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Asymptotics solutions of a singularly perturbed
integro-differential fractional order derivative equation
with rapidly oscillating coefficients

In this paper, the regularization method of S.A.Lomov is generalized to the singularly perturbed integro-
differential fractional-order derivative equation with rapidly oscillating coefficients. The main goal of the
work is to reveal the influence of the oscillating components on the structure of the asymptotics of the
solution to this problem. The case of the absence of resonance is considered, i.e. the case when an integer
linear combination of a rapidly oscillating inhomogeneity does not coincide with a point in the spectrum of
the limiting operator at all points of the considered time interval. The case of coincidence of the frequency
of a rapidly oscillating inhomogeneity with a point in the spectrum of the limiting operator is called
the resonance case. This case is supposed to be studied in our subsequent works. More complex cases of
resonance (for example, point resonance) require more careful analysis and are not considered in this work.
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Introduction

An initial problem is considered for a singularly perturbed integro-differential equation:

Lealte) =2 —a(0)z = [ K(t:5)2(5.)ds = ha(0) + ha(e)sin 2,

2(tg,e) = 4%, t€[to,T], to>0 (1)

for a scalar unknown function z(¢,¢), in which a(¢), hi(t), ha(t), 8'(t) >0, (Vt € [ty, T]) are known functions,
0 < a < 1, 2Y constant number, £ > 0 is a small parameter. The problem is posed of constructing a regularized
[1-2] asymptotic solution to problem (1). Previously, systems for ordinary differential equations [3—6] and integro-
differential equations with rapidly oscillating coefficients [7-11] were considered.

By definition of the fractional derivative [12], the fractional derivative z(*) in terms of integer derivatives is
denoted in the following form t(!=®) %. Accordingly, we rewrite the original fractional order equation (1) in the
following form:

L.z(t,e) = at“*a% —a(t)z — /K(t, $)2(s,€)ds = hy(t) + ho(t) sin @, 2(to,e) =20, t € [to, T].  (2)

to

In problem (2), the frequency of the rapidly oscillating sine is 5’(t). In what follows, the function A (¢) = a(t)
is called the spectrum of problem (2), and functions A\o(t) = —if’(t), As(t) = +if’(t) spectrum of a rapidly
oscillating sine.

Problem (1) will be considered under the following conditions:

1) a(t), B(¢t), h1(t), ha(t) € Clto, T, K(t,s) € C®(tg <s <t <T);

2) a(t) < 0 Vt € [to, T).

We will develop an algorithm for constructing a regularized asymptotic solution [6] of problem (1).
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Regularization of the problem (2)

Denote by o; = 0;(¢) independent of magnitude o; = e~ £#(0) gy = ¢t 28(t0) and introduce the regularized

variables:

t t
=1 [ gDy (0)d0 = i) = 1/ A (0)do = 210 J=23, 3)

)
€ Ji, € € Jt, €

and instead of problem (2), consider the problem

t
N o) 02 . IO
L. =etlm = O e - /K =
Z(t,7,0,6) = ¢t En + /\1(t —|—t Z)\ —A\(t)2 (t,8)Z(s, - 0 €)ds
1 -
=hi(t) — %hg(t) (€01 — €™09), 2(t,7,0,8)|i=ty.r=0 = 2°, t € [to, T). (4)

for the function z = (¢, 7, 0, €), where is indicated (according (3)): 7 = (71,72, 73), ¥ = (¥1, 12, 93). It is clear

that if Z = Z(¢, 7,0, ¢) is a solution of the problem (4), then the function is Z = Z (¢, wit) ,0,¢ ) an exact solution

to problem (3), therefore, problem (4) is extended with respect to problem (2). However, it cannot be considered
fully regularized, since it does not regularize the integral

,——=,e)ds.

JZ2=J(Z(t,7,0,8) 1= rmy(s) /) = /K(t,s)Z(S -

For its regularization, we introduce the class M. asymptotically invariant with respect to the operator Jz
(see [1; 62]). Counsider first the space U of vector functions z(t, 7, o), representable by the sums

3
2(t,m,0) =z20(t,0) + > zi(t,0)e™, z(t,0) € C ([ty, T],C),i=0,3. (5)

i=1

In addition, the elements of space U depend on bounded in £ > 0 terms of constants o1 = o7 (¢) and
o9 = 09 (e) which do not affect the development of the algorithm described below, therefore, in the record
of element (5) of this space U, we omit the dependence on o = (01,02) for brevity. We show that the class
M. = Ul|;—y@)/- is asymptotically invariant with respect to the operator .J.

