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Boundary value problem for the heat equation with a load as the
Riemann-Liouville fractional derivative

A boundary value problem for a fractionally loaded heat equation is considered in the first quadrant. The
loaded term has the form of the Riemann-Liouville’s fractional derivative with respect to the time variable,
and the order of the derivative in the loaded term is less than the order of the differential part. The study is
based on reducing the boundary value problem to a Volterra integral equation. The kernel of the obtained
integral equation contains a special function, namely, the Wright function. The kernel is estimated, and the
conditions for the unique solvability of the integral equation are obtained.

Keywords: loaded equation, fractional derivative, Volterra integral equation, Wright function, unique
solvability.

Introduction

The study of fractional differential equations has been the subject of intense research attention [1-7]. This
is due both to the development of the fractional integration and differentiation theory, and to the use of the
apparatus of fractional integration and differentiation in various fields of science. Considerable interest in the
study of fractional differential equations, among other things, is also fueled by various applications in physics,
mechanics, and simulation [8-14]. Of particular note are some recent applications of the fractional diffusion
equation to economics and financial modeling (see e.g., [15]). Monographs [16-18] contain vast bibliographies
concerning the issue. Also, an important section in the theory of differential equations is the class of loaded
equations. The study of loaded partial differential equations has a long history and occupies an important place
in the modern theory of differential equations. In [19], on numerous examples A.M. Nakhushev showed the
practical and theoretical importance of studies on loaded equations. In [20-23|, the theory of loaded equations
was further developed. In [22,23] loaded differential equations are considered as weak or strong perturbations
of differential equations depending on the derivative order of the loaded summand.

In the works [24-27], BVPs with a loaded heat equation are investigated, when the loaded term is represented
in the form of a fractional derivative. In [24,25], the load moves with a constant velocity. The loaded term is
the trace of the fractional order derivative on the line « = ¢. It is represented as a Riemann-Liouville fractional
derivative. The obtained Volterra singular integral equation has a nonempty spectrum for certain values of the
fractional derivative order. Volterra integral equations of the second kind with singularities in the kernel arising
from the study were considered in [26,27] In the papers [28,29], the loaded term is represented in the form of
the Caputo fractional derivative with respect to the time variable and the spatial variable, and the derivative
order of the loaded term is less than the order of the differential part.

In this paper, a BVP is considered in the open right upper quadrant. The problem is reduced to an integral
equation that, in some cases, belongs to the pseudo-Volterra type, and its solvability depends on the order of
differentiation in the loaded term and the behavior of the load line in a neighborhood of the origin. The BVP
is reduced to a Volterra integral equation of the second kind with a kernel containing a special function. The
solvability of the integral equation in the class of continuous functions is established depending on the nature
of the load for small values of time.
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The article has 4 sections. Section 1 contains notations some previously known concepts and several auxiliary
assertions. In Section 2, we formulate the problem we are going to solve. In Section 3, the problem is reduced
to an integral equation. In Section 4, we study the resulting integral equation by evaluating its kernel and
formulate the corresponding results on the solvability of the problem.

1 Preliminaries

Let us first recall some previously known concepts and results. The first one is the definition of the Riemann-
Liouville fractional derivative.

Definition 1 ([1]). Let f(t) € Li[a,b]. Then, the Riemann-Liouville derivative of the order J is defined by
the following formula

1 A A 1 C))
TDf,tf(t)zm%/a Wdﬂﬁ,ae}%,n—l<ﬁ<n. (1)

From formula (1) it follows that

PDR () = f(8), D f(t) = (1), neN. (2)

In [30], when considering the limiting cases of the order of the fractional derivative in the loaded term of
the equation, formula (2) is used to investigate the continuity in the order of the fractional derivative.

We study boundary value problems for the loaded heat equation when the loaded term is represented in
the form of a fractional derivative. The considered problem is reduced to an integral equation by inverting the
differential part.

