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On the boundedness of the fractional maximal operator
on global Orlicz-Morrey spaces

The article deals with the global Orlia-Morrey spaces GMas ., 9(R"). We find sufficient conditions on pairs
of functions (¢, n) and (P, ¥), which ensure the boundedness of the fractional maximal operator M, from
GMs,,,6(R") in GMy ;,6(R™). It is proved that under some additional conditions on the function ¢, the
conditions obtained are also necessary. In the proof, the boundedness condition is essentially used, the
maximal Hardy-Littlewood functions and the estimate of the norm of the characteristic function in global
Orlicz-Morrey spaces are used.
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Introduction

The classical Morrey space was introduced in the works of Charles Morrey in 1938 [1] in connection with the
study of the solution of quasilinear elliptic differential equations. Inrecent decades, the boundedness of various
operators in spaces of Morrey type has been actively studied. This paper, we consider the boundedness of the
fractional maximal functions in global Orlicz-Morrey spaces. We note that the issues of the boundedness of the
fractional maximal operator and the Riesz potential in various function spaces are well studied. For classical
Lebesgue spaces they are detailed in monographs [2, 3].

We give definitions of the classical operators of the theory of functions and various Morrey spaces of interest
to us and some papers in which the boundedness of these operators in these spaces is considered.

The Hardy-Littlewood maximal operator

1
Mf(x) = sup ————
r>0 | B(z,7) | B(z,r)

| f(y) | dy

is bounded on L, for 1 < p < oo.
Let f € L{¢(R™). The fractional maximal operator M, are defined by

Maf(ac)zsup|B(:v,r)\%_1/ | (y)]dy, 0 < a < n,
B(z,r)

r>0

where B(z,r) is an open ball centered at a point & € R™ of radius r > 0. If & = 0, then My = M is the
Hardy-Littlewood maximal operator.
The classical Morrey spaces M, »(R™) are defined as the set of all functions f € LLOC(R”) for which

I fllaz, 5 (Rm) = SHPOT”/” | f 1z, (B

x,r

where 0 < XA < n, 1 <p < oco. It’s clear that ||f||Mp,0(Rn) = ||f||Lp(Rn)7 ||fHMp1LL(Rn) = ||fHLx(Rn).
P
Let 1 < p < 00, w be measurable non-negative function on (0, 00), not equivalent to zero. The generalized

Morrey spaces M), .y = M, .,(.)(R") are defined as the set of all functions f € Lé"c(R") with finite norm

1flla,00, = sup (WO fllL,Br)) < o0
z€eER™,r>0

*Corresponding author.
E-mail: aitbekovna3@mail.ru

Mathematics series. Ne 1(101)/2021 17



N.A. Bokayev, A.A. Khairkulova

The generalized Morrey space M, ,,.) coincides with the classical Morrey spaces for w(r) = r~* where
0<A<.

The generalized Morrey space M, .y = M, ,,(.)(R") introduced by (Mizuhara, Nakai 1990, 1994) [4, 5] and
they were reviewed in [6], in which various sufficient conditions are given for the boundedness of the maximal
Hardy-Littlewood functions, the fractional maximal functions and the Riesz potential in these spaces. Global
Morrey-type spaces GM,, g ,.)(R") and the local Morrey spaces were considered by of Burenkov V.I., Guliev
V.S., A.Gogatishvili, R. Mustafaev ([7-9]), in which various sufficient, and for some values of the parameters,
necessary conditions for the boundedness of the maximal Hardy-Littlewood functions, the fractional maximal
functions in these spaces are obtained.

Let 1 <p <o00,1 <8 < o0, wbe measurable non-negative function on (0, c0), not equivalent to zero. The
global Morrey spaces GM),, g ...y = GM,, g (. (R") are defined as the set of all functions f € LLOC(R”) with finite
quasinorm

1 flleas, o0y = sup o) fllz, B Le©,00)5
rzeR™

where B(z,r) is an open ball centered at a point z € R™ of radius r > 0.

The spaces GM, g.,(.)(R") coincides with the generalized Morrey space M, ,.)(R") at 6 = co.

The results on the boundedness of various classical operators in the theory of functions in global and local
Morrey spaces (until 2013) are presented in review articles by V. I. Burenkov [10, 11].

Another well-known space that generalizes Lebesgue space L, is the space introduced by Orlicz ([12]).

We recall the definition of Young functions.

A function @ : [0, +o00] — [0, 00] is called Young’s function if ® is a convex function, left continuous, and
such that

rl_l}rﬁ()@(r) =®(0) =0, TEI_POO(I)(T) = 0.

From the convexity of the function and ®(0) = 0 it follows that any Young function is increasing.

If there is s € (0,00) such that ®(s) = oo, then ®(r) = oo for r > s.