For the space U, we take the space of functions z (¢, 7, ), represented by sums

P -1
LoD (0)d9

JZ(t,T,¢€) E/K(Ls)zo(s)ds—i—/K(t, s)z1(s)e to ds+
1 fA,;(e)de
+Z/K s)zi(s “io ds.
= 2t0

Integrating by parts, we write the image of the operator J on the element (5) of the space U as a series

t

nmaa:/K@@m@w+

to

3 [ele]
305 (1) I (K (8 8)z0(8))) g™ — (TF (K (t,)zi(5(5))) s,

i=1 v=0

where are indicated:

v—1
1 9

1 1 0
0 __ LTV — -~
= sle=1) )\, (s) A sle=D ), (s) ds
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1 1 0
I} = Y= IV =23
T NE T T Nmoest 0T
It is easy to show (see, for example, [13; 291-294] that this series converges asymptotically for ¢ — +0 (uniformly
int € [tg,T]). This means that the class M, is asymptotically invariant (for e — 40) with respect to the operator
J.

We introduce operators R, : U — U, acting on each element z(¢,7) € U of the form (5) according to the

law:
t

Roz(t,7) = /K(t,s)zzo(s)ds7 (60)

to

3
Riz(t7) = 3 (1 (K (t.9)2() ™ = (I (K (1 9)5(5)) | (61)

©
Il
A

3 oo
Ryp1z(t,7) = ZZ (=1)"e" [T (K (t,5)zi()) gope™ — (I (K (2, 8)2i(5))) g, | v > 1. (6141)

Now, let Z(t,7,e) be an arbitrary continuous function on (t,7) € G = [to,T] x {7 : Rer; <0, Rer; <0,
Jj = 2,3}, with asymptotic expansion

Z(t,1,e) = Zekzk(t,r),yk(t,ﬂ eU (7)
k=0

converging as ¢ — +0 (uniformly in (¢,7) € G). Then, the image JZ (¢, 7,¢) of this function is decomposed into

an asymptotic series
oo T
Z(t,1,¢) Zsszk t,7) Zer Z erszs(th)sz(t)/@:'
r=0 s=0

This equality is the basis for introducing an extension of an operator J on series of the form (7):

Ji=J <i ékzk(t,7)> = ier <i Rr_kzk(t,7)> .
k=0 r=0 k=0

Although the operator J is formally defined, its utility is obvious, since in practice it is usual to construct
the N-th approximation of the asymptotic solution of the problem (3), in which impose only N-th partial sums
of the series (6), which have not a formal, but a true meaning. Now, one can write a problem that is completely
regularized with respect to the original problem (3):

0z -
5 = 4(l-a) % dadl (1-a) ded 5_ J5 —
L.zZ(t,T,0,¢) = et o + )\1( + t Z A( M2 —Jz =
1
= hy(t) — Q—th(t) (e™ — ™), Z(tg,0,0,¢) = 2°, t € [to, T). (8)

Tterative problems and their solvability in the space U

Substituting the series (7) into (8) and equating the coefficients of the same powers of ¢, we obtain the
following iterative problems:

820 _ 3 (920
Lzy(t, T, =M\ (1) == 4+ ¢t1-*) Ai(t)=— — A (t)zg — Rozg =
o(t,T,0) 1()87'1 ;J()aTj 1(t)20 020
1
:hl(t)_th(t) (67'2_67'3)’ Zo(t()vo)zzo; (90)
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0z
Lzl(t,T, 0‘) = —t(l @) (3'0 +R12§0, Zl(t(),O) = 0; (91)
(1-) 921
Lz(t,7,0) = —t o T Riz1 + Ra20, 20(t0,0) = 0; (92)
(1—a)8zk—1
Lzy(t,1,0) = —t ST + Rpzo+ ...+
+...+ Rlzk 1 Zk(to,()) = 07 k 2 1. (9k)
Each iterative problem (9;) has the form
Lz(t,m,0) = A (t)%—&-t(l_a)i)\»(t) 02 —M(t)z — Roz = H(t,7,0), z(tp,0) = 2" (10)
s Iy = A1 37’1 = J 67'] 1 0 s 1y ) 05

