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On the boundedness of solution of the second order ordinary
differential equation with damping term and involution

In the present paper the initial value problem for the second order ordinary differential equation with
damping term and involution is investigated. We obtain equivalent initial value problem for the fourth order
ordinary differential equations to the initial value problem for second order linear differential equations with
damping term and involution. Theorem on stability estimates for the solution of the initial value problem for
the second order ordinary linear differential equation with damping term and involution is proved. Theorem
on existence and uniqueness of bounded solution of initial value problem for second order ordinary nonlinear
differential equation with damping term and involution is established.

Keywords: differential equation with damping term and involution, stability, boundedness, existence and
uniqueness.

Introduction

Differential equations with involution appear in mathematical models of ecology, biology, and population
dynamics (see, e.g, [1-6] and the reference given therein).

Our goal in this paper is to investigate the boundedness of the solution of the initial value problem for the
second order ordinary differential equation with damping term and involution

y//(t) = f(t7y<t)ay/(t)?y(u(t))7 tel= <_OO’OO)’ y(tO) = Yo, y/(tO) = y6 (1)

Here and in future u(t) is involution function, that is u(u(t)) = ¢, and ¢y is a fixed point of u. Problem (1)
does not seem to yield directly to any techniques that can be used for ordinary differential equations without
involution term [1, 2]. Therefore, we consider the second order linear differential equations with damping term
and involution. We obtain equivalent initial value problem for the fourth order ordinary differential equations
to the initial value problem for second order linear differential equations with damping term and involution.
Theorem on stability estimates for the solution of the initial value problem for the second order ordinary linear
differential equation with damping term and involution is proved. Finally, theorem on existence and uniqueness
of bounded solution of initial value problem for the second order nonlinear ordinary differential equation with
damping term and involution is established. Note that some of the results of this work was presented, without
proof, in [7].

Linear ordinary differential equation with damping term and involution

Let C°°[I] be the set of all differentiable functions for all degrees.
Theorem 1. Let a(t), b(t), a(t) be functions of class C* on I, such that b(t) does not vanish on the interval
I, then the problem

’

Y (8) + a(t)y' (1) = a(t)y(t) + b()y(—t) + f (1), t € T, y(0) = ¢, y (0) = ¢
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is equivalent to the following problem for the fourth order ordinary differential equation

"

y W (t) = p(t)y(t ) gty () +r(t)y () + sty () + F(t), t €1,
y(0) = ¢,y (0) =

( ) a(0)p + ( ) a(0)y + f(0),
[ (0 bO)} (0)+b(0)}
(0)

)la
[ o+&<> w> b(0)] v+ £'(0) = a(0)£(0),

where

"

a’ () + b(—t)b(t) — [2b’(t) +b(t)a(ft)} s 0

!

—~
~

=

- {b" (1) + blH)a (=) = [26'(®) + b(t)a (~0)] =<' (0)| 5 G0,
alt) = —a” (t) +20/(t) + [26'(1) + b(t)er (1) 7ol [0/ (t) = a(t)]
= [b”(t) +b(t)a(—t) = [20'(1) + b(t)a (1)) 7 Ok (t)] =alb),

(1) = =20/ (1) + alt) + |2 (1) + b(t)a ()] ~al)

+ﬁ@+wmew{%@+wm“ﬂMN“4WV

and

F(t) = — {b”(t) +b(t)a(—t) — [21)’ (t) + b(t)x (*t)} bib’ (t)} bi £(1)

~[26'0) + bty (1) % (&) + b F(—t) + £ (2).

The proof of Theorem 1 is based on approaches of proof of Theorem 1 of paper [1] on the first order linear
differential equation with involution.

Now, we consider the initial value problem
y () +ay () =by(—t) + ay(t) + f(t), t € I, y(0) = ¢, y'(0) =) (2)
for the second order involutory ordinary differential equation with damping term. We are interested in studying

the stability of problem (2) on I. In general cases of «, a and b the solution of (2) is not bounded on I. Applying
Theorem 1, we get the equivalent initial value problem

@ (1) + (a® = b)y(t) — (2a+a?) y" (t) = F(1),
()=—ﬂf@)+bfbj)—af%ﬂ%mf(O,tel, 5
y(0) = 0.y (0) = .y (0) = (b+ a) — ar + F(0),

y (0)=—-a(b+a)e+ (=b+a+a?)p+ f'(0) —af(0)
for the fourth order ordinary differential equation. We will obtain the solution of problem (3). Assume that
|b] < la|, a € (— (%2 + 2722) ,——) Then, it is easy to see that
dly ()
dt

