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On a nonlocal problem for a fourth-order mixed-type
equation with the Hilfer operator

The present work is devoted to the study of the solvability questions for a nonlocal problem with an integro-
differential conjugation condition for a fourth-order mixed-type equation with a generalized Riemann-
Liouville operator. Under certain conditions on the given parameters and functions, we prove the theorems
of uniqueness and existence of the solution to the problem. In the paper, given example indicates that if these
conditions are violated, the formulated problem will have a nontrivial solution. To prove uniqueness and
existence theorems of a solution to the problem, the method of separation of variables is used. The solution
to the problem is constructed as a sum of an absolutely and uniformly converging series in eigenfunctions of
the corresponding one-dimensional spectral problem. The Cauchy problem for a fractional equation with a
generalized integro-differentiation operator is studied. A simple method is illustrated for finding a solution
to this problem by reducing it to an integral equation equivalent in the sense of solvability. The authors of
the article also establish the stability of the solution to the considered problem with respect to the nonlocal
condition.

Keywords: mixed-type equation, nonlocal boundary value problem, the existence and uniqueness of a
solution, fractional differentiation operator, the Hilfer operator, the Mittag-LefHler function.

1.Introduction and Problem Statement

Let Q ={(z,t) : 0 <z <1, —a<t<b}, Q =0N(>0), Q% =0nN(t <0), where a,b are positive real
numbers. Considering this domain for the mixed-type equation
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——&-D"”u t>0,
0=24 9o (1)
. @4—& t<0
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the following nonlocal problem is considered.
Problem A. To find the function u(x,t), which belongs to the class

Pu o), 2% (), € C(2) € O UDy) @)
3$k 1 )axk 2), Utt 2), Ugzax 1 2)s

tl_"*D(’“”Vu, 1=

where k = 0, 2, satisfies equation (1) in the domain 7 U s, the boundary conditions
w(0,t) = u(1,t) = gz (0,t) = uge(1,¢) = 0,¢ € [—a, 0] U (0, b], (3)
u(z, —a) = D*u(z,b) + ¢(z), 0 <z <1, (4)

and the gluing conditions

lim JOJr Tu(x, t) = 1_i>r£10u(x7t) hm JOJr o JOJr u(z,t) :tgrzlout(%t). (5)

t—+0
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Here o(x) is a given sufficiently smooth function, D*7 0 < o < v < 1 is a generalized fractional
differentiation operator (the definition of this operator is provided below).
For a function ¢(t), given on (a,b), —0o < a < b < 0o, the expression

x

o 1 a—1
IS p(x) = Tla) /(x — )" Tp(t)dt, x € (a,b)
is said to be the fractional Riemann—Liouville integral of the order o > 0 [1, Vol. 1, p. 25]. Here I'(«) is the
Euler gamma function. Let n — 1 < o < n, n € N. The fractional Riemann-Liouville derivative of a function
©(t) of the order « is defined by the formula [1, Vol. 1, p. 27]:

mn

«a d n—o
D(H_(,O(I) = dxinla-&- (,0(33),]} € (avb)'

The fractional Caputo derivative of a function ¢(t) of the order « is defined as follows [1, Vol. 1, p. 34]:

I'(n—a)

a

_ 1 o™ (t)dt
LD () = I (z) = / )
+80( ) + ¥ ( ) (m t)a—n-i-l

For @« = n € N, these derivatives are reduced to the derivatives of integer order [1, Vol. 1, p. 27, 34]:

_d'p
T odan

DZL+<P(37):*D2+%0(37)

The generalized Riemann—Liouville derivative of the fractional order a, n — 1 < a@ < n, n € N and type £,
0 < B <1 (otherwise, the Hilfer fractional deivative) of a function f(t) is defined by the formula

n
@B () = [P0 4 A=) n-a)

at P + dpn Lt o(z).

Hence, it follows that for § = 0 the Hilfer fractional deivative coincides with the Riemann—Liouville operator
(Dg"+O = Dg, ), and in the case of § = 1, we obtain the fractional Caputo derivative, that is Dgﬁrl = .Dg,.