3
where H(t,7,0) = Ho(t,o) + > H;(t,0)e™ is the known function of space U, y. is the known function of the
=1
complex space C, and the operator Ry has the form (see (6,))

3
Roz = Ro | 20(t) + Z zi(t)eT+ | £ /K(t, s)zo(s)ds

We introduce scalar (for each ¢ € [tg, T]) product in space U:

3
<u,w>E<uo(t)+Z j(t)e™  wo(t —|—ij JeT >=

Jj=1

3
(uo(t), wo(t)) + Y (u(t), w(t

Jj=1

where we denote by (x,*) the usual scalar product in the complex space C : (u,v) = u - 9. Let us prove the

following statement.
3

Theorem 1. Let conditions (1), (2) be fulfilled and the right-hand side H(t,7,0) = Ho(t,0)++ >_ H;(t,0)e”
of equation (10) belongs to the space U. Then the equation (10) is solvable in U, if and only if =
< H(t,7),e™ >=0,Vt € [to, T]. (11)
Proof. We will determine the solution of equation (10) as an element (5) of the space U :
3
2(t,m,0) = 20(t,0) + Y z(t,0)e™. (12)

Jj=1

Substituting (12) into equation (10), and equating here the free terms and coefficients separately for identical
exponents, we obtain the following equations of equations:

A1(t)zo(t, o) — /K(t, s)zo(s,0)ds = Hy(t,0), (13)
0-2(t,0) = Hi(t,0), (134)
[t“—auj(t) - Al(t)} 2i(t,0) = H(t, o), j =2,3. (13;)
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Since the A;(t) # 0, the equation (13) can be written as

t

20(t,0) = / (=AT () K (t,8))20(s,0)ds — AT ' (t) Ho(t, o). (130)

to

Due to the smoothness of the kernel (=7 (t)K (¢, s)) and heterogeneity —A{ ' (t)Ho(t, o), this Volterra integral
equation has a unique solution zy(t,0) € C* ([ty,T],C). The equations (13,) and (13;) also have unique
solutions

Zj(tv 0) = [/\](t) - Al(t)]_lHj(t’ a') eCc= ([t()vT} 7C) J=2,3 (14)
since Aa(t), A3(t) not equal to Aq(¢).

The equation (13,) is solvable in space C*° ([to,T],C) if and only (Hy(t,7),e™) = 0Vt € [to,T] hold. It
is not difficult to see that these identities coincide with identities (10). Thus, condition (10) is necessary and
sufficient for the solvability of equations (9) in the space U. Theorem 1 is proved.

Remark 1. If identity (10) holds, then under conditions (1), (2), equation (9) has the following solution in
the space U :

3 1
2(t,7,0) = 20(t,0) + ar(t,0)e™ + 3 [t(l_“))\j(t) - Al(t)] Hy(t,0)e™ (15)

=2

where ay(t,0) € C* ([tg,T], C) are arbitrary function, zo(t, o) is the solution of an integral equation (13).
The unique solvability of the general iterative problem in the space U. Residual term theorem

Let us proceed to the description of the conditions for the unique solvability of equation (10) in space U.
Along with problem (10), we consider the equation

Lz(t, 1) = —t“—a)% + Rz + Q(t,7), (16)

where z = z(t,7) is the solution (16) of the equation (10), Q(z,7) € U is the well-known function of the space
U. The right part of this equation:

Gt,7) = —t(l_a)% +Riz+Q(t,7) =
9 i , > _
— _t<1—a>a 20(t) + Yz (e | + Ry | 20(t) + Y zi(t)e” | +Q(t,7)
j=1 j=1

may not belong to space U, if z = z(t,7) € U. Indeed, taking into account the form (14) of the function
z = z(t,7) € U, we consider in G(t, ), for example, the terms

3 *
t ,
Z(t,7) = 9t (e™o1 +ePoa) |20(t) + E zj(t)e™ + E 2" (t)el™ )

2
j=1 2<|m|<Npg

t t ) X
= 200 o+ ) + 3 B0 (e 4 e ) +

j=1

t *
—|—§ (e™o1 + e™o9) Z 2" (t)el™ ),
2<|m|<Nu

Here, for instance, terms with exponents
67'2+7'3 — e(m’7)|m:(071,1), 6T2+(’m77') (Zf my = O,mg +1= m3) ,

et (if my =0, mg 41 =my), e ™7 (if my = 0,my = ms), (%)
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Ta+(m,7) (if my =0, mg =mg), em2tim.m) (if m1 =1, mg =m3),

e (if my =1, my = mg)

