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On Hadamard Product of Hypercomplex Numbers

Certain product rules take various forms in the set of hypercomplex numbers. In this paper, we introduced
a new multiplication form of the hypercomplex numbers that would be called «the Hadamard product»,
inspired by the analogous product in the real matrix space, and investigated some algebraic properties of
that, including the norm of inequality. In particular, we extended our new definition and its applications
to the complex matrix theory.
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Introduction

In 1843, the Irish mathematician Sir William Rowan Hamilton introduced quaternions as an extension of
complex numbers to higher spatial dimensions [1]. The set of real quaternions is often denoted by H in honor
of its discoverer and is defined as follows:

H={q=q0+G:q=1q1+ jg2 + kg3 and qo,q1,92,93 € R},

where ¢ is called the scalar part of ¢, and ¢ is called its vector part. The scalar and vector parts of a
quaternion ¢ are denoted by Sc(q) and Vec(q), respectively. The monographs [2], [3] present well-known
systematic investigations on the subject. In addition, the papers [4], [5] include some interesting applications of
the quaternions.

One can apply the Cayley-Dickson process (also known as Cayley-Dickson doubling) this process to the
complex numbers quaternions (dim 4), octonions (dim 8), sedenions (dim 16), ..., 2V-ons (dim 2N ) in success-
ion. Fach one is a sub-algebra of all the preceding ones. Note that an increase in the dimension of the algebra
causes the loss of certain algebraic properties. For example, quaternions do not possess the commutative property
that complex numbers possess, and octonion algebra loses the associative property. These losses often lead to
unexpected results.

A 2¥_ons hyper-complex number is regarded as a linear combination of a canonical basis set of this algebra
in the form

2N
w = Zwié} = W1€] + Wa€y + - - - + Wan N,
i=1
where €; refers to the components of the basis set and w; refers to real numbers. Note that the product of any
two values of ¢; is linearly dependent on €7, €, - - - , @y~ . Consider that algebraic properties of the hypercomplex
numbers are investigated in [6-9]. For example, Table 1 summarizes the multiplication rules for the basis vectors
of the quaternion and octonion algebras. This table is provided by Cawagas in reference [10]. The conjugate of
w is as follows:
21\7
w* = wlé'l - Zwlé; = wlé'l — ’LUQéé — = ngggN,
i=2

and its norm is
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Table 1

The multiplication rules for quaternions and octonions

-0 1 2 3 4 5 6 7
ojo0 1 2 3 4 5 6 7
11 0 3 -2 5 -4 -T 6
212 3 0 1 6 7 -4 -5
3(3 2 -1 0 7 -6 5 -4
414 -5 6 -7 -0 1 2 3
5|15 4 -7 6 -1 -0 -3 2
6(6 7 4 -5 -2 3 -0 -1
T|7 6 5 4 -3 -2 1 -0

In this paper, we define a convenient operation between two hypercomplex numbers u and v as the Hadamard
product uow. It turns out that the Hadamard product of hypercomplex numbers is the analog of the Hadamard
product of matrices. In addition, we show certain algebraic properties of such a product. This definition was
developed particularly to characterize certain structures while working on specific quaternion sequences.

Before presenting our definition and results, we recall the following multiplication rules on the set of H.

Let p, ¢, and r be any three quaternions.

e The quaternion multiplication of p and ¢ is defined as follows:
pq = ug + iug + jue + kus,

where 1o = pogo — P1g1 — P2g2 — P3G3, U1 = P1Go + Pog1 — P3G + P2g3, U2 = P2go + P3q1 + Pog2 — p1g3 and
U3 = p3qo — P2q1 + P192 + Pogs-

e The dot product of p and ¢ is a real number that is defined by
P-q = pogo + P1q1 + P2g2 + P3g3.

e The cross product is defined by
e The mixed product is defined by

(D,q,7) =p-(Gx7).
e The quaternion outer product of p and ¢ is defined by

(p.q) = Pod — qop — P % q.
e The even product of p and ¢ is defined by
[p, 4] = pogo — BG — Pod + qop-

