = 0, 1, · · · , n− 1, are arbitrary functions from Hsk(hTm−1), sk = s− æ + k − 1/2.
The a priori estimate

||ud||s ≤ a
n−1∑
k=0

[ck]sk

holds, where [·]sk denotes a norm in the space Hsk(hTm−1), and the constant a does not depend on h.

Discrete Structures as Approximating Objects.

Initial Observations for D = Rm. Here and below we consider model pseudo-differential operators with
symbols A(ξ) satisfying the condition

c1(1 + |ξ|)α ≤ |A(ξ)| ≤ c2(1 + |ξ|)α.

Further, the symbol Ad(ξ) will be defined in the following way. We take a restriction of A(ξ) on the cube
~Tm and periodically extend it onto a whole Rm. We consider such operator as an approximate operator for
A. For arbitrary function u the notation Qhu will denote the same construction. So, to find an approximate
discrete solution for the equation

(Au)(x) = v(x), x ∈ D,
for D = Rm we can use the following discrete equation

Adud = Qhv.

Its solution is given by the formula

ud(x̃) =
1

(2π)m

∫
~Tm

eix̃·ξA−1(ξ)ṽ(ξ)dξ, x̃ ∈ hZm,

so that we do not need to find an approximate solution for an infinite system of linear algebraic equations.
For our case we need to apply any kind of cubature formulas for calculating the latter integral and a cubature
formula for calculating the Fourier transform ṽ(ξ). For v ∈ S(Rm) the discrete solution ud(x̃) tends to u(x̃)
very fast under h→ 0 [12].
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Rate of Approximation.

Infinite Discrete Half-Space Case. Here we consider the case æ−s = 1+δ, |δ| < 1/2. According to Theorem 1,
the kernel of the operator Ad includes only one arbitrary function so that we need only one additional condition.

The continuous analogue of the discrete boundary value problem

(Adud)(x̃) = 0, x̃ ∈ Dd, (3)

ud(x̃
′, 0) = gd(x

′), x̃′ ∈ hZm−1, (4)

is the following
(Au)(x) = 0, x ∈ Rm

+ , (5)

u(x′, 0) = g(x′), x′ ∈ Rm−1, (6)

where A is a pseudo-differential operator with symbol A(ξ). To obtain some comparison between discrete and
continuous solutions we will remind how the continuous solution looks. If the index of factorization equals to
æ and æ − s = 1 + δ, |δ| < 1/2 then the unique solution for the problem (5),(6) is constructed by the similar
formula

ũ(ξ) = b−1(ξ′)g̃(ξ′)A−1
+ (ξ′, ξm),

where A±(ξ′, ξm) are elements of factorization of the symbol A(ξ) [5],

b(ξ′) =

+∞∫
−∞

A−1
+ (ξ′, ξm)dξm,

assuming that b(ξ′) 6= 0,∀ξ′ ∈ Rm−1. Let us note that this is simplest variant of Shapiro–Lopatinskii conditi-
on [5].

We have the following discrete solution [8]

ũd(ξ) = b−1
d (ξ′)g̃d(ξ

′)A−1
d,+(ξ′, ξm),

bd(ξ
′) =

+~π∫
−~π

A−1
d,+(ξ′, ξm)dξm,

in which we choose special approximations. We take gd = Qhg and Ad,±(ξ′, ξm) we take as restrictions of
A±(ξ′, ξm) on ~Tm. Then the periodic symbol

Ad(ξ) = Ad,+(ξ′, ξm)Ad,−(ξ′, ξm)

satisfies all conditions of periodic factorization with the same index æ. Moreover, g̃d(ξ′) and Ad,+(ξ′, ξm) coincide
with g̃(ξ′) and A+(ξ′, ξm) respectively on ~Tm.

Theorem 2. Let æ > 1, s > m/2, g ∈ Hs−1/2(Rm−1). A comparison between solutions of problems (3), (4)
and (5), (6) is given in the following way

|u(x̃)− ud(x̃)| ≤ Chæ−1, x̃ ∈ hZm.

