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On the Lie symmetries of the boundary value problems for
differential and difference sine-Gordon equations

In general, due to the nature of the Lie group theory, symmetry analysis is applied to single equations rather
than boundary value problems. In this paper boundary value problems for the sine-Gordon equations under
the group of Lie point symmetries are obtained in both differential and difference forms. The invariance
conditions for the boundary value problems and their solutions are obtained. The invariant discretization of
the difference problem corresponding to the boundary value problem for sine-Gordon equation is studied.
In the differential case an unbounded domain is considered and in the difference case a lattice with points
lying in the plane and stretching in all directions with no boundaries is considered.
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Introduction

There are many theoretical and numerical studies on the nonlinear wave equations such as sine-Gordon and
Klein-Gordon equations in the literature (see [1–3] and the references given therein). Sine-Gordon equations are
of particular interest since they attracted much attention in the recent decades due to the exitance of soliton
solutions. Solitons are nonlinear waves and have been used in many mathematical models.

Lie symmetries are one of the most powerful methods in obtaining exact solutions of many partial differential
equations (PDEs). Many researchers have been studying this field and publishing articles and books [1–21] which
investigate the general theory of these applications. However, there is relatively small number of studies that
deal with Lie symmetries of boundary value problems for the PDEs. There are some difficulties in the application
of Lie symmetries to boundary value problems (BVPs). In symmetry analysis every symmetry of a BVP must
be a symmetry of a given PDE, a mapping of the domain to itself and a symmetry of the boundary data. In
general, the prescribed initial or boundary conditions are not invariant under the group transformation of the
corresponding PDE.

To the extent of our investigation the study of Lie symmetries of BVPs were first done by V.V. Puk-
nachov [19] and G.W. Bluman [7]. For the theoretical aspects we refer to books [6, 20, 21] In the recent studies
R. Cherniha et al. [16, 17] defined a new formula. This formula applies for the invariance of BVPs in a wide
range of boundary conditions including free (moving) boundaries and boundaries at infinity.

In the present paper BVPs for nonlinear sine-Gordon equation in the differential and difference forms are
investigated. Under the transformation groups boundary curves and boundary conditions of the equations are
obtained. The formula for the invariance of BVPs presented by Cherniha [16] is used. The main object of
this work is to investigate the invariance of a BVPs for sine-Gordon equation in differential and discrete form
under the Lie point symmetries of the corresponding equations. Note that some of the results of this work was
presented, without proof, in [4].

Preliminaries
Symmetry analysis of differential and difference equations

In this section we present the theory and definitions in the Lie symmetry analysis. Let us consider the
system of differential equations

Fλ(x, u, u1, u2, . . . , us) = 0, λ = 1, 2, . . . ,m, (1)
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where x ∈ Rn, u ∈ Rm and us is the set of s-th partial derivatives. We can write the group of point transformati-
ons in the space (x, u) as

Gr = {xi
∗

= f i(x, u, a);uk
∗

= gk(x, u, a), i = 1, 2, . . . , n, k = 1, 2, . . . ,m}.

Using the power series and expanding the transformations about some neighborhood of the parameter aα = 0
gives

xi
∗

= xi + aα
∂f i(x, a)

∂aα
|a=0 +O((aα)2), α = 1, . . . , r,

uk
∗

= uk + aα
∂gk(u, a)

∂aα
|a=0 +O((aα)2), α = 1, . . . , r.

The derivatives of f i and gk are smooth functions and are called infinitesimals of the group Gr and denoted by
ξiα and ηkα.

Finding the Lie group of differential system (1) is equivalent to finding its infinitesimal operator(generator),
thus we seek for the infinitesimal operators of Gr in the following form

Xα = ξiα(x, u)
∂

∂xi
+ ηkα(x, u)

∂

∂uk
, i = 1, . . . , n, k = 1, . . . ,m, α = 1, . . . , r.