Main Results

Let us denote the set of all 2V-ons hypercomplex numbers in the following form:
0= {wzwle_i +w:w=wé, 1=2,3,...,2Y and w; ER},

where ¢; refers to the components of the basis set. Throughout this paper, i,7 =1,...,2Y¥ and [ =2,3,...,2N.
Note that the multiplication rule

2= 1, &% = —1, and ¢€jé; +¢€j¢; =0 for i # j (2)

is valid. At this instance and further in the document, repeated indices are summed over their ranges unless
specified otherwise. We can reduce our results to particular cases depending on the choice of N. Clearly, we
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successively obtain the well-known complex numbers for N = 1, quaternions for N = 2, octonions for N = 3,
sedenions for N =4, ..., 2N-ons for N by starting from the real numbers for N = 0.

Now we give the following definition.

Definition 1. For two hypercomplex numbers p = p;€; and ¢ = ¢;€;, the Hadamard product of p and ¢ over
the set O is defined as follows:

PO g =Pigi€; = P1G1€1 + D2G2€2 + P3G3€3 + - - - + Pangan Ean,

where p;, q; € R.

This definition involves an element-wise product of hypercomplex numbers similar to the Hadamard product
defined on the set of matrices. As a result, this inspired the name «Hadamard product» of hypercomplex
numbers. To avoid confusion, juxtaposition of hypercomplex numbers will imply the usual product of hyper-
complex numbers, and we will always employ the notation «o» for the Hadamard product.

Theorem 1. (O, +,0) is a ring but not either an integral domain or a field.

Proof. We know that (0, +) is a commutative group. On the other hands, we can write

po (q © 7“) = [pigi] o [%‘ﬁé] = PiqiTi€; = [piQigi] ° [Tigi] = (P © (1) or

and
ro(p+q) = [ri€i o[(pi + @) €] =i (pi + @) € = rip;i€; +1r:q;€; =rop+roq.

Similarly, (r + p) og = rog+ pogq can be demonstrated. Now, we investigate the algebraic properties of (0*, o),
where O* = O — {0}. It is clear that (O*,0) is closed, associative, distributive, and commutative. However,
there are nonzero elements which are not invertible. For example, the element ¢ = €7 + €3 is nonzero and not
invertible. Since (0*,0) is not a group, (0, +,0) is not a field. We will prove that (O, +,0) is not an integral
domain later.

Unlike the usual product, the commutative law on the set Q is valid for the Hadamard product. We denote
the identity element under the Hadamard product by Z. Clearly, the identity Z is a hypercomplex numbers with
all entries equal to 1, that is Z = €] + €5 + ...+ €y~. In addition, we can conclude from the proof of Theorem 1
that a hypercomplex numbers ¢ has an inverse under the Hadamard product only if ¢; # 0 for all 1 <14 < 2V,

Remark 1. According to Theorem 1, (0, +,0) is a commutative and associative ring with an identity.

Throughout the paper, we will use the following notations under the Hadamard product: We denote the
Hadamard inverse of q by ¢°(—1) and the iterated Hadamard product po p o --- o p by ¢°™ that is ¢°) = p,"é;.

n times

Theorem 2. The Hadamard product is linear.

Proof. To prove this theorem, we must show that the Hadamard product satisfies two conditions such that
ro(p+q)=rop+rogand a(poq) = (ap) o q = po (ag). We have already shown the first condition. It is
sufficient to complete the proof that we show in the second condition. For a@ € R, we can write

a(poq) = a(pigi€;) = (api) ¢;€; = (ap) 0o q = p; (ag;) € = po (aq) .