Proof. We need to compare two integrals:

u(x̃) =
1

(2π)m

∫
Rm

eix̃·ξb−1(ξ′)g̃(ξ′)A−1
+ (ξ′, ξm)dξ

and
ud(x̃) =

1

(2π)m

∫
~Tm

eix̃·ξb−1
d (ξ′)g̃(ξ′)A−1

+ (ξ′, ξm)dξ, (7)

for x̃ ∈ hZm.
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Thus, we have

u(x̃)− ud(x̃) =
1

(2π)m

∫
~Tm

eix̃·ξ(b−1(ξ)− b−1
d (ξ′))g̃(ξ′)A−1

+ (ξ′, ξm)dξ+

1

(2π)m

∫
Rm\~Tm

eix̃·ξb−1(ξ′)g̃(ξ′)A−1
+ (ξ′, ξm)dxii,

because the functions g̃, g̃d and A+, Ad,+ coincide in ~Tm.
Now we estimate the second integral.∣∣∣∣∣∣∣

∫
Rm\~Tm

eix̃·ξb−1(ξ′)g̃(ξ′)A−1
+ (ξ′, ξm)dξ

∣∣∣∣∣∣∣ ≤ const

∫
Rm\~Tm

|g̃(ξ′)||A−1
+ (ξ′, ξm)|dξ ≤

const

∫
Rm−1\~Tm−1

|g̃(ξ′)|

 −~π∫
−∞

+

+∞∫
~π

 |A−1
+ (ξ′, ξm)|dξmdξ′.

Further, we estimate −~π∫
−∞

+

+∞∫
~π

 |A−1
+ (ξ′, ξm)|dξm ≤ const

+∞∫
~π

(1 + |ξ′|+ |ξm|)−ædξm =

const

æ− 1
(1 + |ξ′|+ ~π)1−æ ≤ c6hæ−1.

Now by Cauchy–Schwartz inequality we have∫
Rm−1\~Tm−1

|g̃(ξ′)|dξ′ ≤

 ∫
Rm−1\~Tm−1

|g̃(ξ′)|2(1 + |ξ′|)2s−1dξ′


1/2 ∫

Rm−1\~Tm−1

(1 + |ξ′|)−2s+1dξ′


1/2

.

Since g ∈ Hs−1/2(Rm−1) [5] the first factor is less than [g]s−1/2 and the second one tends to zero if s > m/2.
For the first integral we use the estimate

|b−1(ξ′)− b−1
d (ξ′)| ≤ const · hæ−1

(see [15]).
Finally, ∣∣∣∣∣∣ 1

(2π)m

∫
~Tm

eix̃·ξ(b−1(ξ)− b−1
d (ξ′))g̃(ξ′)A−1

+ (ξ′, ξm)dξ

∣∣∣∣∣∣ ≤
const · hæ−1

∫
~Tm

|g̃(ξ′)||A−1
+ (ξ′, ξm)|dξ ≤ const · hæ−1

∫
~Tm−1

|g̃(ξ′)|
(1 + |ξ′|)æ−1

dξ′

and further as above using Cauchy–Schwartz inequality.
Finite Truncation. To obtain finite object for calculation we can apply an arbitrary cubature formula for

the integral (7) and to approximately find its value in nodal points.
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Conclusion

Here only model operators in a half-space were considered. We hope that these ideas and technique will be
useful for more complicated situations in which both an operator depends on a spatial variable or a domain is
not a half-space.
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Эллиптикалық псевдодифференциалды теңдеулердiң
дискреттi шешiмдерi туралы

Соболев-Слободецкий кеңiстiгiндегi Дирихле шекаралық жағдайы бар жартылай кеңiстiктегi элли-
птикалық псевдодифференциалды теңдеудiң қарапайым шекаралық есебiнiң дискреттi аналогы қа-
растырылған. Эллиптикалық псевдодифференциалды теңдеулер үшiн дискреттi жиек есептерi те-
ориясына сүйене отырып, бiр модельдiк шекаралық есеп үшiн дискреттi және үздiксiз шешiмдер
арасындағы салыстыру берiлген.

Кiлт сөздер: дискреттi псевдодифференциалды оператор, дискреттi шешiм, дискреттi шекаралық
есеп, жуықтау ретi.
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О дискретных решениях эллиптических
псевдодифференциальных уравнений

Рассмотрен дискретный аналог простейшей краевой задачи для эллиптического псевдодифференци-
ального уравнения в полупространстве с граничным условием Дирихле в пространстве Соболева–
Слободецкого. Основываясь на теории дискретных краевых задач для эллиптических псевдодиффе-
ренциальных уравнений, дано сравнение между дискретными и непрерывными решениями для одной
модельной краевой задачи.

Ключевые слова: дискретный псевдодифференциальный оператор, дискретное решение, дискретная
краевая задача, порядок аппроксимации.
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