The set of tangent vectors to the manifold Gr at the identity element a = 0 is {Xα, α = 1, . . . , r} and is a
basis of the Lie algebra of the infinitesimal operators of Gr. The determination of the infinitesimal functions ξiα
and ηkα states the group of transformations. By Xα, one can determine the point transformations of the group
Gr by solving the Lie equations

∂f i

∂aα
= ξiα(f),

∂gk

∂aα
= ηkα(g), α = 1, . . . , r, i = 1, . . . , n, k = 1, . . . ,m (2)

with the initial conditions
f i|a=0 = xi, gk|a=0 = uk.

These equations obtain a one-to-one correspondence between vector fields (2) and the group of transformations
Gr. The Lie algebra vector field is prolonged to the derivatives in order to modify it with differential variables
uki ,

uki =
∂uk

∂xi
, i = 1, . . . , n, k = 1, . . . ,m.

From that the extended infinitesimal operators are obtained as

X̃α = ξi
∂

∂xi
+ ηk

∂

∂uk
+ ζ

(1)k
i

∂

∂uki
+ · · ·+ ζ

(s)k
i1i2...is

∂

∂uki1i2...is
. (3)

Here we denote
ζ

(1)k
i = Di(η

k)− ukjDi(ξ
j)

and
ζ

(s)k
i1i2...is

= Disζ
(s−1)k
i1i2...is−1

− uki1i2...is−1jDis(ξ
j),

Di =
∂

∂xi
+ uki

∂

∂uk
+ ukij

∂

∂ukij
+ · · ·+ uki1i2...in

∂

∂uki1i2...in
+ · · · .

Theorem 1. [13] Let the Lie group of point transformations in the space of independent variables (x, u, u1, u2, . . . , us),
dependent variables and all s-th order partial derivatives of dependent variables with respect to independent
ones be G̃r. Then system of differential equations (1) is invariant under the group G̃r if and only if

X̃αFλ(x, u, u1, u2, . . . , us)|(1) = 0, λ = 1, 2, . . . ,m. (4)

The invariance condition (4) is an overdetermined system of linear equations for the coordinates of infinitesimal
operator (3) and is called the system of determining equations.

Now, let us introduce the Lie symmetry analysis of difference equations. The difference scheme for the
solution of the system of differential equations (1) is denoted by

Hλ(x, u, h, Tu) = 0, λ = 1, 2, . . . ,m. (5)
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Here h = (h1, h2, . . . , hn) is the mesh space vector and T = (T1, T2, . . . , Tn) represents the shift operator along
the axis of the independent variables and given by

Ti[u](x1, . . . , xi, . . . , xn) = u(x1, . . . , xi + hi, . . . , xn).

We denote a group of transformations in the space of mesh variables (x, u, h) by Ghr and define as

Ghr = {xi
∗

= f i(x, u, a);uk
∗

= gk(x, u, a);hi
∗
}

= ϕi(x, u, h, a), i = 1, 2, . . . , n, k = 1, 2, . . . ,m

with the infinitesimal operator

Xh
α = Xα + ςiα(x, u, h)

∂

∂hi
, α = 1, . . . , r.

Here

ςiα =
∂ϕi

∂aα
, α = 1, . . . , r.

In the space of differential and difference variables (x, u, h, u1, u2, . . . , us) the prolongation operator of the group
of point transformations G̃(h)

α is X̃(h)
α .

Theorem 2. [13] Finite difference scheme (5) is invariant under the group of transformations G̃(h)
α if and only if

X̃(h)
α Hλ(x, u, h, Tu)|(5) = 0, λ = 1, 2, . . . ,m.

Symmetry analysis of the boundary value problem for PDEs

In this section we consider the Lie symmetry properties of BVPs. The invariance conditions under a group
of point transformations of a BVP for a scalar PDE satisfy if the group separately leaves invariant the boundary
conditions and the PDE of the BVP. The solution of the BVP resulting from the admitted point symmetry
is an invariant solution if the BVP is well-posed. On the other hand, the concerned boundary conditions are
in general not invariant under the symmetry of the considered PDEs. In view of this issue, one of the early
definitions on the invariance of a BVP was given by G.W. Bluman [5].