Thus, the theorem has been proved.
The next theorem presents certain fundamental properties.
Theorem 3. Let p and g be any two hypercomplex numbers. Then

i. pog=pogq=poq

@

—

it. pop=pop=p°
iii. (po q)o(fl) = p°(=1 0 ¢°(=1) where p and ¢ are invertible in the Hadamard sense.
Proof. We can write
poq = (piqi€i) = P11€1 — pLqi€y = p1qi€1 + (—p1) @€ = p1q1€1 + pi (—q) €.

The last two results give the the proof of 3.i. Similarly, we get

poP=Dop= (pi€;) o (¢;€;) = p1°€1 — p°e; = p°?.
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Finally, )
(poq)® " = (pgE) Y = —a,
Diqi

and the result follows.

Theorem 4. (0, 0) contains zero divisors and nontrivial idempotent elements but does not have nilpotent
element.

Proof. Let p and ¢ be two non-zero hypercomplex numbers whose coefficients satisfy one of the conditions
such that p; # 0 and ¢; = 0 or p; = 0 and ¢; # 0. In this case, since p;q; = 0, viz. po ¢ = 0, we conclude
that (O, o) has many zero divisiors for hypercomplex numbers in the form mentioned. Suppose that p is not a
unit hypercomplex numbers; further, suppose that the entries of p are either 1 or 0. Then, we can write that
p°() = p. Further, p°(™ = 0 only if p;” = 0. As a result, (0O, o) does not have nilpotent elements.

Theorem 5. Let p and ¢ be any two hypercomplex numbers. Then, we have

N(pogq) <N (p)N(q).

Proof. Considering Eq. (1), we write
2N 2N
(NN @) =Yp?| | D e’ | = i)+ R(piai)
i=1 i=1

where R (p;,q;) denotes the remaining terms. Since R (p;, g;) > 0, the desired result is obtained.

Remark 2. Theorem 5 indicates that (O, +,0) is a normed algebra.

Theorem 6. (O, +,0) is isomorphic to one of the following four algebras: the real numbers, the complex
numbers, the quaternions, and the Cayley numbers.

Proof. The well-known Hurwitz’s theorem states that every normed algebra with an identity is isomorphic
to one of the following: the algebra of real numbers, the algebra of complex numbers, the algebra of quaternions,
and the algebra of Cayley numbers. From Remarks 1 and 2, we can consider that (O, +,0) is a normed algebra
with an identity. Thus, the proof is completed.

We can say that Def. 1 has many applications in mathematics. One of the most important is that there are
usages in the matrix theory. Let A = (ay;) and B = (bg;) be two m x n matrices, i.e., of the same dimension
but not necessarily square. Then, the Hadamard product between these two matrices, denoted by A x B, is an
m X n matrix given by

AxB= (aklbkl) .

In our investigation, there are two various situations: Case (1) is the usual product of the hypercomplex numbers
in the product element, i.e. P®Q = [pj1qxi]; and Case (2) is the Hadamard product of the hypercomplex numbers
in the product element, i.e. P ® Q = [p o q1]. Note that pj; and qx; are any 2V-ons hypercomplex numbers
here.

A finite-dimensional associative algebra over any field F' is algebraically isomorphic to a sub-algebra of
the full matrix algebra over the considered field. This means that each component in the finite-dimensional
associative algebra has a faithful matrix representation over the field. Based on this motivation, we now define
a bijective map

Qrw=wi€] +wyey + - Fwonéon €0 = ¢ (w) = [[W] €jlon yon-

Here, the bracket is the vector representation of the corresponding quantity. Note that ¢ (w) is a real skew-
symmetric matrix. As an example, for n = 2, we can write the matrix ¢ (w) as

woyg —wWp —W2 —Ws
w1 Wo —ws w2
w9 ws wo — w1
w3 —wz2 W Wo

o (w) =

Hence, we can give the following significant result.
Corollary 1. (0, +,0) is algebraically isomorphic to the matrix algebra

M= { i e*j]QNXzN‘w c @}.
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Further, ¢ (w) is a faithful real matrix representation of w.
Next, we present the following result.
Lemma 1. Given any w € Q, the following unitary similarity factorization equality is valid:

@ (w) =MD, M", 3)

—-N

where M = (\/§) [€:En], En = [ €] —€ —€3 ... —@yn ]T, M* means the complex conjugate of M, and

D,, denotes a diagonal matrix such that while the entries outside main diagonal are zero, others are equal to w.
Proof. According to definition of M, we can write that M* = M. Hence, we can rearrange Eq. (3) as follows:

@ (w)M =MD,,.

