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A hybrid algorithm for solving inverse boundary problems
with respect to intermediate masses on a beam

The inverse problem of determining the weight of three intermediate masses on a uniform beam from the
known three natural frequencies has been solved. The performed numerical analysis allows restoring the
value of only the second mass in a unique way. The inverse problem of determining the weight of three
intermediate masses has been solved uniquely except in the case when the first and the third masses are
located geometrically symmetric relative to the middle of the beam. The hybrid algorithm for the unique
solving inverse problem of determining the weight of three intermediate masses has been developed. The
first three natural frequencies of the beam are calculated numerically by using the Maple computer package.
Analytical relations between the masses are found.

Keywords: natural frequencies, beam equation, characteristic determinant, inverse problem, intermediate
elements.

Introduction

Oscillatory systems with attached masses or attached masses and elastic couplings have been studied since
the 18th century and enormous number of works were devoted to them [1-9]. In these works, mainly, problems
of eigenvalues of the beam were investigated. In the listed works above, firstly, the influence on the spectrum
of the geometry of the region on which the additional element is concentrated was illustrated. Secondly, the
difference in the behavior of natural frequencies at large and small loads was demonstrated.

In recent years, methods of analysis of direct and inverse problems for differential operators with concentrated
masses and elastic connections were actively developing [10-17]. These methods are paramount as they make
it possible to develop technologies to ensure the safety of people. In contrast to works [18-22|, in this paper,
we develop a hybrid algorithm for solving the unique solution of the inverse problem of determining the weight
of intermediate masses at points non-end of the beam from the three known natural frequencies. The novelty
of this work is the geometrical symmetry of the location of the first and third masses relative to the middle
of the beam for ambiguous definition of concentrated masses, which has been found on the basis of numerical
calculations (see subsection 3.2).
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The problems of diagnosing the value of one concentrated mass were investigated numerically and experimentally

in [18, 19]. Since changes in the values of concentrated masses on a beam can characterize the degree of disc
frazzle, it is relevant to study mechanical systems with n elements (1 < n < 00) ([20], n = 2). The masses were
found uniquely up to rearrangement of their places in [20]. The sufficient conditions for the existence of a unique
solution to the problem of identifying the concentrated mass and spring stiffness at the points non-end of the
beam from the known first two natural frequencies were found in [21]. The inverse problem of determining the
stiffness coefficients of intermediate springs on the beam from the two known natural frequencies was solved
in [22]. The conditions on the disposition of intermediate springs were found in [22] where the spring stiffness
coefficients were accurately determined up to their transposition.

In this paper, a beam with three intermediate masses m1, mo, and mg (kg) is considered. Units of measurement
and abbreviations for all physical parameters considered in the article are standard.

The main goal of this work is to reveal the conditions for the geometric disposition of the concentrated
masses for the nonunique solution of the inverse problem of restoring the concentrated masses with the known
first three eigenfrequencies in advance.

The authors of this paper propose a hybrid algorithm that allows to calculate all three weights for concentrated
masses with geometric symmetry of the location of the first and third masses relative to the middle of the beam.
Note that the numerical method for solving the inverse problem allows to determine only the value of the second
mass.

To solve the inverse problem, methods of the spectral theory of differential operators are applied. Justification
of the proposed hybrid algorithm is carried out by using numerical calculations and analytical relationships (see
subsection 3.3). The results of this study will contribute to the development of methods for solving inverse
problems with multipoint internal elements.

2 Formulation of the main problem

Let the first mass be located at a distance a from the left end of the beam, the second mass at a distance
b, respectively, and the third mass at a distance ¢, respectively (Fig. 1). As a result, the beam is divided into 4

sections: —é<x<a—%,a—é<x<b—%,b—%<m<c—%,c—%<x<%.
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Figure 1. A beam with intermediate masses

The equation of free transverse vibrations of a beam of length [ at —% <zx< é, t > 0 is written as

2 4
0“w(z,t) n EJa w(z,t)

rA—5p ozt

:O7

where w(x,t) is transverse displacement, m; p is material density, kg/m? ; A is the cross-sectional area, m?; E
is the elastic modulus of material, N/m? ; J is the moment of inertia of the beam cross-section, m?*.