Let us consider a k-th order (k ≥ 2) scalar PDE represented by

F (x, u, ∂u, ∂2u, . . . , ∂ku) = 0. (6)

Here x = (x1, x2, . . . , xn) represents the coordinates corresponding to its n independent variables, u represents
its dependent variable, and ∂ju represents the coordinates with components

∂ju/∂xi1∂xi2 . . . ∂xij = ui1i2...ij , ij = 1, 2, . . . , n, j = 1, 2, . . . , k

corresponding to all j-th order partial derivatives of u with respect to x.
We assume that PDE (6) can be written in the following form in terms of some specific component of the

l-th order partial derivatives of u

F (x, u, ∂u, ∂2u, . . . , ∂ku) = ui1i2...il − f(x, u, ∂u, ∂2u, . . . , ∂ku) = 0, (7)

where f(x, u, ∂u, ∂2u, . . . , ∂ku) does not depend explicitly on ui1i2...il .
Now consider a BVP for PDE (7) defined on the domain Ωx in x-space [x = (x1, x2, . . . , xn)] with boundary

conditions
Ba(x, u, ∂u, . . . , ∂k−1u) = 0 (8)

described on boundary surfaces
ωa(x) = 0, a = 1, 2, . . . , s. (9)

Let us assume that problem (7)–(9) has a unique solution. We use an infinitesimal generator as follows

X = ξi(x)
∂

∂xi
+ η(x, u)

∂

∂u
. (10)

This infinitesimal generator defines a point symmetry acting on both (x, u)-space and on its projection to
x-space.
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Definition 1. [5] The point symmetry X in the form (10) is admitted by BVP (7)–(9) if and only if:
1 X(k)F (x, u, ∂u, ∂2u, . . . , ∂ku) = 0 when F (x, u, ∂u, ∂2u, . . . , ∂ku) = 0.
2 Xωa(x) = 0 when ωa(x) = 0, a = 1, 2, . . . , s.
3 X(k−1)Ba(x, u, ∂u, . . . , ∂k−1u) = 0 when Ba(x, u, ∂u, . . . , ∂k−1u) = 0 on ωa(x) = 0, a = 1, 2, . . . , s.
The above definition does not apply for BVPs with free boundaries or with boundary conditions given at

infinity. Therefore R. Chernica et al. (see [16], [17]) proposed a new invariance definition for BVPs which extends
Bluman’s definition to all possible boundary conditions. They formulated the definition of invariance for BVPs
at operators of conditional symmetry case expressing what kind of transformations can be applied to transform
boundary conditions at infinity to those containing no conditions at infinity. Consider a BVP for PDE (7) with
boundary conditions (8) and conditions defined at infinity:

γc(x) =∞ : γc(x, u, ∂u, . . . , ∂
kcu) = 0, c = 1, 2, . . . , p∞, (11)

where kc < k and p∞ are given numbers and γc(x) are specified functions that extend the domain on which the
BVP is defined at infinity. We assume that all functions arising in (7), (8), (9), and (11) are given such that a
classical solution of this BVP exists. Let us assume that the operator

Q = ξi(x, u)
∂

∂xi
+ η(x, u)

∂

∂u
(12)

is a Q-conditional symmetry of PDE (7) satisfying the criterion:

Q(k)F (x, u, ∂u, ∂2u, . . . , ∂ku)|F (x,u,∂u,∂2u,...,∂ku)=0 = 0, (13)

where Q(k) is the k-th prolongation of Q and Q(u) = 0 with Q(u) = ξi(x, u)uxi − η(x, u). Let us consider the
manifold for each c = 1, 2, . . . , p∞ as

M = {γc(x) =∞ : γc(x, u, ∂u, . . . , ∂
kcu) = 0}

in the extended space of variables x, u, ux, . . . , u
(kc)
x . Suppose that there exists a smooth bijective transformation

y = g(x), w = h(x, u), (14)

where h(x, u) is a smooth function, g(x) is a smooth vector function that maps the manifold M into