Thus, the operator D*? is a continuous interpolation of the well-known Riemann-Liouville and Caputo
differentiation operators of fractional order.

Further, for the convenience of notation, we will use another notation for the Hilfer fractional derivative,
ie., DY = Dgf where y =a + fn—af and a <y < n.

The generalized operator D" was first introduced by Hilfer [2]. Applying the integral transforms of Fourier,
Laplace, and Mellin, he investigated the Cauchy problem for the diffusion equation with a generalized operator
D7 the solution of which was represented in terms of the Fox H-functions.

In [3], boundary value problems were investigated for the fractional diffusion equation with a time generalized
fractional Riemann-Liouville derivative. To solve the problem, in the finite domain, the Laplace method of
separation of variables and transform was used. The solution was obtained in the form of an infinite series
containing the Mittag-Leffler functions, and the asymptotic behavior of the solution was found at infinity. In
an infinite domain with respect to a spatial variable, using the Fourier-Laplace transform method, the Cauchy
problem was solved, and the fundamental solution to the Cauchy problem was found.

In [4], analytical and numerical solutions of boundary value problems were investigated for the fractional
diffusion equation with fractional Hilfer time derivative and spatial fractional Riesz-Feller derivative. The Laplace
and Fourier transform methods were applied to solve the problem, and solutions were presented using the
Mittag-Leffler functions and Fox H-functions. The numerical solution of the problem was also considered by
approximating fractional derivatives with fractional Grunwald-Letnikov derivatives.

In [5], the properties of the Hilfer operator were investigated in a special functional space, and an operational
method was developed for solving fractional differential equations with this operator in the same space. Elaborating
the results of [5], the authors of [6] developed an operational method for solving fractional differential equations
containing a finite linear combination of the Hilfer operators.

In [7], the source identification problem was investigated for the generalized diffusion equation with the
generalized integro-differentiation operator. We also note the work [8], where inverse problems were studied for
a generalized fourth-order parabolic equation with the operator D*7.
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Note that various models of practical problems using fractional calculus are constructed in [1], [9-12]. More
detailed information, as well as a bibliography on the Hilfer fractional derivative and its properties, can be
found in the monograph [13], where the theory of fractional integro-differentiation, including the Hilfer fractional
derivative, is systematically presented.

Nonlocal problems are arisen in the study of various problems of mathematical biology, forecasting soil
moisture, physics, and plasma problems. More detailed information on nonlocal problems can be found in the
monograph [14]. With regard to nonlocal problems for mixed-type equations, significant results in this direction
were obtained by K.B. Sabitov and his students [15-18]. Note that a nonlocal condition of type (3) takes place
when simulating the problems of flow around airfoils by a flow of subsonic velocity with a supersonic zone [15].
It should also be noted the papers [19], [20], where nonlocal problems for equations of mixed type with the
generalized in time fractional Riemann-Liouville derivative were studied.

In this paper, we study a nonlocal boundary value problem for a mixed-type equation with a Hilfer operator
of fractional order, which is a further development and generalization of the results from [16], [21].

2. On the solution of the Cauchy problem for a fractional-order equation with the Hilfer operator

Consider the Cauchy problem for a fractional-order differential equation with the operator D7

DWU( ) = Au(t) + f(t), t € (0,0),
(6)

t—>+0dth u(t) =ug, k=0,1,.n — 1,
where f(t) is a given function, u; = const.

It should be noted that in [7], the Laplace method was used to solve this problem, and in [5], the solution
of a more general problem in a special functional space was found applying the operational calculus. Here, in
contrast to these works, we will show one simple way to solve the problem, which makes it possible to obtain
the solution to this problem in an explicit form.

The following takes place:

Lemma 1. Let t*=7f(t) € C[0,£]. Then a solution to problem (6) exists, is unique, belongs to the class
t1=7D*Yu(t) € C[0, 4], and is represented in the form

n—1 t
= 3w B gt (M) *‘j/ (t = 1) B (At — 7)) f(r)dr. (M)
k=0 o

Here E, g(z) is the Mittag-Leffler function, which has the form [22; 117], [1, Vol 1; 269]

kZ:O Fak—i—/j z,a, 8 € C, Re(a) > 0.