We use a method that is also applicable to beams with different types of fixation. For definiteness, we
consider only a hinged-hinged beam. The problem of transverse vibrations of a beam of length [ by replacement

w(x,t) = y(x)sin(wt) is reduced to the following spectral problem:

EJy'V (z) = w?pAy(x), x#a—%, x;«éb—é, x;«éc—%, (1)
[EJY" (@)]ep, = —maw’y (P),  i=1,2,3. (2)
y(@)],—p, =0, [EY(2)],_p, =0, [EJY"(2)],—p, =0, (3)
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» BJY'(2)]—y =0, (4)
o BJY'(2)],mr =0, (5)
where Py =a— 1L, P,=b—1% Py=c— 1L and

[f(@)]pee = lim [f(c—¢) = flc+e)].

e—+0

It means the jump of the function at the point 2 = c. Denote p* = = JA, where w is frequency parameter, Hz.

8 Material and methods

This section describes the main methods for solving the inverse problem of determining the concentrated
masses from three known natural frequencies of the hinged-hinged Euler-Bernoulli beam. For this, it is necessary
to write down an explicit form of the characteristic determinant of problem (1)—(5), which is important for
calculating the first three natural frequencies. Then, we obtain a system of three nonlinear equations with
three unknowns by using the known first three natural frequencies and the explicit form of the characteristic
determinant. To find the physical parameters of the concentrated masses, the Maple computer package is used
[23]. Some explicit relationships between the masses are found with the help of recurrent transformations, which
are confirmed by numerical calculations.

3.1 The problem of transverse vibrations of a beam with intermediate masses

To calculate the natural frequencies of problem (1)—(5), an explicit form of the characteristic determinant
is required. Let us formulate the main lemma.

Lemma 1. The values of the natural frequencies of problem (1)—(5) are determined from the equation

A (a7 b7 c, l7p, mi,ma, m3) =« (a/a b, c, l,p) mimeoms + 61 (aa ba lap) mlm2+
+B2 (a,c,l,p) mims + B3 (a,b,1,p) mams + 71 (a,l,p) mi+ (6)
+72 (bv lap) ma + 73 (Cv lap) mg + AO (lap) = 07
where
3

p
p3 A3

a(a,b,el,p)=— (2 (sin(p(a+b—1)) +sin(p(a — b +1))) (cosh(p(a —b+1)) — cosh(p(a + b —1))) +

+2 (sin(p(b+ ¢ = 1)) —sin(p(b — ¢+ 1))) (cosh(p(b + ¢ — 1)) — cosh(p(b— c+1))) +
+2 (cos(p(a+b—1)) — cos(p(a —b+1))) (sinh(p(a —b+1)) + smh(p(a +b—1)))+
+2 (cos(p(b+c —1)) — cos(p(b — ¢ +1))) (sinh(p(b — ¢+ 1)) — sinh(p(b + ¢ — 1)) +
+2 (cos(p(b+ ¢ —1)) — cos(p(b — c +1))) (sinh(p(2a — b+ ¢ — 1)) — sinh(p(2a — b — c+1)
+2 (cos(p(a —b+1)) — cos(p(a+b—1))) (sinh(p(a +b—2c+1)) + smh(p(a —b+2c—1)
+2 (cosh(p(a+b—1)) — cosh(p(a —b+1))) (sin(p(a + b —2¢c+1)) + sin(p(a — b+ 2¢ — 1)
+2 (cosh(p(b—c+1)) — cosh(p(b+ ¢ —1))) (sin(p(2a —b+c—1)) —sin(p(2a — b — c+1)