Let E be the set of all Young functions ® such that

0 < ®(r) < +oo,

for
0<r<+oo.

If ® € E, then ® is absolutely continuous on every closed interval in [0,00) and bijective from [0, c0) to
itself.
For a Young function @, the set

Lo(R™) = {f € LY*(R™) : / O (k|f(z)])dx < +o0, for some k > 0}
is called Orlicz space. In the works [13, 14] the questions of the boundedness of classical operators of the theory
of functions in Orlicz spaces were studied.

If &(r) =rP,1 < p < oo, then Lg(R™) = Ly(R™). If &(r) =0 (0 < r < 1) and ®(r) = oo (r > 1), then
Ls(R™) = Loo(R™).

Lg(R™) is a Banach space with respect to the norm

Il f llg(rry=1nf{A>0: /n D |f(>\x)|)d$ <1}

‘We note that

/@)
f o<

For Young’s function ® and 0 < s < 400 let

O (s) =inf{r >0:d(r) > s}.
If ® € E, then ®~! this is the usual inverse function for ®. We note that

B (r) <r <O7(r), for 0 <r < c0.
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A Young function ® is said to satisfy the As-condition, denoted by ® € Ao, if

O(2r) < k®(r), for r >0

for some k > 1.
A Young function ® is said to satisfy the Va-condition, denoted also by ¢ € Vs, if

1
< — >
d(r) < qu)(kr),r >0

for some k > 1. The function ®(r) = r satisfies the As-condition but does not satisfy the Vj-condition.

If 1 < p < oo, then ®(r) = rP satisfies the Va-condition but does not satisfy the As-condition.
A Young function ® is said to satisfy the A’— condition, denoted also as ® € A/, if

O(tr) < k®(t)®(r),t, 7 >0

for some k > 1. If ® € V5, then ® € F.

The boundedness conditions for classical operators of the theory of functions in generalized Orlicz-Morrey
spaces Mg, were considered by V.S.Guliyev, F.Deringoz, S.Samko and others [15-18].

The purpose of this paper is to consider global Orlicz-Morrey spaces GMg , g(R™) (the corresponding
definition is given in the next section) and find conditions for the boundedness the fractional maximal functions
in these spaces.

1 Definitions, notation, and auziliary statements

We give the definition of global Orlicz-Morrey spaces in the following way:

Definition 1. Let o(z,r) be a positive, measurable function on R"™ x (0,00) and ® be a Young function,
1 < 6 < co. We defined the global Orlicz-Morrey spaces GMa,, 0 = GMs , 9(R™) as the set of all functions
f € L%°(R™) with finite quasinorm

I fllcMy oo = Sup (@, ) @ (IB(@, )| "M ll Lo (B Lo0,00)-
e s

At 0 = oo the corresponding space is called the generalized Orlicz-Morrey space Mg .
Let o(z,7) be a positive, measurable function on R"™ x (0,00) and ® be a Young function. We denote by
Mg, the generalized Orlicz-Morrey spaces, the space of all functions f € L%¢(R™) with finite quasinorm

[fllate, = sup (7)1 (IB(@, )| "I fll Lo (B2
zER™,r>0

At &(r) =rP,1 < p < oo the corresponding global Orlicz-Morrey space is denoted by GM,, , 9(R™):
GMppo(R") = GMo,p0(R")|o(r)=rr-
At
pz,r) = (@7 (r™ ")/ (r )
the corresponding global Orlicz-Morrey space is denoted by GMg » 9(R™):

GMoo(R") = GMa,p |p(z,r)=-1(r—n) /01 ()

At ®(r) = 77,1 < p < oo and p(z,7) = (@~ 1(r~")/®~1(r~)) the global Orlicz-Morrey space coincides
with the Morrey space, i.e. GM) x 00 (R") = My, A (R™).

Let ® be a Young function. We denote by Qg the sets of all positive measurable functions ¢ on R™ x (0, c0)
such that for all t > 0,
oY (|B(z, )|

TER™ Lp(x, T)

||Loo(t7oo) < 00,

and
sup [[o(z,7) "ML 0,0 < 00,
TER"

respectively.
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We give auxiliary statements that we will need in the proof of the main statement.
By x B we denote the characteristic function of the set B.
Lemma 1. [16] Let ® be a Young’s function and B a set in R™ finite Lebesgue measure. Then

(o pep—
(2]

Lemma 2. [16] Let 0 < @ < n, 1 < 6 < oo and function ¢(z,t) satisfies condition
2o, t) + [Ir* " Ly (t.00) < Cp(,1)”

for some 8 € (0,1) and for each € R™ and ¢ > 0. Then there is pointwise inequality
Mo f(z) < C(Mf(@)" - [|fllorra, 0

Lemma 8. [16] If By = B(xo,79), then r§ < CM,xp,(x) for every x € By.
A function ¢ : (0,00) — (0,00) is said to be almost increasing (respectively, almost decreasing) if there
exists a constant ¢ > 0 such that

o(r) < Cp(s) (respectively p(r) > Cp(s), for r < s).