Proof. Taking into account the definition of the Hilfer operator, one can write the fractional-order differential
equation corresponding to problem (6) in the following form:

37Dy ult) = Ma(t) + f(1).

Further, applying the operator J§, to both sides of this equation, taking into account the linearity of Jg,,
and also the formula [23; 75]
n-1 (o+k—n

o Do u(t) = u(t) - w+k+1—MW%dﬁ

RS, 6 € (n— 1,

we obtain

n—1
t7+k "uk.

~ L TR = MO+ B (8)

Thus, we have reduced the solution of problem (6) to the solution of the Volterra integral equation of the
second kind of the form (8).
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Further, using Theorem 3.1 from [22; 123], we represent a solution of equation (8) in the form

n_l prk—n,,
u(t) = ’;O T(y+k+ 1’i T Jor f(O)+
/ a-1 o [ prtheny, N
+)\O/(t—7) Eoa(At—T7)%) L;J T ET T )
Denote
n—1 u t
o= ; L(y+k i 1-n) e O/ (t = 1) Baa(A(t = 1)) dr |

I(t) = Jg (1) + A / 1) BNt = 7)) S ()
0
Changing variables by the formula s = ¢t — 7, using formulas [22]

1
Eou(z) = ) +2-Eoptalt), >0, p>0,

z

1 . _ _
) /(z — )" Ea st = 2PV B 51, (A2%), v > 0, 8> 0,
0

the first integral can be easily reduced to the form

(t) = Z Wt " By k1 —n (M),

Further, transform the second term in the expression for I5(t) to the form
t

/ (t— T)ailEoﬁa()\(t — T)Q)J(‘)"Jrf(T)dT =

0

T

- / (t = 7" BasalMt = 7)")ir [ (7= 9)°7 F5)ds =
0

0
t

1 / a—1 a—1 @
Fo/f ds/(t—T) (7 — )% LB 0 (Mt = 7)) dr.

S
Taking into account formula (11), we represent the inner integral in the form
¢

/ (t—7)" = 8)*  Eqa At —7))dr

S

T(a)(t — 1) Eq o (At — 7)%).
Further, considering formula (10), represent I2(¢) in the form

1) = / (t = 1) B (Mt — 7)) f(r)dr.
0

We obtain formula (7) from (9), (12), and (13

(13)

). The uniqueness of the solution to the problem follows from

the method for constructing the solution, and its smoothness follows from the representation of the solution

(7), as well as from the results of [5]. Lemma 1 is proved.

92
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3. The existence, uniqueness and stability of a solution to Problem A.

To solve the problem, we will apply the spectral method. We will look for a solution to Problem A in the
form of u(x,t) = X (z) - T(t). Substituting this expression into equation (1) and boundary conditions (3), we
obtain the following spectral problem:

XV(z) = MX(2) =0,X(0) = X(1) = X"(0) = X" (1) = 0.
The problem under consideration is self-adjoint, has a complete system of eigenfunctions in Ls(0, 1) of the form
X, (z) = V2sin Az, (14)
which forms a basis in Ls(0,1). Here A\,, = 7n, n € N.
3.1. Uniqueness of the solution to problem A.

Let u (z,t) be a solution to Problem A. Consider the following functions:

1
ul(t) = \@/u(m,t) sin Apxdr,n =1,2, ... (15)
0
1
u, (t) = \/i/u(x,t) sin \pzdr,n=1,2,.... (16)
0

Applying the operator D7 to both sides of equality (15) with respect to ¢t at ¢ € (0;b) and differentiating
equality (16), with respect to t twice at ¢ € (—a;0), and also taking into account equation (1), we obtain

1 1
D>yt (t) = \/5/ D¥Vy(x,t) sin \pzdr = — \/ﬁ/umm(x, t) sin A, zdx, (17)
0 0
1 1
d?u;, (t) . .
pro V2 ug(x, t) sin Ay xdr = — V2 Upzzr (X, ) sin A\pyzde. (18)
0 0

In the integrals from the right-hand sides of equalities (17) and (18), integrating by parts four times, taking
into account boundary conditions (2), we obtain the differential equations