M∗ = {γ∗c (y) = 0 : γ∗c (y, u, ∂u, . . . , ∂k
∗
cu) = 0}

of the same dimensionality in the extended variable space y, w,wy, . . . , w
(kc)
y (k∗c ≤ kc) and

y = y1, . . . , yn.
Definition 2. [17] BVPs (7), (8), and (11) are Q-conditionally invariant under operator (12) if:
1 Criterion (13) is satisfied;
2 Q(ωa(x)) = 0 when ωa(x) = 0, Ba|ωa(x)=0 = 0, a = 1, . . . , s;
3 Q(k)(Ba(x, u, ∂u, . . . , ∂k−1u)) = 0 when ωa(x) = 0 and Ba|ωa(x)=0 = 0, a = 1, . . . , s;
4 There exists a smooth bijective transform (14) mapping M into M∗ of the same dimensionality;
5 Q∗(γ∗c (y)) = 0 when γ∗c (y) = 0, c = 1, 2, . . . , p∞;
6 (Q∗)(k∗c )(γ∗c (y, u, ∂u, . . . , ∂k

∗
cu)) = 0 when γ∗c (y) = 0 and γ∗c |γ∗c (y)=0 = 0, c = 1, 2, . . . , r.

This definition coincides with Definition 1 when Q is a Lie symmetry operator and there is not any boundary
condition defined at infinity.

Lie symmetry analysis of the problem with sine-Gordon equation

Let us consider the nonlinear hyperbolic problem for sine-Gordon equation

utt − uxx = sinu, t > 0,−∞ < x <∞, (15)

u(0, x) = ϕ(x), (16)

ut(0, x) = ψ(x). (17)
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Equation (15) admits three-dimensional Lie group [8] spanned by the operators

X1 =
∂

∂t
,X2 =

∂

∂x
,X3 = x

∂

∂t
+ t

∂

∂x
.

The operators generate one-parameter Lie groups

T1 : t∗ = t+ ε1, x
∗ = x, u∗ = u,

T2 : t∗ = t, x∗ = x+ ε2, u
∗ = u,

T3 : t∗ = t+ xε3, x
∗ = x+ tε3, u

∗ = u,

respectively. Since the group T1 corresponds to translation on the variable t, the invariance of the boundary curve
t = 0 is not preserved. Thus BVP (15)–(17) is not invariant with respect to the group T1. For the invariance of
boundary condition (16) with respect to the symmetry group T2, the equations

t∗|t=0 = 0, [u∗ − ϕ(x∗)]|u−ϕ(x)=0 = 0 (18)

must be satisfied. The first equation of (18) is an identity, while the second equation results

ϕ(x) = ϕ(x+ ε2). (19)

For the invariance of boundary condition (17) we need the first prolongation of the operator X2. Using the
prolongation formula for first-order derivatives

X(1) = X + (ηt + utηu − ut(ξ0
t + utξ

0
u)− ux(ξ1

t + utξ
1
u))

∂

∂ut

+ (ηx + uxηu − ut(ξ0
x + uxξ

0
u)− ux(ξ1

x + uxξ
1
u))

∂

∂ux
,

(20)

where ξ0, ξ1 are infinitesimals with respect to the variables t and x respectively, we get

X
(1)
2 =

∂

∂x
. (21)

Applying this operator to condition (17), we have

t∗|t=0 = 0, [u∗t − ψ(x∗)]|ut−ψ(x)=0 = 0,

which gives

ψ(x) = ψ(x+ ε2). (22)

BVP (15)–(17) is invariant under the group of transformations T2 if and only if equations (19) and (22) are
satisfied. These equations result is that the functions ϕ(x) and ψ(x) are constant functions.

Following the same way, we obtain the invariance criterions of boundary condition (16) with respect to the
symmetry group T3 if the equations

t+ xε3 = 0 when t = 0,
u− ϕ(x+ tε3) = 0 when u− ϕ(x) = 0

are satisfied. The first equation results with x = 0 or ε3 = 0 that gives the trivial group. Hence we arrive at
boundary condition (16), which is invariant under the group of transformations T3 with restriction

x = 0, ϕ(x) = ϕ(x+ tε3). (23)

To examine invariance of boundary condition (17) we apply the first prolongation of the operator X3 which is
obtained from formula (20)

X
(1)
3 = x

∂

∂t
+ t

∂

∂x
− ux

∂

∂ut
− ut

∂

∂ux
(24)