+sin(p(2a — 1)) (cosh(p(2b — 1)) + cosh(p(2¢ — 1

( ) (2¢ = 1)) + sin(p(2b — 1)) (cosh(p(2a — 1)) — cosh(p(2c — 1)) —
—sin(p(2¢ — 1)) (cosh(p(2a — 1)) + cosh(p(2b —1))) + cos(p(2a — 1)) (sinh(p(2¢ — 1)) — sinh(p(2b —1))) +
+ cos(p(2b — 1)) (sinh(p(2¢ — 1)) — sinh(p(2a — 1))) + cos(p(2¢ — 1)) (sinh(p(2b — 1)) — sinh(p(2a —1))) +
+sin(p(2a — 2b + 1)) (cosh(pl) — cosh(p(?c —1))) + sin(p(2a — 2¢ + 1)) (cosh(pl) — cosh(p(2b —1))) +
+sin(p(2b — 2¢ + 1)) (cosh(pl) — cosh(p(2a — 1))) + sinh(p(2a — 2b + 1)) (cos(p(2¢ — 1)) — cos(pl)) +
+ sinh(p(2a — 2¢ + 1)) (cos(p(2b — 1)) — cos(pl)) + sinh(p(2b — 2¢ + 1)) (cos(p(2a — 1)) — cos(pl)) +
+2 (sinh(p(2a — 1)) — sinh(p(2¢ —1))) cos(pl) + 2 (sin(p(2¢ — 1)) — sin(p(2a — 1))) cosh(pl)+
+2 (cosh(p(2b — 1)) — cosh(pl)) sin(pl) + 2 (cos(pl) — cos(p(2b — 1))) sinh(pl)—
— (cosh(p(2a — 2b+ 1)) + cosh(p(2b — 2¢ + 1)) — cosh(p(2a — 2¢ + 1)) sin(pl)+
+ (cos(p(2a — 2b + 1)) + cos(p(2b — 2¢ + 1)) — cos(p(2a — 2¢ + 1))) sinh(pl)+
)

+ cosh(p(2a — 2b + 2¢ — 1)) sin(pl) — cos(p(2a — 2b + 2¢ — 1)) sinh(pl)) ,
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b1 (a,b,1,p) = — Az (4p® (sin(pl) sinh(p(2a — 2b + 1)) — sinh(pl) sin(p(2a — 2b + 1)

)
+(cos(pl) — cos(p(2b —1))) cosh(p(2a — 1)) + (cos(pl) — cos(p(2a —1))) cosh(p(2b — 1))+
+ (sinh(p(2b — 1)) — sinh(p(2a — 1))) sin(pl) + (sin(p(2a — 1)) — sin(p(2b — 1))) sinh(pl)+

+2(cos(p(a — b+1)) — cos(p(a + b—1))) cosh(p(a — b+ 1))+
+2(cos(p(a +b—1)) — cos(p(a — b+1))) cosh(p(a + b — 1))+
+ (cos(p(2a — 1)) 4 cos(p(2b —1))) cosh(pl) — 2 cosh(pl) cos(pl))) ,

B2 (a,c,l,p) = Ve (4p* (sinh(pl) sin(p(2a — 2¢ + 1)) — sin(pl) sinh(p(2a — 2¢ + 1)) +

+ (cosh(p(2a — 1)) — cosh(pl)) cos(p(2¢ — 1)) + (cosh(p(2¢ — 1)) — cosh(pl)) cos(p(2a — 1))+
+ (sinh(p(2a — 1)) — sinh(p(2¢ — 1))) sin(pl) + (sin(p(2¢c — 1)) — sin(p(2a — 1))) sinh(pl)
+2 (cosh(p(a + ¢ — 1)) — cosh(p(a — ¢ +1))) cos(p(a — ¢ + 1))+
+2 (cosh(p(a — c+1)) — cosh(p(a + ¢ —1))) cos(p(a+c—1))—