In the domain @ = {(z,t) | >0, t > 0} the solution to the boundary value problem ([31]; 57) of heat
conduction

uy = a*ugy + F (z,1),
u‘tZO :f(-r)a u‘IZO :g(l‘),
is described by the formula

u(x,t)z/oooG(x,f,t) f(g)d§+/o H(z,t— 1) g(r) drt

+ /O /O G (2.6t — 1) F (¢, 7) dédr, (3)

H( t)_é 2
“ _2\/7Tat3/2eXp dat)’

The Green’s function G (z,£,t — 7) satisfies the relation

/Ooo G (x,€,t) dE = erf (2?/5) : (4)

erf (z) = % /OZ 6_52d£. (5)

Fractional calculus can be considered as a “laboratory” for special functions.

We get a reduced integral equation with a kernel containing the Wright function. Accordingly, we determine
the conditions for the solvability of this equation using the kernel estimate from the works [32, 33].

¢ is the Wright function:

where

where

¢ (a,b; z) = kzzom (a>-1). (6)
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The differentiation formula is valid:

d

<dz)n¢(a,ﬂ;z)¢(a,a+n5§2)a”€N' (™)

For all « €]0,1[, 8 € R,z > 0,y > 0 the following inequality holds
‘yﬂ_l(b (—OZ, ﬁ? _my_a) ’ S O‘T—eyﬁ+a9_l7 (8)
where
| -1 (=8) e NU{0}.

2 Statement of the fractionally loaded BVP of heat conduction

In the domain @ = {(x,t) : & > 0,¢t > 0} we consider a BVP

Ut — Ugg + A {ngytu (x,t)} |:Jv:'y(t) = f (I,t) y (9)

u(z,0) =0, u(0,t) =0, (10)

where ) is a complex parameter, TDg ; u(z, t) is the Riemann-Liouville derivative (1) of an order 5, 0 < 8 < 1,
~(t) is a continuous increasing function, v(0) = 0.

The problem is studied in the class of continuous functions.

Let us introduce the notation

S L [P g®d
D ()= 5 / 25 veo

When v =0 D%,g (t) = g (t) then

n

d
Drg(t) = dt—ﬂDZt_"g(t)7 n—1l<v<n, né&N.

a=0,n=1,v=0=

d
+Doyu (z,t) = = Doy u(x,1) (11)
or
d 1 Yz, T)dr
DB (z,t) = — / ’ . 12
but (1) dt(F(l—ﬁ) 0 (t—7‘)’8> 12)
The derivative in the loaded term of equation (9) is determined by the formula (12).
3 Reducing the boundary value problem to an integral equation
According to the formula (3) a solution to BVP (9)—(10) can be represented as
t 00
u@t)==r [ [T G- dedr + fi(w0), (13)
o Jo
where
u(t) = {, D @0} [amrio (14)
t “+o00
fien= [ [ Gwge—n s dern (15)
o Jo
According to the formula (4) and
6752 = \/7?(;5 <_;7 %7 _2§> ’ (16)
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where -
ZI‘L
b, z) = E _ -1, b 1

k=0

is the Wright function (6), we have [34]
# 11 1
erf(z):?/ ¢(—,,—2§> df:l—(b(—,l,—zz). (18)
o 272 2

Indeed, since
P(1-2)-T(z)= =

sinwz
T

Kk 1 0
( 2 2> r E—f—} sin(ﬁ—i—I) r E—&—l cos =
2 2 2 2 2

K 0, if k=2n+1,
(-1)", if k=2n.

0, if k=2n+1,

N 1
k1
F(_*"'?) , if k=2n,

We obtain formula (16).
From (5) we have:

_2 [ e o 11 I 11 _

oit(s) = = [Cede =2 [Co (g g2 )de=— [ o (-g.50)ac
. 2 C’i S <K+1 (=—2z

- ¢ = — ==2 _
nz—;)/o m-r(—“+1> ;(n+1)!.r<—”+1+1> =

2 2 2
[e%e) k+1 oo n
=-> (=22) = - (_227)1-1-1:1—;1)(—1,1,—22).
nzon!~F(f§+1) 2

We get formula (18).
Then, taking into account formulas (16) and (18), representation (13) can be rewritten as:

t
ulet) =2 [ & (= ) uo)dr + i o). (19)
where .

x x

Kl——)=1-¢(-2,1,———— 20

(z=) =12 (-30-7=) 20
and p(t) and f1(t) are defined by formulas (14) and (15), respectively.