146 Bulletin of the Karaganda University



On the Lie symmetries of...

to (17) and we get
x = 0, ψ(x)− ψ(x+ tε3) = uxε3. (25)

Combining equations (23) and (25) we conclude that BVP (15)–(17) is invariant under the group of transformati-
ons T3 with restriction ux(t, 0) = 0 and conditions:

(i) when t = 0 the arbitrary functions are functions of x variable only, such that ϕ(x) and ψ(x),
(ii) when t 6= 0 then the arbitrary functions ϕ(x) and ψ(x) are constant functions.
Considering all situations presented above, we infer that BVP (15)–(17) admits two-parameter Lie group

T2 ◦ T3 that corresponds to symmetries t∗ = t+ xε3, x
∗ = x+ tε3 + ε2, u

∗ = u if and only if ϕ(x) and ψ(x) are
constant functions.

Lie symmetry analysis of sine-Gordon equation in the difference scheme form

In this section we study the Lie point symmetries of difference model for nonlinear problem (15)–(17). Before
we proceed, let us present some preliminaries and notations about transformation groups and prolongations in
the space of discrete variables given in [13]. We denote the sequence space (x, u, u1, u2, ...) by Z with

x =
{
xi | i = 1, 2, ..., n

}
,

u =
{
uk | k = 1, 2, ...,m

}
.

We denote the set ofmn first partial derivatives as u1 =
{
uki
}
, the set of second partial derivatives as u2 =

{
ukij
}
,

etc. The formulas for the derivatives when n = 2 for x =
(
x1, x2

)
are

D1 =
∂

∂x1
+ u1

∂

∂u
+ u11

∂

∂u1
+ u21

∂

∂u2
+ ...,

D2 =
∂

∂x2
+ u2

∂

∂u
+ u12

∂

∂u1
+ u22

∂

∂u2
+ ...,

where

u1 =
∂u

∂x1
, u11 =

∂2u

∂ (x1)
2 , u21 =

∂2u

∂x2∂x1
, ....

In the proofs, for simplicity, the superscript k on uk is omitted. The two commuting Taylor groups [18] with
finite transformations T 1

a = eaD1 and T 2
a = eaD2 are generated by the given operators. In one dimensional case

the new coordinates
x∗ = Ta (x) = x+ a,

u∗ = Ta (u) =

∞∑
s=0

as

s!
us,

u∗1 = Ta (u1) =

∞∑
s=0

as

s!
us+1,

...

u∗k = Ta (uk) =

∞∑
s=0

as

s!
us+k

...

are generated by the action of operator Ta = eaD. Setting the arbitrary parameters h1, h2 > 0 the shift operators

S1
±h

= e±h1D1 ≡
∑
s≥0

(±h1)
s

s!
Ds

1,

S2
±h

= e±h2D2 ≡
∑
s≥0

(±h2)
s

s!
Ds

2
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are obtained. Using these shift operators, two discrete differentiation operators

Di
+h

= ± 1

h
(Si
±h
− 1), i = 1, 2

are obtained. In the
(
x1, x2

)
-plane, the set of points{

Sα
±h1

(
x1
)
, Sβ
±h2

(
x2
)}

, α, β = 0, 1, 2, ...

is called a uniform orthogonal difference mesh and denoted by ω
h
.

In two dimensional case with dependent variable u, independent variables t, x and mesh variables h1, h2

we denote the spaces of differential variables, difference variables and the product of those spaces which is the
space of sequences of power series by

Z̃ = (t, x, u, ut, ux, utx, . . .),

Z
h

= (t, x, u, ut
h
, ux
h
, utx
h
, . . . , h1, h2),

Z̃
h

= (t, x, u, ut, ux, . . . , ut
h
, ux
h
, utx
h
, . . . , h1, h2),

where

uij =
∂2u

∂xi∂xj
, uij
h

= Dj
+h

Di
+h

(u), . . . , ω
h

= ω1
h
× ω2

h

and ωi
h

is the difference mesh in the i-th direction, respectively.