€

do not belong to space U, since multi-indexes
(0,n,n) €Ty, (0,n+1,n) €Ty, (O,n,n+1)eToVneE N

are resonant. Then, according to the well-known theory (see, [6; 234]), we embed these terms in the space U
according to the following rule (see (x)):

e+ =’ =1, enzt(m7) :eozl(if my =0,me +1=mg3),

6T3+(m17) = eO =1 (Zf my = 07 ms + 1= mQ) 5

—_—
et mT) = €™ (if my = 0,mg = mg),eTmT) =™ (if my =0, mg =mg),

—_— —_—
et (mT) (if my =1, mg = mg) = €™, e HnT) =™ (if my =1, my =m3).

In other words, terms with resonant exponentials e(”7) replaced by members with exponents e°,e™,e™, e™
according to the following rule:

o — —

(m,T) — Ofl (m,T) — pT1 m — T2 @\T) — 73
(& ’ |m€F0 =€ = ) & ’ |m€F1 =e ) € ’ |7n€F2 =e 9 € ! |m€F3 =€ .

After embedding, the right-hand side of equation (15) will look like

~ 9 2 - > i )
G(t,T):ft(l*a)a 20+ Y zMe+ Y 2™+ Y N 2 (1) e | +Q(t,T)
j=1 2<|m|<Ng J=0mier;

~

— G(t,7) will not affect the accuracy of the construction of asymptotic
7 =% coincides with G(t, 7).

g

As indicated in [6], the embedding G (¢

) 7)
solutions of problem (2), since G(¢,7) at
3
Theorem 2. Let conditions (1), (2) be fulfilled and the right-hand side H(¢,7) = Ho(t) + > H;(t)e™ +
j=1
+ 3 H™@t)e™™) € U of equation (10) satisfy condition (11). Then problem (10) under additional
2<|m|<Ny
conditions

~

<G(t,7),e™ >=0Vt € [tog, T] (17)

3 *
where Q(t,7) = Qo(t) + 3 Qr(t)e™ + X Q™(t)e™7) is the known function of space U, is uniquely
k=1 2<|m|<N.
solvable in U.
Proof. Since the right-hand side of equation (10) satisfies condition (11), this equation has a solution in
space U in the form (14), where ay (t) € C* ([tg, T'], C) is arbitrary function. Submit (14) to the initial condition
y (to,0) = y*. We get a(tg,t) = y«, where denoted

Hy(to) B Hs(to) _
00— (to) — M(to)  tol—As(to) — Ai(to)

zo = 2" + A7 (to) Ho(to) —

*

— ) [(mA(t)) — Alto)] T H™ (to).

2<|m|<Nu

Now, we subordinate the solution (15) to the orthogonality condition (17). We write G(¢,7) in more detail the
right side of equation (10):

*

0
Gt,7) = —zt(l—°‘>a 20(t) + n(t)e™ + har (t)e™ + hay ()e™ +  H_ P™(t)e™ 7| +
2<|m|< N
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t *
+§ (™01 + €M 02) |20(8) +ar(B)e™ +har(De™ +har(H)e™ + Y P07 | +
2<|m|<Nu

+Ry |20(t) + ar(t)e™ + har()e™ + har(H)e™ + > P™(0)e™ ) | +Q(t, 7).

2<|m|<Nm

Embedding this function into space U, we will have

a *
Gt,7) = —t(l’o‘)§ 20(t) + ar(t)e™ + hoy (£)e™ + har()e™ + > P()e™) | +

2<|m|<Ny
' {g(t)ZO(t)emal " @Zo(t)emgfr Zg: @Z'(t)eTjJFTQCH + 23: @Z-(t)67j+730’2+
2 2 = o “i 2 o
* . ) t )
Jr2<|mz|;NH % nen e 2<|mz;zvH % (et gy L4