D>Vt () + Nrwt (1) = 0,¢ > 0, (19)

2

—ln (t) 4+ Nru, (t) = 0,t <0, (20)

the general solutions of which have the form

At T By (= AptY), > 0,
Tj':(t) . { 7’\/( n )

U 21
) B, sin )\it + L, cos )\,211; t <0, 1)

where A,, By, L,,n=1,2, ... are arbitrary constants.
Taking into account conditions (4) and (5), we obtain from (15), (16) that functions u
following conditions:

+

n

(t) must satisfy the

. - . _ . o d 1 . duy, (%)
11—y, + _ l—a [ % 71—v, + _ n
tl_lg_lo Jog Tuy () = tgrilo u,, (t), tl_lglo Joy (dt Jot "y (t)) tgrilo dat (22)
du=(—
’U,ng( a) _ Da,’yux(b) + o (23)

dt
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where
1

On = \/i/go(x) sin \pzdr,n =1,2,....
0

Further, satisfying functions (21) and conditions (22)—(23), we obtain the following system for finding the
constants A,, B,, Ly:

An = LmBn = *A%Anv
2 2 2 2 4 -1 4 (24)
LAy, sinAja+ Bp;, cos AZa + A\, Apb? " Eq 4 (=A50%) = .
The system, having the unique solution of the form
_ — 2 _ #n
Ln - Ana Bn - _)\nAna An - ma (25)
provided that for all n € N the equality

Ay (a,b) #0,A,(a,b) =sin\2a — A2 cos \2a + N207 L E, ., (—\4b%) (26)

holds.
Substituting (25) into (21), we finally obtain
P g, (<MA), >0
+ AnAn(a;b) T ’
uk (1) = (27)

“n 2 2 i )2
m (COS )\nt - >\TL Sin Ant) ; t S 0.

Using (27), it is easy to prove the uniqueness of the solution to Problem A. Indeed, let condition (26) be
satisfied and ¢ () = 0. Then ¢,, = 0, and formulas (15), (16), and (27) imply

1
/tl_'yu(m,t) sin Apzdx = 0,t € [0,0], n =1,2, ...,
0

1
/u(x,t) sin \pzdr = 0,t € [—a,0], n=1,2,....
0

Further, taking into account the completeness of system (14) in L2 (0, 1), we conclude that u (z,t) = 0 almost
everywhere on [0, 1] at any t € [—a,b]. Since t!u(z,t) € C(Q), u(z,t) € C(Qy), we have '~ Vu (z,t) = 0 in
Q, that is, problem A has the unique solution in the class under consideration.

Thus, the following statement holds.

Theorem 1. If there exists a solution to Problem A, then, it is unique if and only if conditions (26) are
satisfied for all n € N.

Now let us consider the case when condition (26) is violated. Let A,,(a,b) = 0 for some a, b, v € (0, 1], and

n = m. Then the homogeneous Problem A (where ¢ () = 0) has the nontrivial solution
VE (2,) = V20l (t) sin Az, (28)

N T B, L (AR )t > 0,
Uy (8) = 2 2 42
cos At — Ay, sin A t,t < 0.

Now, represent the expression A, (a,b) in the form:

A, (a,0) = 1+ Msin (\2a — pp) + A2077 E, (=A%), (29)
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where p, = arcsin (/\%/\/1 + Ai) and p, — 5 at n — +oo. From this, it can be seen that the expression
A, (a,b) vanishes only if

1 Xy—1E, (=i
a =5 (—1)k+1 arcsin — o (ZXa0%) +7k+pn|,n=12 .
A2 V1+ A2

Since A, (a, b) is the denominator of the fraction, for sufficiently large n, the expression A, (a,b) can become
sufficiently small, i.e., the problem of "small denominators" has arisen. Therefore, to substantiate the existence
of a solution to this problem, it is necessary to show the existence of numbers a and b such that, for sufficiently
large n, A, (a,b) will be separated from zero.