Transformations in Z̃
h
is defined by the sequence of series with analytic coefficients,

zj∗ =
∑
s≥0

Ajs(z)a
s, Aj0 = zj ,

where zj is a coordinate of the vector (t, x, u, ut, ux, . . . , ut
h
, ux
h
, utx
h
, . . .) and these series form one-parameter

groups generated by infinitesimal operators

X = ξt
∂

∂t
+ ξx

∂

∂x
+ ηk

∂

∂uk
+
∑
s≥1

ζi1i2...is
∂

∂ui1i2...is
+
∑
l≥1

ζi1i2...il
∂

∂ui1i2...il
. (26)

Prolongating the operator (26) for the variables h1 and h2 gives

X̃ = · · ·+ h1D1
+h

(ξt)
∂

∂h1
+ h2D2

+h
(ξx)

∂

∂h2
.

For first-order difference derivatives the coordinates of prolongation operator are given by the formulas

ζt
h

= D1
+h

(η)− ut
h
D1
+h

(ξt)− S1
+h

(ux)D1
+h

(ξx), (27)

ζx
h

= D2
+h

(η)− S2
+h

(ut)D2
+h

(ξt)− ux
h
D2
+h

(ξx). (28)

If the considered mesh is invariantly uniform or invariantly orthogonal, then the corresponding formulas for the
invariant meshes must be satisfied in addition to prolongation formulas (27)–(28).

We presented the five-point difference scheme

û− 2u+ ǔ

h2
1

− u+ − 2u+ u−
h2

2

= sinu (29)

for sine-Gordon equation (15) on the uniform and orthogonal mesh

t̂− 2t+ ť = 0, x+ − 2x+ x− = 0
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in our paper [3]. Here we denote mesh variables by h1, h2 and t̂ = t+ h1, ť = t− h1, x+ = x+ h2,
x− = x− h2, û = u(t̂, x), ǔ = u(ť, x), u+ = u(t, x+), u− = u(t, x−). We used the prolongation operator

prX = ξt
∂

∂t
+ ξx

∂

∂x
+ η

∂

∂u
+ ξ̂t

∂

∂t̂
+ ξ̌t

∂

∂ť
+ ξx+

∂

∂x+

+ξx−
∂

∂x−
+ η̂

∂

∂û
+ η̌

∂

∂ǔ
+ η+

∂

∂u+
+ η−

∂

∂u−

in the discrete subspace (t, x, t̂, ť, x+, x−, u, û, ǔ, u+, u−) and obtained three-parameter transformation group
generated by the operators

X1 =
∂

∂t
+
∂

∂t̂
+
∂

∂ť
,X2 =

∂

∂x
+

∂

∂x+
+

∂

∂x−
,

X3 = x
∂

∂t
+ t

∂

∂x
+ x

∂

∂t̂
+ x

∂

∂ť
+ t

∂

∂x+
+ t

∂

∂x−
.

Difference equation (29) on the set of a finite number of points (xkn, t
k
n) can be expressed as

E1 :
uk+1
n − 2ukn + uk−1

n

h2
1

−
ukn+1 − 2ukn + ukn+1

h2
2

= sinukn (30)

on the uniformly spaced orthogonal lattice

E2 : tk+1
n − tkn = h1, E3 : xk+1

n − xkn = 0, (31)

E4 : tkn+1 − tkn = 0, E5 : xkn+1 − xkn = h2. (32)

D. Levi et al. mentioned certain independence criteria for difference schemes in two dimensional case [14].
By this criteria one can calculate the values of (x, t, u) at all points beginning from the point (xkn, t

k
n) and a

given number of neighboring points and assures the existence of solution of the system. The following condition
on the Jacobian

|J | =

∣∣∣∣∣ ∂(E1, E2, E3, E4, E5)

∂(tk+1
n , xk+1

n , tkn+1, x
k
n+1, u

k+1
n )

∣∣∣∣∣ 6= 0 (33)

is imposed by Levi et al. [14]. This condition allows to move upward and to the right along the curves passing
through (xkn, t

k
n) (with either k or n fixed). Difference scheme (30)–(32) satisfy certain independence criteria

(33) by
tkn = h1k + t0, x

k
n = h2n+ x0.