7
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For formula (19) we implement the fractional differentiation formula of order § (0 < § < 1) in the sense of
Riemann-Liouville.

x
Denote K | —— ) = g (z,1).
enote (2\/E> g(z,t)
As:

/otK(zﬁ-ﬁ)“<T>df=/0tg<w»t—7>u<7>df=<g<x7t>*u<t>><t>,

G = (%) 0+l no).

then by formulas (11), (7) and (20) we have

Dy, (/OtK<2\/%>u(T)dT> =D, (K (;/z) *u(t)) _

and

=D’ (1—¢<—;,17—\2)> ()+K(2\[> Lb(t). (21)
As , . . y
DOt (1) F(].*/B) t )
then when 0 < 8 < 1 N )
. D+ e
Dot T(n—B+1) ’

From here

B " I'(-2+1) g N (_% ' B
Zn' r —7+1)F(—%+1—ﬂ).t =1 'Zn!.r(— +1-8)

. —tﬁqs(—l B; — \[>. (22)

g (x,t) [1=0 :K(Q:f/i) . - (1_(;5(_;’1;_\2)) —o

Since in the given problem (9), (10) the line along which the load is moving has the form x = ~ (¢), and
v (t) increases and «y (0) = 0 then there are different cases of behavior for \[ | o=y (ry When t — 0.

Let 0 < 2 = ~y(t) ~ t* when t — 0. Then 7 — +oo when t — 0, if w< 3.

Cases w > % and w = % we consider later.

From [12, p. 6] we have an asymptotic expansion for z — +oo:

1
¢ (_27 1; _Z> =

Then if w < £ for formula (23) we get when ¢ — 0

g(x,t) = (1 % (—;,1;—\2)) S (24)

So, applying to (19) the fractional differentiation of the order 8 by formula (11) taking into account the
formula (21)—(24), when @ = v (t), where 7 (t)) ~ t* when t — 0, w < %, we get when A # —1

(23)

ZAJ' L9 m2imL 4 (92m . pm2me L) ]

O+ 545 [ K uGr =50, 5)

where
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A

= 5P (i @)

f3(t) ; (26)

z=y(t)

_ 1 S Y (R S T e A ()
K(tﬂ—)_l“(lfﬁ)(tff)ﬁ (t—7)° (b( 2! Jt?) 0

4 Integral equation research. Main result

Let us estimate kernel (27) of integral equation (25). The Wright function for Vao € (0;1), b€ R, z > 0,y > 0
satisfies the inequality (8) [16]

where 6 > 0, when —b ¢ N | {0}.
Then

1 1
(t—7’).¢(_271_5,_

At 6 = 0 we obtain:

v (1)
V-t

)| <C() (k-1 00

_ ()P
K< (g +1) -0
when 0 < 3 < 1.

From here we get that the kernel of the integral equation has an integrable singularity if 7 (¢)) ~ t* when
1
t—0,w<—.
Thus, the following theorem has been proved.

Theorem. Integral equation (25) with kernel (27) for 0 < 8 < 1 and with (t) ~ t* in the neighborhood of
t = 0 is uniquely solvable in the class of continuous functions for any continuous right-hand side f3(t) defined

1
by formula (26), if 0 <w < 3
This result coincided with the result obtained in [30].

Conclusions

According to the theorem, the integral equation (25) has a kernel with a weak singularity. Therefore, to
find a unique solution to the equation (25) in the class of continuous functions, we can apply the method of
successive approximations. After finding the solution p (7) to equation (25), the solution to the original boundary
value problem is found uniquely by formula (13). For the boundary value problem, the loaded term is a weak
perturbation.