Lemma 2. Let v € (0, 1], b be any positive real number, a be an irrational number such that either ar € N
or Ta = g € Q\N where p,q € N,(p,q) = 1 and ¢ is an odd number. Then for large n there exists a positive
constant By such that the estimate

|A,, (a,b)] > Byn? >0 (30)

is valid.
Proof. Let ma =p < a = £,p € N. Then, we have from (26)

A (@, b) = A% (=)™ + 877 By (-A36%)

> A5 (1= 07 Bay (=A00%)

at all n and b > 0.
Here and below, we use the following properties of the Mittag-Leffler function:
1. For a, 8 € (0,1],« < 33, the function E, g(—z) is completely monotone on (0,0) [1, Vol 1, p. 280].
2. Let « € (0,2), 8 be a real constant, and arg z = 7. Then the inequality

M
E.z(2)| < 31
Eas(D] < 173 (31)
takes place, where M is a positive constant independent of z [22; 136].
Then, it follows from (29) that there exists ng € N such that for all n > ng the inequality
A2 (1=0"" Eq 0 (=ARD™)) = Bin® >0 (32)

holds and hence A,, (a,b) > Byn? > 0.
Let now a = q%, p,q € N, (¢,p) = 1, ¢ be an odd number. Divide n?p by ¢ with a remainder: np = sq +r
where s,7,€ NU{0}, 0 <r < g. Then expression (29) takes the form

An(a,b) = VI+X(=1)""" cos (7:; * €n> A2 B (—AABY) (33)

where €,, = arcsin (1/\/1 + )\%) >0 and g, — 0 at n — +o0.

Let » = 0. Then we have the case considered above. Let r > 0. Then 1 <r < ¢ —1, ¢ > 2, and for large n
O0<ZHen< T t+en<mT—7+en <.

Hence, it follows that if ¢ = 2, | € N, then for » = [, we obtain that %T +én — 5 at n — +oo, and if
qg=2l+1, then % % at any r from [1,¢ — 1]. Since &, — 0 and V' Eq A (=A2b) = 0 at n — 400, there
exists a constant n; > 0 such that

r
cos ( + 5n>
q

where 0 < By < % ‘cos %

r

— b B (= ARDY) > = |cos — | — bV T E, A (= A2bY) > B,

DN | =

. Then, taking into account these estimates, we obtain from (33) for n > n;:

|Aa,b > /\721 (COS (Tf(; + gn) - b’y_lEaﬁ(_)‘bea)) >
1
> A2 (2 cos % — b”lEaﬂ(—)\ﬁba)) > 72 Byn?. (34)
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It follows from (32) and (34) that (30) is valid for large n.
Lemma 2 is proved.
Note that the idea of the proof of Lemma 2 was borrowed from [18].

3.2. The existence of a solution to Problem A.

Let us turn to the proof of the existence of a solution to Problem A. The proof of the following lemma
follows easily from (26), (30) and estimate (31).

Lemma 3. Let conditions (26) and (30) be satisfied. Then

1) if ¢t € [0, b], then

_ B: o e
0t (0] € Bl 0 (Dot 0] < Bl
2) if t € [—a, 0], then

d*u;, (t)
dt?

|up ()] < — lul,

’ < BG|507L|’

‘ < B7n2|90n|a

here and below By, k = 1,7 are positive constants. Since system (14) is complete and forms a basis in L2(0,1),
we look for a solution to Problem A in ) in the form

\@Z wl (t)sin \pz, (z,t) € Q,
u(z,t) = n;l (35)
\/52 u,, (t)sin \yz, (z,t) € Qo,
n=1

where u;Z(t) are unknown functions. It is not difficult to see that, substituting function (35) into (1) and
satisfying conditions (3)-(5) with respect to the sought functions, we obtain problem (19), (20), (22), (23), the
solution of which has the form (27).