In this step, using difference equation (29) for the BVP (15)–(17), we write the difference problem

û− 2u+ ǔ

h2
1

− u+ − 2u+ u−
h2

2

= sinu, (34)

u0
n = ϕh(x), (35)

û1
n − u0

n

τ+
= ψh(x). (36)

In this paper the notation (t, x, u, ut
h
, ux
h
, utx
h
, . . . , h1, h2) for difference variables in two-dimensional case is used

for simplicity. Using these symbols, we rewrite the difference model (34)–(36) in the following form

utt
h
− uxx

h
= sinu, (37)

u(0, x) = ϕh(x), (38)

ut
h

(0, x) = ψh(x). (39)

Difference equation (37) admits three-parameter groups generated by operators [3]

X1 =
∂

∂t
,X2 =

∂

∂x
,X3 = x

∂

∂t
+ t

∂

∂x
. (40)

Mathematics series. № 2(102)/2021 149



O. Yildirim, S. Caglak

Lie symmetry groups corresponding to the translation about time variable is described by the operator X1,
to the translation in space variable is described by the operator X2, and to the rotation is described by the
operator X3. The difference scheme (37)–(39) does not admit symmetry group generated by X1, because time
translation violates invariance of the boundary surface t = 0.

The invariance of boundary surface t = 0 generated by the operator X2 with respect to the transformation
group is trivial. Under the symmetry of space translationX2, boundary condition (38) is invariant if the equation

u− ϕh(x+ ε2) = 0 for u− ϕh(x) = 0

is satisfied. From that it follows the condition

ϕh(x) = ϕh(x+ ε2). (41)

For the invariance of boundary condition (39) we require the first-order prolongation formulas in space of discrete
variables. From (21) we know the coordinates for continuous derivatives in the prolongation of the operator X2

are zero. Using formulas (27)-(28), we obtain the coordinates of first-order difference derivatives

ζt
h

= D1
+h

(0)− ut
h
D1
+h

(0)− S1
+h

(ux)D1
+h

(1) = 0,

ζx
h

= D2
+h

(0)− S2
+h

(ut)D2
+h

(0)− ux
h
D2
+h

(1) = 0

for the operator X2 with η = 0, ξt = 0, ξx = 1. In this case X2
h

(1) = X2 where X2
h

(1) is the first prolongation of

the operator X2 in discrete space. Applying this prolongation to condition (39) we get the criterion

ψh(x) = ψh(x+ ε2). (42)

In consequence of combining criterions (41) and (42) one can say that difference scheme (37)–(39) is invariant
with respect to the transformation group defined by the operator X2 if and only if ϕh(x) and ψh(x) are constant
functions. Using the same procedure, we obtain the invariance criterion of condition (38) under the rotation
group spanned by the operator X3 as

t+ xε3 = 0 when t = 0, u− ϕh(x+ tε3) = 0 when u− ϕh(x) = 0

which results
x = 0, ϕh(x) = ϕh(x+ tε3). (43)

Under the symmetry group generated by this operator we need to prolong operator (24) for the first-order
difference derivatives in order to analyze invariance of condition (39). Substituting η = 0,
ξt = x, ξx = t in the operator X3 in (27)–(28), we obtain the coefficients

ζt
h

= −ux, ζx
h

= −ut

and the prolongation operator

X3
h

(1) = x
∂

∂t
+ t

∂

∂x
− ux

∂

∂ut
− ut

∂

∂ux
− ux

∂

∂ut
h

− ut
∂

∂ux
h

.

This operator generates the group t∗ = t+ xε3, x
∗ = x+ tε3, u

∗ = u, u∗t = ut − uxε3, u∗x = ux − utε3,
u∗t
h

= ut
h
− uxε3, u∗x

h

= ux
h
− utε3. Applying the operator to boundary condition (39) gives

t+ xε3 = 0 for t = 0,
ut
h
− uxε3 − ψh(x+ tε3) = 0 when ut

h
− ψh(x) = 0

and consequently
x = 0, ψh(x)− ψh(x+ tε3) = uxε3. (44)

From equations (43) and (44) under the group of transformations X3 and with the restriction ux(t, 0) = 0 we
conclude that difference scheme (37)–(39) is invariant in two cases:

150 Bulletin of the Karaganda University



On the Lie symmetries of...

