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Modelling the effect of horizontal and vertical transmissions
of HIV infection with efficient control strategies

In this paper a mathematical model is developed to study the transmission dynamics of HIV infection
and the effect of horizontal and vertical transmission in Turkey is analyzed. Model is fitted with the use
of confirmed HIV cases of both vertical and horizontal transmission from 2011 to 2018. Using the next
generation operator the basic reproduction number of the model is obtained, which shows whether the
disease persists or dies out in time. Further analysis shows that the model is locally asymptotically stable
when the basic reproduction number Ro < 1 and is unstable when R > 1. The most sensitive parameters
efficient for the control of the infection are obtained using forward normalized sensitivity index. Lastly,
the results are obtained with the aid of mesh and contour plots, which show that decreasing the values of
transmission rate diseases induced mortality rates and progression rates play a significant role in controlling
the spread of HIV transmission.
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Introduction

Human Immune-deficiency Virus (HIV) reduces or destroys the human defense mechanisms, also known as
the immune system, preventing fighting with infections or any other diseases and the progression of this virus
occurres as a result of infecting the CD4+ T-cells of the organism [1, 2|. The number of these cells mainly
shows how active and functioning the immune system is [3, 4]. The number of CD4+ T-cells must be in the
range of 800 to 1200 cells/mm? for a healthy person. If this number of CD4+ T-cells goes down below 200
cells/mm? for any HIV patient, this patient is then considered to be an AIDS patient [5]. In other words, HIV
is the virus that causes AIDS (Acquired Immune Deficiency Syndrome) which is the most advanced phase of
the HIV infection [6].

HIV can be transmitted through direct contact with contaminated blood products, such as syringes or
needles, contaminated transfusion, unprotected sexual intercourse, and breastfeeding or as a vertical transmi-
ssion during birth [7]. However, not all HIV cases necessarily result in AIDS infection. It is clinically confirmed
that an HIV patient may live a healthy life without progressing to severe stage (AIDS) [8].

HIV/AIDS was first discovered in the United States of America in the early 1980s in two homosexual men
and it continues to progress with time [9]. 2003 was the year with the greatest number increase in an epidemic,
where approximately 5 million additional infected individuals were discovered, which raised the global prevalence
of the virus to 38 million people living with HIV/AIDS, and in the same year approximately 3 million patients
passed away [10]. This virus happened to be the death cause of almost 25 million people as of 2005 and became
one of the most devastative epidemics in history [11]. According to the statistics taken from the World Health
Organization (WHO), in 2013 2.1 million people were infected and approximately 1.5 million people died because
of AIDS [12]. Furthermore, in 2014 it was reported that the number of people that were living with HIV was
35 million [6].

According to the data taken from WHO, 2.3 million children were living with HIV and about 380,000 children
passed away because of HIV in 2005 and approximately 2.1 million children were living with HIV/AIDS in 2007.
In 2015, with 150000 newly infected children, 1.8 million children were living with HIV according to the UNAIDS
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and 110000 children died because of AIDS-related diseases [13]. This data shows that AIDS has become one of
the major death causes. Each day about 1500 children get newly infected [14].

Several mathematical models have been developed and used to gain insight into the transmission dynamics
of HIV in human population (see, for instance, |2, 6, 11, 13, 15| and some of the references therein). However,
none of these studied the dynamics of HIV transmission with effect of both vertical and horizontal transmission.
The purpose of the current study is to design and analyse a new realistic model (which extends some of the
aforementioned studies in the literature) for HIV transmission dynamics.

This paper is organized as follows. The epidemic model is developed and analyzed in sections 2 and 3,
respectively. Model fitting is presented in section 4. Section 5 contains sensitivity analysis and numerical si-
mulation while section 6 presents the conclusions.

Model formulation

In this section a mathematical model is proposed to monitor the dynamics of both vertical and horizontal
transmissions of HIV infections at time ¢. The total population N(¢) is divided into four different classes;
susceptible adults, S(t), infected adults, I(t), newborn children with no HIV infection, C(¢), and newborn
children with HIV infection, I.(t). That is, N(t) = S(t) + I(t) + C(t) + I.(t). Flow diagram of the model is

presented in Fig. 1.
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Figure 1. Flow diagram of the model.