— @ota?) DO 4 (2 g2y
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Therefore problem (3) can be written as initial value problem
a2 o? 2 at 2 _
= e+ 5 +yJaa? + G+ b y(t) = v(t),
y(0) =, y'(0) =,
(;; - (a+ o\ Jaa? + 2 +b2>) u(t) = F(t),

F(t) = ~af(t) + bf(~1) ~ af' (1) + (1), t€ 1
o) = (3= § — yfoar £ 5 18 ) - av 4 £(0),

U/(O)_—oz(b+a)gp+<—b+a;— aa2+°§f+b2>¢

+/(0) — af(0)

for the system of second order differential equations. Applying the d’Alembert’s formula, we get

y (t) = cos (mt) ¢ + sinr(nmt)¢ + / Sm(m%v(s)ds, (4)
0

v (t) = cos (nt) l(b—oj—\/aaz—l—of—i—bQ)(p—ai/)—l—f(O)
+w [—a(b+a)cp+ (—b+0;2—\/aoﬂ—l—oj+b2>1/1+f/(0)—af(0)]

t

+/ sin (n (t — 8))F(s)ds,

n

0

where

Since F(t) = —af(t) + bf(—t) — af'(t) + f (t) and

0 0

we can write

2
<b—0;— aa2+0j14+52>50—04¢1 (5)
n 2 4
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0 t
+b / Wﬂs)ds ~a / cos (n (t — 5)) f(s)ds
—t 0

+f(t) - /nsin (n(t—s)) f(s)ds.
0

Applying formulas (4) and (5), we get

sin (mt)

y (t) = cos (mt)  + ¢ (6)

m

2
4008 (nt)z— cos (mt) [(b ~ Y Jaa2 + %4 + b2> ©—ayp

m?2 — n?2 2
L sin — Lgin
4u° (”22 _— () l—a(b-ka)go—k (—b+°§—m> w]
. t
+m/[—nsin(n(t—s))—|—msin(m(t—s))]f(s)ds
0

—mjyﬁz[gbmmu+@»+;mMmu+@ﬂﬂ$w.

2 b2

Theorem 2. Assume that |b| < |a|, a € (— (O‘T + ?> ,—%2). Then problem (2) is stable and the following
stability estimate holds

stméMw@w\ﬂﬂw+/U@Ms
tel .

The proof is based on formula (6) and the triangle inequality.
Nonlinear ordinary differential equation with involution

We consider the initial value problem

"

Y (6) +ay (t) = by(=t) + ay(t) + f(ty(1), ¥'(1), t€ I, y(0) = o,4/(0) = ¢ (7)

for the second order nonlinear involutory ordinary differential equation. We are interested in studying the
existence and uniqueness of bounded solution of problem (7) on I. In general cases of «, @ and b the solution of
(7) is not bounded on I. We will apply a fixed point theorem.
Let C(I) be the metric space of all continuously differentiable functions defined on the interval I with
the metric d defined by
dz (1) @w‘

dt dt

d(x,y) = sup |z(t) — y(t)| + sup
tel tel
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Note that C(M)(I) is the complete space. This is first condition of a fixed point theorem in metric space
(see [9]).
Theorem 3. Assume that |b] < |a|, a € (— (0‘72 + bz) ,—%2) ,and f is continuous and bounded function

a?
on the region
P:{(tvxay):*oo<t<ooa |:17790|<M7 ‘y7¢|<M}'

Suppose that f satisfies a Lipschitz condition on P with respect to its second and third arguments, that is,
there is a constant [ such that for (¢,z,u), (¢,y,v) € P

Then, initial value problem (7) has a unique solution y € C(\)(I).

Proof. The procedure of proving theorem on the existence and uniqueness of a bounded solution of problem (7)
is based on reducing this problem to an integral equation

y(t) = Ty(t), (9)

where
i t
Ty (t) = cos (mt) p + sin (m?)

m
2
+cos(nt)*COS(mt) ba\/m ¢ —ayp
m2 — n? 2 4
Jrnsm(n) -~ sin (mt) —a(b+a)p— b— L fifaaz+ L 42 ()
m?2 —n? 2 !

t

T2 1_ nZ / [—nsin (n (t — s)) +msin (m (t — s))] f(s,y(s), 9 (s))ds
0
T2 O: n? / [cos (n (t — 5)) — cos (m (t — 5))] f(s,y(s), 9 (s))ds

0

—I—L / [-nsin (n(t —s)) +msin (m (¢t — 5))] f(s,y(s),y'(s))ds

m2 — n2

0
b 1 1
i / {n sin(n (t+s)) + - sin (m (t+5))| f(s,y(s),y'(s))ds.
Zt
The proof of equation (9) is based on the formula (6). Note that integral form is a Volterra type integro-
differential equation of the second kind. Therefore, the recursive formula for the solution of problem (7) is

sin (mt)

yo(t) = cos (mt) ¢ + - )

cos (nt) — cos (mt) a? | oot
+ o S— b 5 aa? + 1 +b0% | p—ay
Lsin (nt) — L sin (mt) o? / at
+ R ab+a)p b 5 +1/aa +4+b V|,