(1) if t = 0 for all arbitrary functions ϕh(x) and ψh(x),
(2) if t 6= 0 then ϕh(x) and ψh(x) are constant functions.

Remark. Note that in the prolongation operators X2
h

(1) and X3
h

(1) we omit the coordinates for the mesh variables.

Indeed, substituting the infinitesimals η = 0, ξt = 0 of the operator X2 in D1
+h

(ξt) and D2
+h

(ξx) gives zero.

For the operator X3 the infinitesimals are η = 0, ξt = x, ξx = t and we calculate D1
+h

(ξt) and D2
+h

(ξx) as

D1
+h

(x) =
1

h
(S1
h
− 1) = (D1 +

h1

2!
D2

1 + · · · )(x) = 0,

D2
+h

(t) =
1

h
(S2
h
− 1) = (D2 +

h1

2!
D2

2 + · · · )(t) = 0,

where
D1 =

∂

∂t
+ ut

∂

∂u
+ utt

∂

∂ut
+ uxt

∂

∂ux
+ ...,

D2 =
∂

∂x
+ ux

∂

∂u
+ utx

∂

∂ut
+ uxx

∂

∂ux
+ ....

Conclusion

Some results discussed in this paper are as follows. We have investigated the BVP for sine-Gordon equation
in differential and difference cases which are defined on an unbounded domain and lattice respectively. We
obtain the invariance conditions for the problems under the group of transformations admitted by continuous
and discrete sine-Gordon equation by applying the invariance definition in [16]. The transformations act on the
difference scheme, lattices, and boundary conditions and preserve uniformity and orthogonality of the lattice.
We used the prolongation formulas in discrete space which are formulated by Dorodnitsyn in [13] and analyze
the invariance of the boundary conditions with derivative. On this basis we conclude that difference scheme
(37)–(39) is invariant under the same restrictions of differential form (15)–(17) with respect to the symmetry
groups generated by (40).
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О. Йылдырым, С. Чаглак

Йылдыз техникалық университетi, Стамбул, Түркия

Дифференциалдық және айырымдық теңдеулерi үшiн шеттiк
есептердегi Лидiң симметриялары туралы

Жалпы Ли топтары теориясының сипатына байланысты симметрияны талдау шеттiк есептерге емес,
жеке теңдеулерге қолданылады. Мақалада Лидiң нүктелiк симметриялар тобына қатысты синус-
Гордон теңдеулерi үшiн шеттiк есептер дифференциалдық және айырымдық түрлерiнде алынды.
Шеттiк есептердiң және олардың шешiмдерiнiң инварианттық шарттары анықталған. Синус-Гордон
теңдеуi үшiн шеттiк есепке сәйкес келетiн айырымдық есептiң инвариантты дискретизациясы зерттел-
дi. Дифференциалдық жағдайда шексiз облыс, ал айырымдық жағдайда — жазықтықта орналасқан
және барлық бағытта шекарасыз созылатын нүктелерi бар тор қарастырылған.

Кiлт сөздер: симметрияны талдау, дербес туындылы теңдеулер, айырымдық теңдеулерi, шеттiк есеп-
тер.

О. Йылдырым, С. Чаглак

Технический университет Йылдыз, Стамбул, Турция

О лиевских симметриях в краевых задачах для
дифференциальных и разностных уравнений

Ввиду природы теории групп Ли анализ симметрии применяется к отдельным уравнениям, а не к кра-
евым задачам. В статье краевые задачи для уравнений синус-Гордон относительно группы точечных
симметрий Ли получены как в дифференциальной, так и в разностной форме. Определены условия
инвариантности краевых задач и их решений. Исследована инвариантная дискретизация разностной
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задачи, соответствующей краевой задаче для уравнения синус-Гордон. В дифференциальном случае
рассмотрена неограниченная область, а в разностном — решетка с точками, лежащими в плоскости
и тянущимися во всех направлениях без границ.

Ключевые слова: анализ симметрии, уравнения в частных производных, разностные уравнения, крае-
вые задачи.
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