In other cases of values of the parameters 8 and w, the method of successive approximations is not applicable
for solving the integral equation (25). It is possible that the corresponding homogeneous equation will have
nontrivial solutions for some values of the parameter A, i.e. the spectrum of the problem will appear. Then
the load can be interpreted as a strong perturbation. The existence and uniqueness of solutions to the integral
equation depends on the fractional derivative order of the loaded summand. For A\ = —1, BVP (9), (10) is
reduced to The Volterra integral equation of the first kind.
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! Koadanbanv, mamemamura scone asmomammanoupy uHCmumymoL,
PFA Kabapoun-Baaxap gouarvimu opmanviev,, Harvuur, Pecet;
2 Axademurx E.A. Boxemos amuindaen. Kapaeandw yrusepcumemi, Kapaeanow, Kasaxcmar;
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Puman-JInyBniaab 6e1meK TybIHABICHI TYPIHJET] XKYKTeMeMeH
OeplJireH »KbLIYOTKI3TIMITIK TEeHJeyl YIIiH ITeKapaJiblK, ecemn

Bipiumii kBajpanTTa y37iKCi3 GYHKIMAIAD KJIACBIHIA OOJIIEKTI->KYKTEIreH >KbIIyOTKI3MIITIK TeH eyl
VIIiH IIeKapaJiblK, ecell KapacThIPbLIFaH. 2K yKTeNreH KOCBLUIFBINT YaKbITIA alHBIMAJIbI OoiibiHIIa PuMman-
JInyBuiais GeJIIieK TyBIHABICH TYPiHIe 60IaIbI, aJl }KYKTE/ITeH KOCBUIFBIIITAFBI TYBIHABI PeTi muddepen-
nuasIbIK, 6eJiik iy perineH a3 60s1a/1bl. 3epTTey MeTTiK ecenTti Bojabrepp nHTErpasiblK TeHIeyiHe KeaTipyre
HerizzenreH. AJTBIHFaH WHTETPAJIIBIK, TEHIEY/IiH sIAPOChIHIa apHaiibl (byHKIMsT 6ap, aTam adTkaHga Pair
byuKIHsICH. f1po GaraaHbI, HHTErPAJILIK, TEHIEY/IiH OIPKeIK] MIeMTiTy mapTTapbl aJIbIH/IbL.

Kiam ceadep: ) KyKTereH TeHey, OOJIIIeK TybIH/Ibl, BOIbTEePPIiH, HHTErPAILILIK, TeHeyi, PailT dyHKusaCH,
OipMoOH/II HTenTiMTITIK.
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L Muemumym npukiadnoti Mamemamuky u aemomMamusayuL,
Kabapduro-Baarxapekuti wayunoud yenmp PAH, Haavuuk, Poccus;
2 Kapazanduncrutl yrueepcumem umenu axademura E.A. Byxemosa, Kapazanda, Kaszaxcman;
3 Kapazanduncrutdi mexnuveckuts yrusepcumem, Kapaeanda, Kaszaxcman

I'pannynas 3ajiava Jid ypaBHEHUS TEIJIOPOBOIHOCTH
C Harpy3Koii B Bu/ie JpoOHoii mpou3BoaHoii Pumana—J/InyBuiiis

B mepBoMm kBajgpaHTe paccMorpeHa KpaeBas 3ajada Il IPOOHO-HAIPY2KEHHOI'O yPaBHEHUSI TEIIOIPOBOJI-
HOCTH B KJIacCe HempepbIBHBIX GyHKnmit. Harpykennoe ciaaraemoe mmeer popMy ApPOOHOIM MTPOU3BOIHOMN
Pumana—J/InyBusns no BpeMeHHOI IepeMeHHON, U TOPsI 0K ITPOU3BOIHON B HAIPYKEHHOM CJIAraeMOM MEHb-
e mopsizka auddepennuaabaoil yactu. VccenoBanne OCHOBAHO Ha CBEJIEHUU KPAEBOW 3a/1a9M K WHTE-
rpajabHOMY ypaBHeHmiO Bobreppa. L apo mosydeHHOro MHTErpaibHOTO YPABHEHUS COIEPKUT CHEIUATHHY O
dyHKIHUIO, a UMeHHO, dpyHKImMIO Paiira. [Iponsseiena onenka sijipa, 1 Moy Ye€Hbl YCJIOBHSI OJITHO3HAYHOMN pa3-
PEeIIUMOCTH UHTETPAJIBHOTO YPABHEHMUSI.

Karoueswie caosa: HarpyrKeHHOE ypaBHEHHUE, TpOoOHas IPOM3BOAHAsI, HHTErpajbHOe ypaBHeHune Bosbreppa,
dyukmus Paiira, ojHO3HaYHAsT PA3PENIUMOCTD.
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