1

y;(t) =wo(t) + oo S}

(10)
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t

x / [—nsin (n (¢ — ) + msin (m (¢ — ))] £(s,9-1(5)), 5} ())ds
0

m20: ) / [cos (n (t — s)) — cos (m (t — 5))] f(s,y;-1(5)), ¥;_1(s))ds
0
ﬁ / [—nsin(n(t —s)) +msin (m (t — s))] f(s,yj-1(5)),¥;_1(s))ds

0

leinQ/O {711 sin (n (t +5)) + %Sin (m (t+s))

—t

X F(5,55-1()), )1 (5))ds, j > 1.

According to the method of recursive approximation (10), we get

)+ > [y () =yt (11)
7=0
We have that \
pria ) =050 = s [ [onsin (¢~ )+ msin (m (¢ - 5)) (12

0

< 5,3 (5)), () = £, 53-1(5))s )1 (5))] i
n2/tcos (t — ) — cos (m (t — 5))]
X (£, 5(5)),8,(5)) = F(5,55-1(8)), 31 ()] ds
+ 0, / [—nsin (n (¢ — 8)) + msin (m (¢ — )]
4

x [£(s,9(5)),95(5)) = f(s,5-1(5)),y5 1 (5))] ds
0

,%/ {1 sin (n (t + s)) + %Sin (m (t+5))

m2 —n2 n
2

< [£(s,5(5)),95(5)) = f(5,95-1(5)), yj-1(5))] ds, 5 > 1,
therefore, applying the triangle inequality, formula (12) and Lipschitz condition (8), we get
yi+1(8) =5 (O] [9541 (1) — y5(1)]

I¢]

< M(a,b,0)l / [l (8) — w5—1(8)] + [4,(5) — w1 (s)][] ds (13)
—|t|

for any t € I and j > 1. Moreover, applying the triangle inequality, we get

lyo(t)]+ lyo(t)] < Mi(a,b, a, p,9),
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ly1() — o)), [y1(t) — vo(t)| < Ma(a,b,a) [t], (14)
for any ¢ € I. Applying estimates (13) and (14), we can prove that
. |t‘j+1
15:1(0) = 350 5420 = 50| < M0, 0) 1Mo b ) (15)

for any t € I and j > 1. Therefore, applying the triangle inequality, formula (11) and estimates (13) and (15),

we get
ly(t) = yn (O], 1y (1) = ¥, (1))
!

< J;l [4M (a,b, a)lMs(a, b, )]’ G+

|y(t)‘ ’ ‘yl(t)| S Ml(aa b,Oé, SW/’) + MQ(aa ba Oé) |t‘

— 0, n — o0,

‘t|j+1

for any t € I. Theorem 3 is proved.
Conclusion

In the present paper the initial value problem for the second order differential equation with damping
term and involution is investigated. We obtained equivalent initial value problem for the fourth order ordinary
differential equations to the initial value problem for second order differential equations with damping term
and involution. Theorem on stability estimates for the solution of the initial value problem for the second order
ordinary linear differential equation with damping term and involution is proved. Theorem on existence and
uniqueness of bounded solution of initial value problem for the second order ordinary nonlinear differential
equation with damping term and involution is established. Moreover, applying this result, the two-step stable
difference schemes for the numerical solution of the initial value linear and nonlinear problems (2) and (7) for
the second order linear and nonlinear differential equations with damping term and involution can be presented
and studied.
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A. Amrpansies! =%, M. Ampipansiesa?;, O. Barerposal'®

Y Tasy Hlvievic ynueepcumems, Hukocua, Typrus;
2 Peceti zaavikmap docmuwiew, yrusepcumemi, Moacxkey, Peceti;
3 Mamemamuxa srcone mamemamuraivr modesviey uncmumymot, Aivamo, Kazaxcman;
* Maxmoumxyave amovmdazo, Typikmen memaexemmis yrusepcumemi, Awzabad, Typixmencman;
Oevizzan amvmdaev, Typikmencman uHICEHEPATK-TNETHOAORUAABK YHusepcumemi, Awzxabad, Typikxmencman

HaBomIonusicbl MeH >KOMBLIILINT Oapa »KaTKaH MyIIieci 6ap
eKiHII peTTi KapanaifbiM auddepeHnTnaIIbIK TeHIEY/ i H,
MIEKTEeJITeH IITeNIiMi TypPaJibl