By using the constructed model, system of ODE’s is obtained as
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where \ = % is the force of infection.

Table 1

Interpretation of the State Variables Used in the Model (1).

Variables Descriptions
N Total human population
S Susceptible adults (both male and female)
I Infected adults with HIV (both male and female)
C Newborn children
I. Newborn children with HIV infection
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Table 2

Interpretation of the State Parameters Used in the Model (1).

Parameters Descriptions

¢ Recruitment rate of both adults and new born children
B Transmission or successful contact rate
e %} HIV induced mortality rate of adults
(e % HIV induced mortality rate of newborn children
I Natural death for adults
k Natural death for newborn children

0; (1=1,2,3) Progression rates

Fundamental properties of the model

This section will highlight the quantitative analysis of HIV model (1) and briefly explain the relationship
between the horizontal and vertical transmission dynamics. The persistence or elimination of HIV, which is
determined by the threshold parameters, are studied. Thus, at first, the positivity and boundedness of the
solutions of the model are verified for ¢ > 0, and then the invariant region is studied.

Positivity of the solutions and boundedness

In this study to say that the model (1) is epidemiologically meaningful we need to verify the positivity of
all the state variables of the model at ¢ > 0. This means that every solution of the system (1) together with the
positive initial conditions shall remain positive at any time ¢ > 0.

Theorem 1. Suppose that we have initial data S(0) > 0, I(0) > 0, C(0) > 0, I.(0) > 0. Then, the solutions
of the model (S, 1, C,I.) are positive for all time ¢ > 0.

Proof. It can easily be seen from the first equation of system (1) that

B 1A + 61 + 1S

dt
> —[A(t) + 61 + p]S(1).
Applying integrating factor method to the obtained inequality it is found that
S(t) > Soef fot(/\(u)Jr51+u)du > 0.

By using the equations given in (1) and applying the same method to the equations it can be easily seen that
I(t) > 0, C(t) > 0 and 1.(t) > 0 whenever ¢ > 0.

The invariant region

To obtain the region the following theorem is considered.
Theorem 2. The solutions of the system (1) are said to be feasible for all ¢ > 0 whenever they enter the
invariant region 2. That is,

I
Q{(S,I,C,Ic)eRi:S+I+C+IC§M}, where N =S + I+ C + L.

Proof. Let Q = {(S,I, C, 1) € Ri S4+I1+C+ 1. < %} be the solutions of the system and assume that
initial conditions are all non-negative. Then, the sum of equations of the system (1) gives
dN
e =I—uS — (p+a1)l — kC — (k+ a9)1..
From the above equation it is clear that % < II and integrating both sides it is obtained that Ne! < Ile! + ¢,
for some arbitrary constant ¢. With the use of Rota and Birkhoff [16] it can be seen that 0 < N < Iast — oo,
This reveals that all the solutions together with the initial conditions in 2 stay inside the region for all
cases when t > 0 (i.e., the set happen to be positively invariant). It is consequently adequate enough to study
the dynamics of the generated flow by system (1) within the region 2, which guarantees the mathematical and
epidemiological well-posedness of the model [2,15,17].
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Disease-free equilibrium (DFE) and local stability

Let x° = (S0, o, Co,I.0) be the disease-free equilibrium (DFE) of the model (1). DFE exists when the
disease dies out. So, at this point there is no infection and hence, no infected individuals, i.e., Iy(t) = I.o(t) = 0.
Here, it is enough to show x° attraction on the region

XO = {(50110700710,0) c XO : I[) =lco= 0} .