Thus, the solution to the problem can be represented in the form (35), where u;}(t) are determined by
formulas (27). Now, it remains to prove the legality of all these actions. For this, we formally compose the series
from (35), using term-by-term differentiation

DYz, t) Z DYt (1) X, (), t > 0, (36)
> de (z)
=11
;uL — s k=14 t>0, (37)
u(z,t) = d?u; (1)
= nz::l X (@), £ <0, (38)
a““ Z ()k:—14t<0 (39)

Taking into account Lemmas 2, 3 one can easily see that series (38), (39), and series

> D U (1) X (), Y tl—vu,t(t)dT"k(x), k=0,4t>0, (40)

n=1 n=1

which are obtained from (36) and (37) by term-by-term multiplication by , are majorized by the series

Sl (41)

n=1
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Therefore, we investigate the convergence of series (41). Taking into account the relation

1
2
On = 390513) =— V2 /gp”’(m) cos Apzdz,
0

(wn)”

(mn)

as well as using the Cauchy-Schwarz and Bessel inequality, we have

00 0o 1/2 0o 1/2

1
Sefted <3 He< (0] (L) <o)
n=1 n= n=1

— L2(0,1)
o0
where % = %2. Then, by the Weierstrass theorem, series (38)—(40) converge absolutely and uniformly in
n=1

domains Q; and s, respectively.

There fore it follows that the function u(x,t), defined by series (36), belongs to class (2), and also satisfies
the conditions (3)—(5).

Now, let A,,(a,b) =0 at some and n = k1, ..., ks, 1 < ki < ki < ... < ks, s € N.. Then the fulfillment of the
orthogonality conditions is necessary and sufficient for the solvability of system (24)

1
on = \/5/ p(x)sin \pzdr = 0,n = ky, ...ks. (42)
0

In this case, the solution to Problem is defined as the sum of the series

ki—1 ko—1

V2124 D et >

n=1 n=ki+1 n=ks+1

t)sin A achZC VE(), (43)

where in the last sum m = ky, ...k, C,, are arbitrary constants, functions V,(¢) are determined from formula
(28).

Thus, the following statement holds.

Theorem 2. Let p(z) € C?[0,1],¢®) () € L2(0,1), ¢2)(0) = p(?*)(1) = 0, k = 0,1. Then Problem A
is uniquely solvable if only if conditions (26) and (30) hold, and the solution is determined by series (35). If
Ay (a,b) = 0 for some a, b, v, and n = ki, ..., ks, moreover condition (30) takes place, then Problem A is solvable
only if orthogonality conditions (42) take place. In this case, the solution is determined by series (43).

8.8. Stability of the solution to Problem A.

Now, let us establish the stability of the solution to problem A with respect to its nonlocal condition (4).
Let

llu(z, D)l e = 11 ul@, Ollo@,) + llu(z, Hlle@,),
lu(a, )l a0 = 1t ul@, )| Lagen) + llul@, Ol 00,

where
lo(a, 0l = max|o(z, 1),

F @)l ero.1 —I[na>]<|f( )],

1/ 1/2

o(e, D)lza) = //|va:t|2dxdt No@) oo = /Icp ) 2da

Theorem 3. Let the conditions of Theorem 2 be satisfied. Then the solution to Problem A satisfies the
estimate

lu(z, D)lle@ < Clle@)llep., (44)

Mathematics series. Ne 4(104),/2021 97



B.J. Kadirkulov, M.A. Jalilov
u(@, )| L) < Clle(@)]L,0,1)- (45)

In what follows, C' will mean an arbitrary constant, the value of which is not of interest to us
i , (35), on the base of

Proof. Let (x,t) be an arbitrary point from the domain 5. Then using formulas (27), (

Lemma 3 and the Cauchy-Bunyakovsky inequality, we obtain the estimate

(e < VES Juz ()] < V3B, 3 —leal,

n=1 n=1
it easily follows from this that
llu(z, )o@, < Clle(@)llcp.)- (46)
In the same way, in the case of (z,t) € 1, we obtain the estimate
(47)

1 u(z, )l o,y < Clle@)llcpa-
Estimate (44) follows from (46) and (47). Now we prove estimate (45). Since system (14) is orthonormal in
L5(0,1), we get from (35), using the Parseval equality,

||u(z, t) HL2 (Q2) = (Z Un (1) Xn(2), Z um(t)Xm(I)> - Z ”un(t)HQLz(—a,o)'
m=1 L2(Q2) n=1

Hence, based on Lemma 3, we get
(48)

[lu(@, Dll a2y < Clle(@)l|La(0,1)-
(49)

In a similar way we obtain the estimate
1t u(z, )l o0y < Clle(@)llza0,1)-

Estimate (45) follows from (48) and (49). Therefore, solution (35) continuously depends on the function

o(x).
Theorem 3 is proved.
4. Some examples

D and equation (1) has the form

Ezample 1. Consider Problem A at v = 1. Then D*?Y = D!