Maxkasiaia 1eMIUHITIK MYIIE TIEH WHBOJIIOIUSICHL 6ap KapamnaibiM eKiHIm peTTi auddepeHualiiblK TeHIey-
HiH GacTranksl ecebi 3eprresai. Exinmt perTi ChIBBIKTHIK, HuddepeHnnaaIblK TeHIeyIep YIMH KapamaibiM,
TOPTiHII perTi auddepeHInaIIbIK TeHIeyIep YIIIiH OacTaIIKbl eCelTepre SKBUBAJIEHTT] eCenTep aJIbIHIbI.
JleMNUHTTIK MyIlle MEH WHBOJIIOIUSICHI 6ap KapamaibIM eKiHII PeTTi ChI3BIKTHIK aAuddepeHINaIIbIK TeH-
Jey YIMiH OacTamKbl €CenTi IMIENTyaiH, TYPAKThLIBIFBIH Oarajiay TeoOpeMachl AojesaeH . VIHBOTIOMusIChl MeH
JKOMBLIBIN Oapa »KATKAH MyIeci 6ap eKiHIm peTTi KapanailbIM ChI3BIKTBI eMec IuddepeHInaIbIK, TeHIEY
VIIIiH 6aCTAIKbI €CEITi MEKTE/INeH MENIMHIH 6ap 60yl MEH YKAJFbI3JBIFBI TYyPAJIbl TEOPEMA AHBIKTAJIIHI.

Kiam cesdep: KOWBLIATBIH MYIIIECI »K9HE WHBOJIIONUSICH O6ap auddepeHnuaiablK TEHIEY, TYPaKTBLIBIK,
IIEeKTE/ITeH, 6ap 60Tybl MEH YKAJFBI3IBIFHL.

A. Amrpansies! 3, M. Ampipansiesa?;, O. Barerposal'®

1 .
Bauorcnesocmounniii ynusepcumem, Huwocus, Typyusa;
2 Poccudickuti ynusepcumem dpyoicbu, napodos, Mockea, Poccua;
3 Mnemumym mMamemamuky u Mamemamuieckozo modesuposarus, Armamst, Kazaxcman;
4 . .
Typxmencrutl 2ocydapcmeernnull ynusepcumem um. Marmymxyau, Awxabad, Typxmernucmar;
5 Unorcenepro-mexnorozueckuti ynusepcumem Typxmenucmana um. Qzysrana, Awzrabad, Typrmenucman

OO0 orpaHWYeHHOCTU penieHns OOBLIKHOBEHHOTO JauddpepeHnnaabHoro
YPaBHEHUs BTOPOTO MOPA/IKA C 3aTyXalOMUM YJ€HOM U MHBOJIIOIUER

B craTbe ncciieoBana HadasibHas 3aja49a Jjisi OOBIKHOBEHHOTO JTuddepeHInalibHOr0 YPaBHEHUSI BTOPOIO
opsiJIKa € JEMIMHIOBBIM 4eHOM ¥ wHBOJionumeil. [Tosyuensr 3aa4um, SKBUBaJIEHTHbIE HAYAJILHON 3aJ/a4e
JJIs1 OOBIKHOBEHHBIX I depeHInaIbHbIX YPABHEHU I€TBEPTOrO MOPsIKa, HA9aIbHON 3aate Il JINHEH-
HbIX auddepeHnnaJIbHbIX YPABHEHUIT BTOPOIO MOPs/IKa C 3aTyXaloIUM 4/IeHOM U uHBoJnonueil. Jlokazana
TeopeMa 00 OIEHKAaX YCTOWYIMBOCTH PENIEHHsI HAYaIbHON 3a/a4M JJisi OOBIKHOBEHHOIO JinHEeHHOro nudde-
PEHIINAILHOIO YPABHEHUSI BTOPOT'O HOPSIIKA C JEMIIMHIOBBIM YJICHOM M MHBOJIIONNEH. YCTaHOBJIEHA TeOpeMa
O CYIIIECTBOBAHHUH M €IMHCTBEHHOCTH OIPDAHUYEHHOrO DEIIeHUs] HA9aIbHOM 3314491 /ISt OOBIKHOBEHHOTO He-
JiHeitHOro Mud depeHINaIbHOIO YPABHEHUSI BTOPOIO HOPSIAKA € 3aTyXaIONUM YJIEHOM W WHBOJIIOIMEH.

Karouesvie caosa: muddepeHninaabHOe ypaBHEHNE C 3aTYXAIOMIMM UJIEHOM U WHBOJIIOIMEH, YCTOWYNBOCTD,
OrPaHUYEHHOCTD, CYIIECTBOBAHUE U €IMHCTBEHHOCTD.
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