Sp and Cj are obtained by equating the right hand side of the first and third equations in the system (1), and pluggi-
ng 0 instead of Iy and I, . Therefore,

I1
S =
5 +u
and
Ch — 5150 o H51
Tk k(O )

The DFE point of the constructed system is

II 1164
0
= ) I ) ) IC *
X (51+N k(o1 + ) ’O>
Using the next generation matrix method [18], the basic reproduction number of the HIV model (1) (denoted
by Ro = p(FV 1), p is the spectral radius of the next generation matrix, F'V~1) is obtained, where F' stands

for the matrix of new infection terms and V' stands for the matrix containing the remaining transition terms
of the model. Thus,

%So (ar + 02 + 63+ p)l
f= 0 , U= —0oI + kC ,
0 —031 + (ag + k‘)[c
8 0 0 a;+do+d3+p 0 0
F=|0 00|, v= 5y ko0
0 0 O —53 0 k + oo
Then, V! is obtained as
V= Wsm k! 0 and FV~! = 0 0 0
5 -1
(041+52+533-H)(042+k’) 0 (a2 + k) 0 0 0
Thus, Ro = p(FV 1) the basic reproduction number is given by
p

ap+ 02 +03+p

Endemic equilibrium

The endemic equilibrium (EE) of the model exists only when I # 0, C # 0, and I, # 0. This means
that there is a persistence of the HIV infection in the populace, and it is denoted by x* = (S*,I*,C*, I})
2 (S*,I*,C*,IF) > 0. Thus, the endemic equilibrium point is derived by solving the system (1) in terms of
() = B+, where ()) is the force of infection. Then,

0

T XN+ pAtor

*

*

AT
(p+034+ 0+ a) A+ p+6)’
7 (Ada + o1 + a1 + 6102 + 0103)
kE(p+03+d0+a)A+p+01)
7 OsA T
© (utds+dtar)(k+ar) A+ p+d1)
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Model fitting

This section explains the fitting of parameters involved in the proposed HIV model based upon the real
cases of HIV (CD4+) in Turkey for both vertical and horizontal cases. Yearly cases are taken from 2011 to 2018
while preparing this research paper. The objective function yields to relatively small error value 9 * 1076. The
Fig. 2 shows the real HIV (CD+4) cases by black cycles whereas the best fitted curve of the model is shown by
the black solid line. The biological parameters included in the model are listed in Table 3 along with their best
estimated values obtained via least-squares technique. These parameters have finally produced the value of the
basic reproduction number equivalent to Ry = 1.23.

Table 3

Values of the Parameters of the Proposed HIV Model

Parameter Values Source
11 35 Estimated
8 0.0071 Estimated
a1 0.000129 Fitted
Qa2 0.000234 Fitted
m 0.0052 2]
k 0.0092 [13]
o1 0.00011 Fitted
d2 0.00000011 Fitted
03 0.00044 Fitted

1500.00]

1000.00+

CD4Count

500.00

oo T T T T T
0o S50.00 100.00 150.00 200.00 250.00

Days

Figure 2. Data fitting for the real cases of TB (CD4+)
in Turkey for both vertical and horizontal cases from 2011 to 2018

Sensitivity analysis

In this section the local sensitivity analysis method is used to outline the sensitivity of the basic reproduction
number R, to certain key associated parameters of the proposed HIV model. The basic reproduction number
was obtained and described as a parameter-dependent output of the model and the severity indicator of the
HIV infection, the main way of curtailing and spreading the HIV infection in the population is to lower this
reproduction number below unity.

Therefore it became crucially important to investigate the relationship between the parameters of the model
and the basic reproduction number. Our main concern here is to explain the sensitivity of the basic reproduction
number with respect to the significant parameters used in the model. The set of input parameters relative to
Ro is

o ={B,1t,01,02,03,01}.

Typically, if a model has different parameters, variations in parameters might not always influence the
outcome due to variance in the sensitivity of the parameters, those with positive sign are considered as highly
and proportionally sensitive for increasing the value of Ry while those with negative sign are sensitive for the
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decrease of R value and the other category are neutrally sensitive (with zero relative sensitivity) [19,20]. We
denote by foo the normalized local sensitivity index of the output Ry with respect to a parameter (7), where
v € o, and it is defined as [21-23]
\Ij"/ == QRO = liaRO = 7aln(RO) .
T Ry 0y Oln(y)
Using the above definition, the following indices shown in Table 4 are computed for the output R with respect
to every parameter presented in Table 4.