84
97 4+CDau t>0,

0= (50)
Olu  Ou

o0t T o

we obtain Problem A for equation (50) with the Caputo operator ¢ D%, the solution of which has the form

S
V2pn
— B (=AY sin Az, (z,1) € Q,
 NBA () e (A s An, () € 1
u(z,t) =49
20
"~ )\%\A/;Sfa’b) (COS )\it — )\i sin )\?Lt) sin Anflﬁ, (.’.E, t) € QQ.

4 and equation (1) has the form

Example 2. Consider the case of ¥ = a = 1. Then D*7 = Db =
o*u  Ou

0 W“ra 1f>07
) 9t B
@+ﬁ,t<0,
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we obtain the integer partial differential equation. Since Eq 1(z) = e?, the solution of the obtained problem has
the form

— V20,
A2 A, (a,b)
n=1

— V20,
2
n=1 )\HAH (a7 b)

et sin An, (2,t) € O,
u(z,t) =

(cosAZt — A2 sin A2t) sin A, (2,1) € Qa.

Conclusion

In the paper, we established a criterion for the existence and uniqueness of a regular solution to a nonlocal
problem for a fourth-order mixed-type differential equation with the Hilfer operator in a rectangular domain.
For this, we used the spectral method, which allowed to construct a solution to the nonlocal problem (1)—(5) in
the form of a Fourier series. Next, we proveed the stability of the obtained solution with respect to the problem
data. Moreover, we provided a simple way to solve the Cauchy problem for a fractional differential equation
with a generalized Riemann - Liouville derivative.
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B.2K. Kamupkymos!, M.A. 2Kammos?

! Tawxenm memaexemmis waeviemany ynueepcumemi, Tawxenm, ©36excman;
2 Pepeana memaexemmix yrusepcumemi, Pepeana, O3bexcman

Tepriuimi perTi apaJjac TUIITI TeHJey YIIiH
Oip OeilstoKaJIIbI ecell >KaiibIH/Ia

MakaJstaga Puman-JInyBuiiigis »ka/ImbliaHFal oepaToOpbIMEH apaJjiac TOPTIHIII peTTi TeHAeyY YIIIiH HHTErpo-

nuddepeHmanapl TYHiHIeC MAapTThl 6ip OEMIOKAIBI €CEIITIH, IIENITy MOCe/IeIEpiH 3epTTeyre apHAJIFaH.

Beurini 6ip maprrapma 6epinren napamerpsep MeH pyHKIAAIAP VIITIH KOHBIIFAH €CEITiH, MeNTiMiHIH KaJJIFbI3
»KoHe Gap 6oy TeopeMasaphl JgosesaeH . by maprrap Oy3bLIFaH Ke3/ie KOWBIIFaH €CEeNTiH HOIIK eMec

mrerriMi 6ap GOJATHIHBI KANBIHIA MbICaT KeaTipiaren. Ecernriy mremtiMiniy »Kaarbel3 KoHe 6ap 601y TEO-

peMaJjIapbIH JIpJIesIey YIIiH alHbIMa IbLIap/ bl 661y ojici Koymanbuiabl. lenrivuin 31 6ipesmem i criek-

TPJIK ecenke colkec abCOIOTTI »KoHe GIPKAJIBIITHL XKUHAKTAJIATBIH KaTap Typinje ajabiarad. Komun ecebi

JKAJMbUIAHFAH WHTErpo-audepeHIuaiaay onepaTopbl 6ap OeJiek TeHey VIMH 3epPTTes i, OChl eCemTi

SKBUBAJIEHTTI HHTEIPAJIJIbI TEHJICY/IIH, IIeIIM/IiIir MarbIHACKIH/IA MIENIIMIH Taby/IbIH KapalraibiM 9/1ici Kep-

ceriireH. Beitmokaaael mapT GONBIHINA KAPACTHIPBLIFAH €CENTIH TYPAKTHLIBIFBl AJTBIHFAH.