— (cosh(p(2a — 1)) 4 cosh(p(2¢ — 1))) cos(pl) 4+ 2 cosh(pl) cos(pl))) ,

B3 (b,e,l,p) = — e (4p® (sin(pl) sinh(p(2b — 2¢ 4 1)) — sinh(pl) sin(p(2b — 2¢ + 1)) +
p

( )
+(cos(pl) — cos(p(2c — 1))) cosh(p(2b — 1)) + (cos(pl) — cos(p(2b — 1))) cosh(p(2¢ — 1))+
+ (sinh(p(2¢ — 1)) — sinh(p(2b — 1))) sin(pl) + (sin(p(2b — 1)) — sin(p(2¢ — 1))) sinh(pl)+

+2(cos(p(b—c+1)) — cos(p(b+ ¢ —1))) cosh(p(b — c+ 1))+
+2(cos(p(b+ ¢ —1)) — cos(p(b—c+1)))cosh(p(b+c—1))—
+ (cos(p(2b —1)) + cos(p(2¢ — 1)) cosh(pl) — 2 cosh(pl) cos(pl))),

v (a,l,p) = % ((cosh(pl) — cosh(p(2a — 1))) sin(pl) + (cos(pl) — cos(p(2a — 1))) sinh(pl)) ,

Yo (b,l,p) = —p—j ((cosh(pl) — cosh(p(2b — 1)) sin(pl) + (cos(pl) — cos(p(2b — 1))) sinh(pl)) ,
—j ((cosh(pl) — cosh(p(2c —1))) sin(pl) + (cos(pl) — cos(p(2¢c — 1)) sinh(pl)),

Ay(l, p) = —64sin(pl) sinh(pl).

v3 (c,l,p) = —

Here Ag(l, p) is the characteristic determinant without masses. To find w the vibration frequencies from relation

(6), the values p are first determined and then we find w = ,/ EA‘] p2.

The proof of this lemma is carried out similarly to the method of in [22], and checking it is easy. To limit
the volume of the paper, we present only a scheme for the proof of Lemma 1.

The scheme of the proof:
1. Let us write the fundamental systems solving equation (1) in four intervals.
2. We construct the solution of equation (1) on four intervals, which contain 16 constants.
3. Further, it is required that the solution of equation (1) satisfies the internal conditions (2), (3), and the
boundary conditions (4), (5). Thus, we obtain a system of homogeneous nonlinear equations.
4. A priory for the existence of natural frequencies, it is necessary that the determinant of the resulting system
of nonlinear equations is equal to zero.

3.2 Numerical calculations

In this subsection, a series of numerical calculations are carried out to reconstruct the quantity of the
concentrated masses from the known first three natural frequencies. The experimental model consists of a steel
beam with a radius of 0.01 m, a length of 6 m and simply supported at the ends. Then E.J = 1649.34 (Nm?),
p="7800 (kgm~3), A=3.14-10~* (m?).
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Table 1

Determination of the quantity of the masses from the known first three natural frequencies

w1 wo w3 a b c mi ma ms
6.796 | 27.355 | 63.587 2 3 4 0.499 0.1 0.3
0.3 0.1 0.499
6.926 | 27.35 60.08 1 3 5 0.5 0.2 0.299
0.299 0.2 0.5
6.9 27.737 | 61.477 | 1.3 | 3 | 4.7 | 0.149 | 0.299 | 0.25
0.25 | 0.299 | 0.149

Table 2

Determination of the quantity of the masses from the known first three natural frequencies

w1 w2 w3 a b c mi ma ms
6.799 | 27.308 | 63.799 | 2 | 2.5 | 4 0.3 0.1 0.499
0.433 | 0.099 | 0.366
6.801 | 27.282 | 63.925 | 2 | 3.7 | 4 0.3 0.099 0.5
0.585 0.1 0.215
6.982 | 27.228 | 60.863 | 1 4 5 1 0.299 0.1 0.5
0.344 0.1 0.454