*

+R; Zo(t) + aq (t)e“ + hgl(t)eT2 + h31 (t)e” + Z Pm(t)e(m’T) + Q(tﬂ') =

2<|m|<Ng

8 *
= —t(l_“)& z20(t) + ar(t)e™ + hoy (t)e™ + har(t)e™ + > P ()™ | +
2<|m|<Ng

t
+§ {zo(t)e™ o1 + z0(t)e™ ot w + ho1(t)e*™ o1 + hay (t)e™ 2o+

+aq (t)eTl+T302 + hgl(t)€T2+T30'2 + h31 (t)€2T30'2+
A

+ Z Pm(t)e(m’T)+T201 + Z Pm(t)e(m’r)+7302 +

2<|m|<Np 2<|m|<Np

*
+R; Zo(t) + al(t)eﬁ + hgl(t)eTQ + h31(t)er3 + Z Pm(t)e(m’T) + Q(tﬂ').
2<|m|<Nm
The embedding operation acts only on resonant exponentials, leaving the coefficients unchanged at these
exponents. Given that the expression

*

Ry |z (t) + o (t)e“ + hgl(t)eTz + h31 (t)eTB + Z Pm(t>€(m’7—)

2<|m|<Nu

linearly depends on o (t) (see formula (5,)), we also conclude that after the embedding operation the function
G (t,7) will linearly depend on the scalar function o (t). Given that in condition (16) scalar multiplication by
functions e™, containing only the exponent e™, in the expression for G (¢,7) it is necessary to keep only the

term with the exponent e™. Then condition (17) takes the form
) al :
< —t(l—a>5 (ai(t)e™) + ST w™ (ar(t),t) | e + Qu(t)e™ e >=0 Vi€ [t,T]

Im!|=2:mlel

where w™' (a1 (t),t) are some functions linearly dependent on «(t). Performing scalar multiplication here,
we obtain a linear ordinary differential equation (relative t) for a function «;(t). Given the initial condition
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a1 (tp) = y«, found above, we find uniquely the function «;(t) € C* [to,T] and therefore, we will uniquely
construct a solution to equation (9) in the space U. The theorem is proved.

As mentioned above, the right-hand sides of iterative problems (8;) (if solved sequentially) may not belong
to space U. Then, according to [6; 234], the right-hand sides of these problems must be embedded into U,
according to the above rule. As a result, we obtain the following problems:

0z i 0z ~

Lz(t,7,0) = Al(t)a—o + 170N N ()2 — M(t)z0 — Rozo = h(t), z0(t,0) = 2°; 9)
T1 = I7;

(1-a)920 | [9(t), - . " _
Lz (t, 1) =—t 2 T 7(6 201 +e™02)20| + Rizo, 21(to,0) =0; (81)

1—a) 921 9(t) " 3
Lzy(t, 1) = —t _Q)E + [2( "o+ 67302)21] + Riz1 + Razo, 22(t0,0) = 0; (82)

0zk— t "
sz(t,’r) = _t(lf"‘)% + |:g(2)( 201 + €T302)2k1:| 4+ Ripzo+ ...+ Rizi_1,

Zk(to,O) = 0, k Z 1. (gk)
(images of linear operators % and R, do not need to be embedding in space U, since these operators operate
from U to U). Such a change will not affect the construction of the asymptotic solution of the original problem

»(t)
€

(1) (or the equivalent problem (2)), so on the restriction 7 = series of problems (8) will coincide with a

series of problems (8y) (see [6; 234-235].
Applying Theorems 1 and 2 to iterative problems (8,) (in this case, the right-hand sides H (%) (¢, T) of these

problems are embedded in the space U, i.e. H(k)(t,’l') we replace with ﬁ(k)(t,T) € U), we find uniquely their
solutions in space U and construct series (6). Just as in [13, 14|, we prove the following statement.

Theorem 3. Suppose that conditions 1), 2) are satisfied for equation (2). Then, when ¢ € (0,g¢](gg > 0 is
sufficiently small), equation (2) has a unique solution z(¢,&) € C* ([to,T],C), in this case, the estimate

[2(t,€) = zen ()l | oy < enve™ T N =0,1,2,....

holds true, where z.n(t) is the restriction (for T = @) of the N — partial sum of series (6) (with coefficients
z(t, 7) € U, satisfying the iteration problems (8,.)), and the constant ¢y > 0 does not depend on e € (0,).

Construction of the solution of the first iteration problem
Using Theorem 1, we will try to find a solution to the first iteration problem (8p). Since the right side h(t)
of the equation (8)) satisfies condition (10), this equation has (according to (15)) a solution in the space U in
the form
20(t,7) = 230(t) + oV (t)e™ (18)

where ago) (t) € C*=([to,T],C) are arbitrary function, y(()o)(t) is the solution of the integral equation

0 = [ (AT OK5) A7 (6)ds A Oh(o). (19)

Subordinating (18) to the initial condition zo(tg,0) = 2°, we have
zéo)(to) + ago)(to) =2 & ago)(to) =20 z(()o) (to) & ago)(to) =20+ A7 (to)h(to).