Table 4

Forward Normalized Sensitivity Indices

Parameter | Elasticity Indices | Values of the Elasticity Indices
B Qe 1.000
u Qfo -0.002
5 Q0 -0.285
53 Qg -0.585
ai Qfo -0.109

Numerical stmulation

Some numerical simulation results were obtained with the use of mesh and contour plots for the reproductive
number as a function of two different parameters chosen from the Table 3. The results given in Fig. 3, 4, and 5
show that the value of R increases when the values of transmission rates increases.

Ro value in terms of 3 and 61 RO value in terms of 3 and 61
1 22
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Figure 3. Profile of reproductive number in terms of transmission rate 8 and progression rate ;.
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Figure 4. Profile of reproductive number in terms of transmission rate S and natural death rate for adults p.
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R0 value in terms of k and 3

Figure 5. Profile of reproductive number in terms of transmission rate /3
and natural death rate for newborn children k.
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Figure 6. Profile of the total population dynamics with the respect to the parameter values in Table 2.

Human Immune-deficiency Virus (HIV) reduces or destroys the human defense mechanisms known as the
immune system to prevent it fighting infections and any other diseases. In this study a mathematical model
is developed to study the transmission dynamics of HIV infection and the effect of horizontal and vertical
transmission in Turkey is analyzed. The model is fitted with the use of confirmed HIV cases of both vertical and
horizontal transmission from 2011 to 2018. Using the next generation matrix method, the basic reproduction
number of the model is obtained, which shows whether disease persists or dies out in time.

Further analysis showed that the model is locally asymptotically stable when the basic reproduction number
Ro < 1 and is unstable when Rg > 1. The most sensitive parameters efficient for the control of the infection
are obtained using forward normalized sensitivity index. The results obtained with the aid of mesh and contour
plots showed that decreasing the values of transmission rate, disease induced mortality rates and progression
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rates play a significant role in controlling the spread of HIV transmission.

1 Ogunlaran, O.M., & Noutschie, S.C.O. (2016). Mathematical model for an effective management of HIV
infection. BioMed Research International, 2016(4). DOI: 10.1155/2016/4217548.
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L Tasy Hlviewvic yrusepcumems, Hukocua, Typrus;
2 ITyue edepandv yrusepcumemi, Huzepua

Tuimai 6akpliay cTpaTerusjapbIHbIH KOMeriMeH
ANTB-undeknnsgacbIHbIH, KOJIJIEHEH, YKOHEe
TiK Oepiily ocepiH MoeabJey

Makanana AVTB-undeknuscbHbIE Tapaay IMHAMUKACHIH 3epTTEY YIIIH MATEMATHKAJIBIK, MOJIEIb d31pJIeH-
i xxone Typxusijia nHMEKIMSIHBIH KOJIJIEHEH »KoHe TikK 6epinyinin ocepi Tasmanasl. Mojgens 2011 kbuigan
6acran 2018 xbutra geitin AUTB-ubiH, TiK koHe KeJijieHeH, Gepliyiniy pacTajral KarJaiJapbiH Haiia-
JlaHa OTBIPBIN, 3eprTesreH. Keseci OybIH 0mepaTOpPLIHBIH KOMETIMEH aypy/blH CAKTAJATHIHIABIFBIH HEMeCce
YaKbIT ©Te KeJjle YKOFaJATBbIHBIH KOPCETeTiH MOJIEJIb/IiH Heri3ri pernpo/lyKTUBTI HOMIpi aJibiHabl. KochbiM-
ma Tajjay KepceTKeHel, 6a3a/blK, PEMPOAYKTUBTI caHbIHAa Ro < 1 Momesni JIOKaIIbl aCUMITOTHKAJIBIK,
TYPaKTHI 2koHe R > 1 Ke3inme Typakcod. Undeknusamen Kypecy VImiH THIMIL eH ce3iMTas mapaMmeTpiep
TiKeJiell KAJIbIIKA KeJITIPpUIreH Cce3iMTaJIIbIK, WHAEKCIH KOJIJaHy apKbLIbl aJblHAabl. TOPJIbl Y)KOHE KOHTYP-
JIBIK, TpadUKTEDP apKBLIbI AJBIHFAH HOTUXKeJIep Oeplly *KbLITAMIBIFBIHBIH, aypPyIblH, O/TIM-2KITIMHIH KoHE
nporpeccust Kopcerkimrepinig Tomenaeyi AV TB-abig Tapanybin 6akbliayaa MAHBI3ABI POJI ATKAPATHIHBIH
KepceTesi.