Table 3

Determination of the quantity of the masses from the known first three natural frequencies

w1 w2 w3 a |b c mi ma ms
6.785 | 27.459 | 63.479 | 2.2 | 3 4 0.3 0.099 | 0.499
-0.162 | 0.139 | 0.953
6.827 | 27.178 | 63.170 2 3| 4.3 | 0.299 | 0.099 0.5

The results of numerical calculations illustrate that the geometrical arrangement of the first and third masses
plays an important role in the ambiguous reconstruction of these quantities. It follows from Tables 1, 2 that the
symmetrical arrangement of the first and third masses relative to the middle of the beam leads to ambiguous
restoration of the values of these masses. Note that the location of the second mass between the first and third
has no significant effect. It can be seen from Table 3 that the violation of symmetry with respect to the middle
of the beam when the masses are located makes it possible to restore the values of all three masses uniquely.
We calculate the natural frequencies of problem (1)—(5) with an accuracy of € = 1075, Here & means that for
fixed values of a, b, ¢, I, m1, ma, ms condition |A(a, b, ¢, I, my1, ma, ms)| < e, i =1, 2, 3 is satisfied.

3.8 A relationship between the concentrated masses

It follows from tables 1-3 that the second mass is determined uniquely regardless of the geometric location.
Therefore, in this section, the analytical relationships of the first and third masses between the second mass are
shown.

Consider the inverse problem for determining the values of the mass. Assume that we know all the physical
parameters, the location of the intermediate masses, as well as the first three natural frequencies of the transverse
vibrations of the beam. It is required to determine the value of the first and third mass. Here, we assume that
the second mass is uniquely determined numerically; therefore, the parameter is assumed to be known.

Lemma 2. The parameters m; and mg are determined by the following formulas, respectively:

If b,,, <0, then

2¢m, asmims + asmq + agms + ag
mp = — s mg = — (7)

b
b, — /b2, — 4am, Cm, a1mimsg + azmi + agmy + ary

If b,,, >0, then

2¢pm, asmims + asmq + agms + as
mp = — mg = — (8)

b b
b, + /b2, — 4am, Cm, aimims + azmy + agmy + ar
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where
Am, = (albg — a2b1)m§ + (a1b5 — agbz + aszby — a5b1)m2 — bsas + bsas,
bm1 = (albg — agby + agby — agbl)m% — agbs + bsa7; — bras + bgaz+
+(a1bg — azby + azbs + asbs — asbs — agbs + arby — agbi)ma,
Cmq, = (a4bﬁ — a6b4)m§ + (a4b8 - a6b7 + a7b6 - a8b4)m2 - agb7 + a7b8.

Proof of Lemma 2. Let p1, p2 and p3 be zeros of A (p) := A (a,b, ¢, 1, p, m1, ma, m3) . Then, three equalities hold

aimimeoms + asmims + agmims + agmoms + asmy + agms + arms + ag = 0,
bymimaoma + bamyma + bgmimg + bamomsa + bsmy + bgma + bymsz + bg = 0, 9)

c1mimams + comims + cgmims + camaomsg + csmq + cgmo + crmsz + cg = 0,

Here
ai :a(a,bvcalapi)a a2 :61 (aabalapi)a a3:ﬂ2 (aac,lapi)7 0,4:53 (bac7lapi),
as =71 (a,l,pi), as=7(bl,pi), ar="3(c;l,pi), as=~0o(l,p;), i=1

Similar designations are valid for by, ¢, k= 1,8 for i = 2,3, respectively. We transform the system of nonlinear
equations (9) into the following form

(aymims + agmy + agms + az) m3 + agmimso + asmy + agms + ag = 0,
(b1m1m2 + b3m1 + b4m2 + b7) ms + b2m1m2 + b5m1 + b6m2 + bg =0. (10)

(c1mama + cami + cama + ¢7) m3 + camama + czma + cgma + cg = 0,
Using a linear combination from system (10), we obtain a quadratic equation with respect to my:

((a1ba — agb1)m3 + (a1bs — asbs + azba — asbi)ma — bzas + bsaz)mi+
—|—((a1b6 — a2b4 + CL4b2 — a6b1)m§ — G,gbg + b5a7 — b7a5 + bga3+
+(a1bg — agby + azbs + asbs — asbs — agbs + arba — agby)ma)m;+

(11)
+(a4b6 — a6b4)m§ + (a4bg — agby + a7bg — agb4)m2 —agby +azbg =0

Let by,, < 0. Then the corresponding solution to a quadratic equation of the form ax? +bx +c = 0 is defined as

—2c
b—Vb% —4dac (12)

which is used in Muller’s method. Using formula (12) for the quadratic equation (11), we obtain the first formula
from (7). After finding mq, the second formula of (7) follows from (10). For the case b,,, > 0, the proof of (8)
is similar. Lemma 2 is proved.

3.4 The hybrid algorithm for solving the uniqueness of the inverse problem

Subsections 3.2 and 3.3 allow to formulate the hybrid algorithm for solving the uniqueness of the inverse
problem of three concentrated masses from the known first three natural frequencies.
Hybrid algorithm:

1. All physical parameters of the beam are fixed, except concentrated masses.

2. The parameters of the first three natural frequencies are entered.

3. The value of ms is numerically found.

4. Using formula (7), we find m; and ms.

To test the proposed hybrid algorithm, consider an example.

1. The experimental model consists of a steel beam with the radius of 0.01 m, the length of 6 m and the
hinged fixation at the end. Then EJ = 1649.34 (Nm?), p = 7800 (kgm~3), A = 3.14- 10~* (m?). The masses
m1, me, and mg are located from the left end of the beam at distances of 2 m, 3 m, and 4 m, respectively.

2. w1 =6,796, wy = 27,355, w3 = 63, 587.

3. mo = 0, 1.

4. m; =0,3, ms = 0,499.
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The considered example confirms the validity of the proposed hybrid algorithm. Note that for the proposed
algorithm the geometrical disposition of the concentrated masses does not matter. In the future, the practical
interest will be to investigate the inverse problem for a beam with a variable foundation coefficient when
the beam comprises some concentrated elements. The beams with the variable foundation coefficient without
concentrated masses for various fixations were investigated in [24].

Conclusion

It can be concluded that for solving the inverse problem regarding intermediate masses on the beam, the
geometric symmetry of the location of the first and third masses relative to the middle of the beam is essential
based on the performed numerical calculations (see Table 1, 2). The numerical analysis allows restoring uniquely
the value of the second mass, regardless of its location (see Table 3). The last formulated fact allowed us to
find the analytical relationships of the first and third masses between the second. We have developed the hybrid
algorithm for solving inverse problems for determining the weight of intermediate masses on a uniform beam
from the known first three natural frequencies based on the revealed patterns. Our results can be useful for the
development of methods of inverse problems in beam systems with attached elements.
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A.A. Amusapos!, C.A. Ixxymabaes?, 1.B. Hypaxmeros!, P.K. Kycannos!?

! Mamemamuxa ocone mamemamuranss; modesvdey uncmumymol, Asmame, Kaszaxcman;
2 -
Kasaxeman Pecnybaukacv, Ipesuderminiyy orcanviidaeo
Memanexemmix backapy axademusco,, Hyp-Cyaman, Kazaxeman;
3 Cemeti wanracomowr, Hloxopim amvmdazo, yrusepcumemi, Cemeti, Kaszaxcman

Bepeneneri apaJblK Maccajlapra KATbICThI [IEKAPAJIbIK Kepi
ecenTep/i IIerryre ruOpuATI ajJropuTM TYyPaJibl