For Young’s function ® we denote by £ the set of all almost decreasing functions ¢ : (0,00) — (0, 00) such

that ¢ € (0,00) — % is almost increasing.

Lemma 4. Let By := B(xg,r0). If ¢ € £4 then there exist ¢ > 0 such that

< ||XBO ||GM<1>,¢,9 <

¢(ro) o(ro)’

Proof. Let Bs = B(x, s) arbitrary ball from R™. If s < r, then ¢(r) < Cp(s) and according to Lemma 1 we
have:

1 C
e(s) 1 (1Bl Y Ixsl La(r) < =) < o0
Hence N
le(s)~ @~ 1(|B| 1)HXB||L~1>(B)||L9(O,00) Sm.
Means
P P yp-p———
T2 ()| L 0,00

If s > r then by ¢ € £ we have:
o(r) ©(s)
<C
O=1(|Bo|7t) T o (|BIY)

therefore o
1a—1 —1
i} B <
o(r) (IBI" MixsollLas) < 20
it follows that
sl Ep—
BllGMg o0 = .
T2 ()] Lo (0,00)

Lemma 4 is proved.
2 Results for fractional mazximal operator in global spaces of Orlicz-Morrey type

Theorem 1. Let ® € A’ Ny, and 0 < a < n, 1 <0 < oo. Let ¢ € Qg satisfies condition

ro(z,r)+ sup t%p(x,t) < C(p(a:,r)ﬁ
r<t<oo
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for some B € (0,1) and for every € R" and r > 0. Define n(x,r) = ¢(z,r)?, and ¥(r) = &(r'/#). The
maximal operator M the bounded in GMg , ¢(R"), then the operator M, is bounded from GMg , 9(R") to
GMg ,o(R").

Proof. By Lemma 2, we have

My f(z) < C(Mof(x))? - ||f||},~?\fw‘e,w € R",
therefore
1— n
IMaf@)Lam < CNMaf) ) - I1F1525, o0 € B,

where B = B(z,t).
It follows from the definition of Orlicz space that

(Mf@)* Mf@) |
/B“I’(annL@(B))d /B(‘I’annL@(B))d =1

Hence
1) Nwmy) < IMFIL, 5y
SO

1Mot < CIMEIE, 5 - 1F1GHE -

Based on this inequality, given the boundedness of the maximal operator in GMg , 9, We obtain

[Mafllarrs 0 = sup Iz, ) O (IBIIMafllLy () 2o (0,00) <

< Clf i~ 592 ol )72 UBIIM I )L 0.) =

= CllfllEaty o M F1rt, o < C - f lGpta o
Theorem 1 is proved.
Theorem 2. Let @ € A, 0<a<n,1<6<o0,p€Qq, BE(0,1),n(t)=¢(t)?, and U(t) = d(t/5).
1. Let ® € 772 and the maximal operator M the bounded in GMg , 9(R™), then the condition

t(t) + 1 o (1)l 1, (1,00) < Cop(t)?

for all t > 0, where C' > 0 does not depend on t, is sufficient for the boundedness of M, from GMg ,o(R™) to
GMg ,o(R").
2. If p € £, then the condition

A < ¢
o <
o()B 1002 = To ) L 0,00)

(1)

is necessary for boundedness of the operator M, from GMg ,¢(R") to GMy 9(R"™).
3. Let ® € Vy. If p € £4 satisfies the regularity condition

1o (r) Ly t.00) < CY(2)

for all t > 0, where C' > 0 independent of ¢, then the condition (1) is necessary and sufficient for the boundedness
M, from GMg ,0(R") to GMy y(R"™).
Proof. The first part follows from Theorem 1. To prove the second part, we put By = B(xq,t), by Lemma
3, we have
t* < CMuyxp,(z), © € By.

We estimate by Lemma 1 ana Lemma 3
t* < CU™H(|Bo| ™) IIMaxsoll Ly (5o)-

Hence 4o
J— -1 —_
%SCU YO (|Bol ™)1 Maxs, | Ly (Bo)-
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Therefore 1o )
—_ o) < C|| My <C <C

|77(t) [L6(0,00) < CliMaxsollams.,.o < Clixsollanms ..o < T
The third part follows from parts 1 and 2. Theorem 2 is proved.

Corollary 1. Let 0 < a <n,1 <@ <oo,1 <p<g<ooandpeQ,=Q.

1. If (t) satisfics

7")”Le(ﬁw) .