Kiam cosdep: AU'TB, maTeMaTuKabIK MOJEIbIEY, OACKapy CTPATErUsIaphbl, CE3IMTAIBIKTHI TAJIAY.

V.T. Mycracdal 2, T. Cammgar!, 9. Xumxan', B. Kaitmakamsae!,
C.M. Myxammaz!, H. Tox6ymyT!*

! Bauotcnesocmounwiti ynusepcumem, Huxocus, Typuus;
o gl )
2 Pedeparvroti yrusepcumem dyue, Huzepus

MopemupoBaHue 3¢dpdeKkTa TOPU30HTAIBHON M BEepPTUKAJIbHOI
nepegaun BUY-nadeknuu ¢ momonibo 3¢ eKTuBHBIX
CTpaTeruii KOHTPOJid

B crarpe paspaborana maTemaTnyueckas MOMAENb MJjs n3ydeHns auHamukn nepenadn BUY-undekrnun, u
[IPOAHAJIN3UPOBAHO BJIMsIHIE MOPU30OHTAJILHONW M BepTUKAJbHON nepemaun uHdekimu B Typrwm. Mosens
aJAITHPOBAHA C UCIOJIH30BAHUEM IMOATBEPXKIEHHBIX CIy9YaeB KaK BEPTUKAJILHOM, TaK M TOPU30HTAJIBLHOMN
nepegaaun BUY ¢ 2011 mo 2018 rogasi. C moMomipio oneparopa CJIeIyIOero MOKOJIEeHUs MMoJIydaercs 6a-
30BBIIl PENPOIYKTUBHBIA HOMED MOJIEIN, KOTOPBIA IOKAa3aJl, COXPAHSETCs JIM OOJIe3Hb WJIM UCYe3aeT CO
BpemeneM. JlaspHelmnit aHa N3 BBISBUJI, YTO MOJE/h JOKAJIHHO ACUMITOTHYECKH YCTOWYNBA TPU 6A30BOM
BOCIIPOU3BOJICTBEHHOM unciie Ry < 1 m Hecrabuibna npu Ro > 1. Haubosee uyBcTBUTE/IBHBIE TTApaMe-
TpbI, 3ddeKTUBHBIE 111 GOPBOBI ¢ MHOEKIHE, Oy YeHbl C UCIIOIHL30BAHIEM IPSIMOIO HOPMAJIN30BaAHHOTIO
WHJIEKCA TyBCTBUTEILHOCTU. HaKOHEIl, pe3yIbTaThl, MOy IeHHBIE C TIOMOIIBIO CETYATHIX U KOHTYPHBIX I'Da-
bUKOB, IOKA3BIBAIOT, YTO CHUYKEHNE 3HAYEHUN CKOPOCTH Iepeiadu, moKasaTeseil CMepTHOCTH OT BoJie3Hel
¥ TIPOTPECCUPOBAaHUs UI'PAET BayKHYIO POJIb B KOHTPOJIE pacipocTpaHeHus: nepegadn B Y.

Karouesvie crosa: BUY, maTeMaTndecKoe MOJEINPOBAHUE, CTPATEMNN YIIPDABJIEHNS, aHAJIN3 YyBCTBUTEJIb-
HOCTH.
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