To fully compute the function ago) (t), we proceed to the next iteration problem (8). Substituting into it the
solution (18) of the equation (8¢), we arrive at the following equation:

o O a0 (t) A
— (=) & (0 iy _ 4(1-a) (0) 1 9 T2 5 (0) (0) 4y ,71
Lz (t,7) = —t 57 %0 (t)—t 5 <a1 (t)) e + [ 5 (€01 + e o) (Zo (t)+ay (t)e )} +
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e e
e (¢) to ') Ay (to)

Aj(t) Aj(to)
(here, we used the expression (6,) for Ryz(t,7) and took into account that when z(¢,7) = 2o(¢, 7) the sum (6,)

contains only terms with e™).
Let us calculate

Kt 000(t) . K(t 1)l (t) 23: [K(t,t)zj(-o)(t) . K (t’fo)zﬁ'o)(to)]

Jj=2

M = [9(;) (e™01+e™ay) (Z(go)(t) + O‘gO)(t)enﬂ A B

t
= % {alzéo) (t)e™ —|—02z(()0) (t)e™+ 01oz§0) (t)e™™ + 020450) (t)emtmyh,

Let us analyze the exponents of the second dimension included here for their resonance:

. |T:w(t)/8 _ e% J;to(,iﬁ/(e)HA(e))de? era \r:w(t)/s _ 6% fttg(fiﬁl(G)JrA(B))de’
0, 0,
. A . A
—if + A= —%ﬂ’ &0, —if + A= 7;5, < 0.
+if, +if’,

Thus, exponents ¢™+7 and ™17t are not resonant. Then, for solvability, equation (18) it is necessary and
sufficient that the condition )
K(t,t)a; (1)

0
41— Y [ (0)
t (041 (t)>+ A=, (1)

ot =0

is satisfied. Attaching the initial condition
ot (to) = 2° + Ay ! (to)h(to)
to this equation, we find .
(1) = o0 to)c (i )

and therefore, we uniquely calculate the solution (18) of the problem (9¢) in the space U. Moreover, the main
term of the asymptotic of the solution to problem (2) has the form

t t
J (ﬁ)dug J Ai(8)de
to

Ze0 (t) — Zéo) (t) + ago) (to)etﬂ 02(1=2) x, (0) (20)

where ago) (to) = 2° + A7 (to)h(to), z(()o) (t) is the solution of the integrated equation (19). From expression
(20) for zeo(t) it is clear that z.o(t) is independent of rapidly oscillating terms. However, already in the next
approximation, their influence on the asymptotic solution of problem (2) is revealed.
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M.A. Bobomxkanosa!, B.T. Kaium6eros?, I'M. Bekmaxanber?

L Yammes sepmmey ynusepcumemi, Mockey snepzemuranvi, uncmumymaos, Mackey, Pecet;
2X.A. Acayu amumdaese Xaaswapasvr Ka3ax-mypix yrusepcumemi, Typricman, Kazaxcman

2Kbu1naM ociimIsnusiJIaHaAThIH KO3 UInueHTTi 66JIIIeK perTTi
TYBIH/IBLJIBI CUHTYJIAP aybITKbIFaAH WHTErpo-auddepeHnTnaJIIbIK,
TeHAEeYIiH aCUMIITOTUKACHI