Kiam cesdep: apanac TuTi TeHIey, 6eMIOKAIIBI METTIK €Ccel, IIeNIMHIH 6ap KoHe YKAJIFbI3 OOJIybI, 66JI-
ek Ti naTerpo-auddepennuangay omneparopsl, Xuadep oneparopsl, Murrar-Jleddep dyurnmsacer.
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B.2K. Kamupkysos!, M.A. 2Kamos?

! Tawmenmeruti zocydapemeenmuiti yrusepcumem socmoxosedenus, Touwkenm, Yabexucman;
2 . .
Depearcrutl 2ocydapcmeennuili yrnusepcumem, Pepeana, Yabexucman

OO6 oaHoOIT HeJIOKaJIBHOI 3ajiave NJid YyPaBHEHUsI CMEMIaHHOI'O THUIIA
4eTBEPTOro IopdaaKa ¢ oneparopom Xuadepa

Crarbsi MOCBSINEHA WUCCJIEIOBAHUIO BOIPOCOB DPAa3PEIIMMOCTH OJIHOM HEJOKAJbHON 3a/laul C HMHTErpo-
nuddepeHINATBHBIM YCJIOBUEM COIPSIZKEHUS JIJIS yPABHEHUsI CMENIAHHOIO THIA YETBEPTOI'O IOPsIKa C
060061enEbIM ontepaTopoM Pumana—J/luysumis. Ilpu onpemeseHHBIX yCIOBUSIX Ha 3aJaHHbBIE TapaMeTPbl U
GYHKIMN TOKA3aHbl TEOPEMBI €IMHCTBEHHOCTH U CYIIECTBOBAHUs PEIeHUs IIOCTaBJIeHHON 3amadn. [lpu-
BeJleH IIPUMep, IIOKAa3bIBAIOIINM, YTO IIPU HapPYIIEHWH 3TUX YCJOBHI, chopMmysimpoBaHHas 3ajada Oymer
UMeTh HETPUBHAJILHOE pernreHue. s qoka3aTesibcTBa TeOpeM €IMHCTBEHHOCTHU U CYIIECTBOBAHUS PEIICHUT
[IOCTABJIEHHON 3aJIa9U MCIOJb30BAH METOJ, pa3zesieHus nepeMeHHbx. CaMO pelleHne MOCTPOEHO B BHIE
CYMMBI abCOJIFOTHO U PABHOMEDHO CXOJSIINErocsl Psijia 10 COOCTBEHHBIM (DYHKIIUSIM COOTBETCTBYIOMIEH OJI-
HOMEPHOM CIleKTpaJibHOlM 3amadn. V3ydena 3agagua Ko mist qpoGHOTO ypaBHEHUsT ¢ OOOOIIEHHBIM OIIEpa-
TOPOM MHTErpo-anddepeHnnpoBaHns, IOKAa3aH IPOCTOM CI0COO HAXOXKIEHUSI PEIIeHNsI STON 3aa49N Iy TeM
CBeJIeHNsI €€ K SKBUBAJIEHTHOMY B CMBICJIE PA3PENIMMOCTH WHTErpajbHOMY ypPaBHEHUIO. ABTOpaMU TaK¥Ke
YCTaHOBJIEHA yCTOMYINBOCTD PEIIEHUS pacCMaTpUBAEeMOil 3aa9n 110 HEJIOKAJIHHOMY YCJIOBHIO.

Karoueswie caosa: ypaBHEHHE CMEIIAHHOTO THIIA, HEJIOKAJbHAs KpaeBasl 3aatda, CyI[eCTBOBAHNE W €IUH-
CTBEHHOCTDH PeIlleHUsl, OIepaTop JPOOHOr0 MHTErpo-auddepeHmpoBanus, oneparop Xuadepa, dyHKIMs
Murrar-Jledbdaepa.
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