. n
essinfycscoo 90(5)5 P
sup

n
r<t<oo tr

< Co(r),

then the condition

t2o(t) + sup %p(r) < Cp(t)t,
t<r<oo

for all t > 0, where C > 0 independent of ¢, is sufficient for the boundedness of M, from GM, ,¢(R™) to
GM » G(R").

4,09,

2. If p € £, = £L4», then the condition

tp(t) < Cp(t) T, (2)

for all ¢ > 0, where C' > 0 independent of ¢, is necessary for the boundedness of M, from GM, ,¢(R™) to
GMq N G(R").
3.If o € £, then the condition (2) is necessary and sufficient for the boundedness of M, from GM,, , 4(R")
to GM » (R™).
q,09,0
e~ 1(t ™)

o(t7), B € (0,1),

at Theorem 2 we get the following result.
Corollary 2. Let ® € AN Nyg, U(t) = &(t/#) and B € (0,1). If

O L(r—m)
sup r¢ < Ct*
t<r<poo @_1(T_)‘) o

for all £ > 0, where C' > 0 independent of ¢, then the condition

Q™)

ta < R ﬂ—l

=)

for all £ > 0, where C' > 0 independent of t, is necessary and sufficient for the boundedness of M, from
GMQ)\(Rn) to GM\I/)\(Rn).

Remark. The Theorem 1 and 2 are an Adams type result. The similar theorem for the generalized Orlicz-
Morrey spaces Mg, was proved in [16-18].
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H.A. Bokaes, A.A. XaitpkyioBa

Beuaiek makcumaJsiabl oriepaTopabIiH
Opiau4a-Moppu KeHiCTiTiHJeri nmekapachl

Maxkanana GMas,, 0(R™) ranaMasik Opiaua-Moppu kenicriri kapactbipbuirad. Asropaap (¢, n) xoue (P, ¥)
BYHKIUSTTAPBIHBIH, 2KYTITapbI YITiH M, GeJek MaKCUMAJIIbI ONIEPATOPBIHBIH, MTEKAPaChIH KAMTaMAaChI3 €Te-
TiH KeTKimKTI maprrapapt tankad. GMe 0 (R™) xenicririnen GMy 5 ¢(R"™) kenicririne ¢ dyHKuuscs
OolibIHINIA Kefbip KOCHIMINA 3aHIBLIBIK IMapTTAapbIHa AJbIHFAH IIapTTap Ja KaXKeT eKEeHJ I J1oJIelIeH-
mi. Jlomenmeyme Heri3iHeH MIEKTIIIK MapThl MAKCUMAJIL XapAu-J[UTTBY (byHKIUSIaAPHI KOHE FAJTaAMIBIK,
OpJuina-Moppu kenicriringeri cunarraMasibl, GYHKIUS HOPMAChL KOJJIAHBLIFAH.

Kiam ce3dep: Opiinu kenicriri, Moppu tunti keHicrik, 6esiimek MakCuMaJ bl (DYHKIMAIAD, YKAJIIbLIaHFaH
OpJuina-Moppu kenicrikrepi.
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H.A. Bokaes, A.A. Xaiipkysosa

O6 orpaHMYEeHHOCTHN JAPOOHOTO MAaKCHMAaJBHOTO OllepaTopa
B IJI00AJILHBIX MpocTpaHcTBax Opamdya-Moppu

B crarbe paccmorpens! riobasbable npocrpancrsa Opsmda-Moppu GMs o 9(R™). ABTOpsl HaxondT H0-
CTaTOYHbIE yCJIoBHUs Ha Napbl dyHKuui (¢, n) u (P, ¥), KoTopble 06eCIeINBAIOT OIPAHNIEHHOCTD JIPOGHO-
MakcuMaJsbHOro oneparopa My u3 GMs , 0(R™) B npoctpanctBo GMy , ¢(R"). Jokazano, 4To npu Heko-
TOPBIX AONOJHUTEJILHBIX YCJIOBUAX PEryJIdApHOCTH Ha d)yHKHI/HO @, NOJIYyYEeHHbI€ YCJIOBUA ABJIAIOTCH HeO6—
xonuMbIMH. [Ipu J0Ka3aTesbCTBe CYIIECTBEHHO HMCIIOJb30BaHbl YCJIOBUE OTPDAHUYEHHOCTH, MAaKCHUMAJIbHBIE
byukun Xapau-J/IuTaByaa v orieHKa HOPMbI XapaKTEPUCTUIECKON (DYHKITUU B TJI00ATBHBIX POCTPAHCTBAX
OpJuinua-Moppu.

Karoueswie caosa: npocrpanctBo Opiinya, npocrpancTso tuna Moppu, npobHble MakcuMasbHble DyHKIUH,
riobasibHble pocTpancTBa Opanya-Moppu.
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