Maxkamaga C.A.JIOMOBTBIH peryaspusanyst 91ici KbLIZAM OCHUJISIUIAHATEIH KOo3hdumuenTrepi 6ap
GOJIIIEK-PETTI TYBIHIBLIBI UHTErPO-TUddEPEHITNAIBIK, TEHIEY] KaanblianFal. 2K yMbBICTBIH, 0aCThl MaK-
caThl — OCIHWLISIUSAIAHATBIH KOMIOHEHTTEP/IiH, €CENTIK MIENNMiHiH aCUMITOTUKACHIHBIH, CTPYKTYPAChIHA
acepin 3eprrey 60JIbI TabbLIa bl Pe30HaHCTHIH 60/IMay bl YKaF1ailbl KAPACTBIPbLIFaH, SIFHHA, XKbLIJIaM Tepoe-
JieTiH GipTeKTUMKCI3MIKTIH Oy TiH ChI3BIKTHIK, KOMOMHAIUSICHI OEPIIreH YaKbIT HHTEPBAJIBIHBIH, OapJIbIK HYK-
TeJIepiHeri MEeKTI OnmepaTOPBIHBIH CIEKTPIHIH MoHIEpiHe cofikec KeaMelTin karmait 3eprrenren. [llekTi
oIepaTop CIIeKTPIMeH XKbLIgaM TepOeseTiH O6ipTeKTiMKCI3MIKTIH, KUTriHIH coliKec KeJly »Karaaiibl pe3o-
HaHCTBIK, YKaFmail Jgen ataaaabl. By xKarmaiibie 3epTTesyi Kejeci eHOeKTe KocnapaHraH. Pe3oHaHCTBIH
KYPAETl Karaaiiaapbl (MBICAJIBI, TEME-TEHIK PE30HAHCHI) MYKHAT TAJIAYIBl KAXKET eTell XKoHe Oy XKy-
MBICTa KaPaCTBIPBIIMAFraH.

Kiam cesdep: CUHTYJISAD aybITKY, OOJIIIEK PETTI TYBIHIBLIBI HHTETPO-TUdHEPEHITUAIBIK, TEHIEY, UTEPATIIUSI-
JIBIK, €CEeIITeP, UTEPAI[UOH €CEeNTEP I H IIeITiM/IiIiri.
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! Hayuonaavnoidi uccaedosamenvcruti yrusepcumem, Mockosckuti snepzemuneckuts uncmumym, Mockea, Poccus;

10

66

2 Meorcoynapodnutl xasaxcko-mypeukul yrusepcumem umeru X.A. Hcasu, Typrecman, Kasaxcmarn

AcuMIITOTHKA pelieHnii CUHTYJISPHO-BO3MYIIIEHHOTO
nHTerpo-anddepeHInaIbHOro ypaBHEeHs JJPOOHOr0 NOPAIKa
Cc OBICTPO OCHMJLJIUPYIONIMMU KO3 punmeHTaMu’

B cratbe wmeronm perymspuzamuu C.A. JlomoBa 00600IeH Ha  CHUHTYJISIDHO-BO3MYIIEHHOE WHTEIPO-
nuddepeHnmanIbHoe ypaBHeHe JPOOHOTO MPOU3BOAHOTO ¢ OBICTPO OCIUJIIUPYIONAME KO(DMOUITHEHTAMUA.
OcHoBHas 11€J1b pabOThl — BBISBUTDH BJIMSIHUE OCIUJLIMPYIONIMX COCTABJIAONUX HA CTPYKTYPY aCUMIITOTH-
KU peIlleHust 3Toi 3aJa4un. PaccMOTpeH ciiydail OTCyTCTBUSI pe30HAHCA, T.€. CJIydail, KOra IeJOUnCIeHHAsT
JinHelHast KOMOUHAIUsT OBICTPO OCHUJIIUPYIONIEl HEOJHOPOIHOCTH HE COBIAJAET C TOUKOW CIEKTpa Ipe-
JIEJILHOT'O OIIEPATOpa Ha BCEX TOYKAX PACCMaTpUBAeMOro orpes3ka Bpemenu. Ciydail COBIAJIEHUS YaCTOTHI
OBICTPO OCHMJINPYIOIIEH HEOTHOPOJHOCTH C TOYKON CIEKTpa IIPEIEJbHOIO OIepaTopa HAa3bIBAETCS PE30-
HaHCHBIM. JlaHHBINA ciiydail mpeanoJiaraeTcs M3y9YUTh B HAINKX TOCJEAyONmX paborax. Bosee cioxubie
cilyvan pe3oHaHca (HAupuMep, TOYEUHBIH Pe30HAHC) TPeOYIOT TIATEJLHOIO IIOX0/a U B JAHHOl padore He
OylyT pacCMaTPUBATHCSI.

Kmouesvie cA06a: CHHTYIISIPHO-BO3MYIIIEHHOE, THTETPO-TnddepeHnnaabHoe ypaBHEHNE ITPOU3BOIHOTO APOO-
HOT'O ITOPsIJIKA, UTEPAIMOHHBIE 33J1a91, PA3PEIINMOCTb UTEPAIINOHHBIX 3a/1aM.
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