Using the definition of matrix multiplication and the rules given in (2), the result follows.
We present our main result in the following.
Theorem 7. For any u,v € Q, we have

D,®D, =M (uv)M (4)

and
D, ® D, =My (uov)M. (5)
Proof. Applying matrix multiplication rule and Eq. (2) into each side of Egs. (4) and (5), the results follow.
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A. Jlammgemup

Kacmamony ynusepcumemi, Kacmamony, Typrus

I'mmepkomniekcTi cangap AgamMapabiH KeOelTiHIici TypaJibl

TI'unepromIuTEKCTI CaHIAp KUBIHBIHIA SPTYPJIi hOpMaHbI aaThiH Gesriai 6ip kebeitTy epexenepi 6ap 60sa-
nel. MakaJsiajia HAKTbl MaTPUIAJIBIK, KEHICTIKTErl KobeiTyre yKcac rulepKOMILIEKCT] caH1ap/Ibl KOOEHTY/ IiH,
»KaHa (popMachl eHTIi3ILIreH, 01 «AaMap KeOeNTiH Iicl» el aTaaa bl XKoHEe OHBIH, Keibip anrebpasiblk, Kacu-
eTTepi, COHBIH, IIHAe HOPMAaHbIH TEHCI3OIri seprrenren. ATam aiTKaHOa, >KaHa aHBIKTAMAJIADP YKOHE OHBIH
KOCBIMIITAJIAPbl KOMILJIEKCTI MaTPUIAJIAp TEOPUSCHIHA JIefiiH KeHeUTiIreH.

Kiam cesdep: KBaTepHUOHIAPIBIH, KOOeHTiH icH, cKaisap KeGedTiHal, AnaMap/bid, kebelTiHmici, rumeprkoM-
IJIEKCTI CaH.
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A. JMamgemup

Vrnusepcumem Kacmamony, Kacmamony, Typuus

O npowusBesiennn AjjamMapa r’mrepKOMILJIEKCHBIX YHUCEJI

Cy1iecTByIOT OIpeJIe/IEHHbIE IPABUJIA [IPOM3BEIEHNUsI, KOTOPbIE IPUHUMAIOT Pa3JIMdHble (POPMbI HA MHO-
JKECTBE THUIEPKOMILIEKCHBIX YhCel. B HacTosIeill craTbe BBelleHa HOBasi (DOpPMa YMHOYKEHUsSI THUIEPKOM-
IJIEKCHBIX 9HCEJI, KOTOpas OyJIeT HA3LIBATLCS «IIPOU3BeJeHneM Ajamapasy, BIOXHOBJICHHAS AHAJIOTHIHBIM
IIPOM3BEJIEHNEM B BEIIECTBEHHOM MATPUYHOM IIPOCTPAHCTBE, U HCCJIEIOBAHBI HEKOTOPBIE €ro aJyrebpande-
CKHe CBOHCTBa, BKJ/IIOYasl HEPABEHCTBO JIJIsi HOPMbI. B 9acTHOCTH, aBTOP CTATbU PACIIUPUII ONIPEIEICHNAE U
€ro IPUJIOXKEHNHA Ha TEOPHUI0 KOMIIJIEKCHBIX MaTpPHII.

Karouesoie caosa: TpousBeicHre KBATEPHUOHOB, CKAJISIPHOE IIPOU3BEJIEHNE, TPOU3BEIeHIe A taMapa, TUIep-
KOMILJIEKCHOE YHCJIO.
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