Besnrisi ym xuiniknen 6iprexTi GepeHeseri yIIl apaJjiblK MacCaHBIH CaJIMaKTapBbIH aHBIKTANTHIH Kepi ecerr
mrermisai. 2Kyprisisiren caHABIK ecenTeysiep TeK KAHA EKIHIN MACCAHBIH, CAJMAFBIH aHBIKTAyFa MYMKIHIIK
Oepeii. Bepeneieri yinr apaJjiblk MacCaHbIH CAJIMaKTaAPbIH AHBIKTAUTBIH Kepi ecerr OGipiHIi MeH eKiHI Macca
GepeHeHiH OpTAChIHA KATHICTBI T€OMETPUSLIIBIK, CHMMETPHUSIIBI OPHAJIACKAH YKaFaaiigan 6acka Karmaiiapia
Gipmon/i merniiesi. Bapibik yI apaJjblk MACCAaHBIH CAJIMaKTAPBbIH aHBIKTAWTHIH Kepi ecenTid, 6ipMoH/Ii 111e-
miMi 6ap 60/1yBI YIIIiH THOPUITI AJITOPUTM KACAJABI. AJIFAIIKBI YIII MEHIIIKTI »Kuinik Maple koMmboTepJIik
makeTi apKbLIbI ecenresiai. Maccamap apacblHIa aHAJTUTUKAJIBIK, KATBIHAC TaObLIJIbI.

Kiam cesdep: meHIIIKTI KuigikTep, 66peHe TEHIEY], CUIIATTAMAJIBIK AHBIKTAYBIII, KEPi €CEIl, apaJIbIK dJIe-
MEHTTEp.
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A.A. Amuapos!, C.A. Ixxymabaes?, JI.B. Hypaxameros!, P.K. Kycaunos?

L Mnemumym mamemamuky v mamemamuneckozo modeauposarud, Aamame, Kazaxcmar;
2
Axademus 2ocydapcmeernozo ynpasaerus npu IIpesudenme Pecnybaurxu Kazaxcman, Hyp-Cyaman, Kazaxcman;
3 Viusepcumem umeru Hlaxapuma zopoda Cemeti, Cemeti, Kazazcman

O6 ogHOM THOPUHOM AJITOPUTME pelleHrs OOPATHBIX TPAHUIHBIX
3aJ1a" OTHOCUTEJbHO ITPOME2KYyTOYHBIX MacCc Ha Oajike

Permtena obparnas 3amgata onpeesienust Beca Tpex IPOMEXKYTOUHBIX MacC Ha OJHOPOIHOI HasIKe [0 M3BeCT-
HBIM TPeM COOCTBEHHBIM YacToTaM. lIpoBeeHHDBIM YHUC/IEHHDBIM aHAJIN3 [TO3BOJISET €IUHCTBEHHBIM 00pa3oM
BOCCTaHABJIMBATH BEJIUYIUHY TOJILKO Bropoil Maccol. O6GparHast 3ajada OIPEJIeICHIsI BECa TPEX IIPOMEXKY-
TOYHBIX MaCC pelaeTcd OJHO3HAYHO, KPOME CJIydasl, KOIjia IepBas M TPeTbs MAaCChl PACIOJIOXKEHBI I'eo-
METPUYECKN CUMMETPUIHO OTHOCUTEIBHO CepennHbl 6aaku. [11s 0IHO3HAYHOTO peleHns: 0OpaTHOMN 3a1a4uu
OIIpEJIEeJICHIsT BeCa TPEX IIPOMEXKYTOUHBIX MacC pa3dpaboran rubpuHbIil ajsroputM. [lepsobie Tpu coberen-
HBIE YaCTOTHI CTEPKHSI BBIUMC/IEHBI YUCJEHHO C TTOMOIIBIO KOMIIbIoTepHOTO makera Maple. Halineno amasm-
TUYECKOe COOTHOIIEHNEe MeXK/ly MacCaMH.

Kmouesvie cro6a: cOBCTBEHHDBIE YACTOTHI, ypABHEHNE OATKHT, XaPAKTEPUCTUICCKUN ONPEIeINTENb, OOpaTHAS
3a/1a4a, IPOMezKyTOYHbIE 3JIeMEHTBhI.
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