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On the stable difference scheme for
the time delay telegraph equation

The stable difference scheme for the approximate solution of the initial boundary value problem for the
telegraph equation with time delay in a Hilbert space is presented. The main theorem on stability of the
difference scheme is established. In applications, stability estimates for the solution of difference schemes
for the two type of the time delay telegraph equations are obtained. As a test problem, one-dimensional
delay telegraph equation with nonlocal boundary conditions is considered. Numerical results are provided.
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Introduction

Time delays appear in a diversity of science and engineering, such as biology, physics, chemistry,
dynamical processes. The delay term can cause oscillatory instabilities and chaos. However, to find more
realistic solutions to the problems encountered in life, the delay term should be taken into consideration
in mathematical modeling. Many scientists have worked to solve such problems (see [1-10]).

Telegraph equation is mostly interested in physical systems. Many physicists, engineers and
mathematicians have studied on telegraph equation without time delay (see [11-18|) paranthesis is
missed. Operator theory is used in [19] for the investigation of stability of the initial value problem for
the telegraph equation in a Hilbert space. Ashyralyev, Agirseven and Turk in [20] studied the stability
of the initial value problem for the telegraph differential equation with time delay

deq:gt) T advjigt) + Au(t) = aAu([t]), t >0,

(1)
u(0) =¢p, v (0)=1v
in a Hilbert space H with a self-adjoint positive definite operator A, A > §I, ¢ and v are elements of

D(A) and [t] denotes the greatest-integer function, here 6 > ‘1—2 and 0 < a < 1.
In the present paper, the first order of accuracy stable two-step difference scheme

( Ug4+1—2Uptug—1 Uk+1—Uk _
g + p= + AukH = aAu[k;]T{V]N_’_mN,

Nr=1, im—1)N+1<k<mN-1, m=12,..,

Uy = @, ((1 +ar)l + T2A) TR = qh,

[ (A +ar)I 4 72A) 2l tml — SmN_mNoL o = 1,2, .

for the solution of the problem (1) is constructed. The main theorem on stability estimates for the
solution of difference problem (2) is established. In applications, stability estimates for the solution
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of the difference scheme for the two type of the time delay telegraph equations are established. As a
test problem, an initial-boundary value problem for one-dimensional delay telegraph equations with
nonlocal boundary conditions is considered. Numerical results are given.

The stability of difference scheme (2)

Throughout this paper, the operator B is defined by the formula

2
@
B=A-—1I
4

It is easy to show that for § > %2, the operator B is a self-adjoint positive definite operator in a Hilbert

space H with B > (§ — %Q)I . Operator functions R and R are given by formulas
-1 - —1
Ru = ((1+%>I—i731/2> u, Ru= <(1+%)I+i731/2> u.

Lemma 1. The following estimates hold:

1B < ——, (3)
(0%
1
IRlgm <1, |7BY*Rllgm <1, | Rla—n < 1,|7BY? Rl|lgon <1, (4)
HTBI/2((1+M)1+T2A)—1H <1. (5)
H—H

The proof of Lemma 1 is based on the spectral representation of the self-adjoint positive definite
operator B in Hilbert space H (see [21]).
Theorem 1. For the solution of difference problem (2), the following estimates hold:

<ol + |57, :
max[uely < bllelly +[|B20] ()

— Uk — Uk—1 _
p1/22k — Tkl < dHB 1/2 H
N ‘ Yo cllelly + Y - (7)
max U <b max m
mN+1<k< (m+1)N el < (m—1)N<k<mN lurll
+ max Jz el ierion | RN S @)
(m—1)N+1<k<mN T i
Ul — Uf—
max HB—l/Qkk‘1 <ec max llurll 5
mN 1<k (mA LN T H (m—1)N<k<mN
+d max HB—1/2u’f_uk’1 : —1,2, ., (9)
(m—1)N+1<k<mN T .
where
0 a
b:|a]—|—|1—a|d, C:’l—a’ﬁ7 dzl_}_#
o — & o2
1 §—
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Proof. Difference problem (2) can be rewritten as the equivalent initial value problem for the second
order difference equations with operator coefficients

((1 +ar)l + TQA) Ugr1 — (24 aT) up + up—1 = (IT2AU[k—mN]N+mN,

N+1

Nt=1, im—1)N+1<k<mN -1, m=1,2,..

w=¢, w=¢+7((1+ar)l+ T2A)_11/1,

[ UmN+1 = UmN + Rﬁ(umN — UpN-1), m=1,2, ...
Let 1 < k < N. It is clear that

ur = ¢+ rBY*RRB™/%)
and

B2 — (1t ar)I +724)7' B2 = RRB™/?y,

T

Then, using the triangle inequality and estimate (5), we get
e < loller + 1B~ |m
and

121 — Ug _
1B 1/ZfllH < lleller + 11B72¢] .

Therefore, they follow the estimates (6) and (7) for & = 1. Now, we prove estimates (6) and (7) for
2 < k < N. We have that (see [21])

uy = RR (fz - R)fl (R""l - 172’“—1) o + (Fz - R)il (E’f . Rk) w

E

N -1 e (E_ R>—1 (Zj.ékfj _ Rk*j) C”'QAU[J'*T"N]N-FmN' (10)

N+1
7=1

Using the formula (10) and the following identities
(I _ ﬁa) (I — R) = r2ARR, (R’ _ R>_1 _ (—21731/2)_1 R'RY,
we get
up = {a +(1—a) % (B2 (-51-iB"?) R
_ B2 (—%I + z’Bl/2> E’“fl) } o+ % (12“2’“ - Rk> B2y (11)
and
B*WM - {(1 —a) %B*W (B*W (—%I - z‘BW) (—%I + z‘Bl/2> R
B2 (—%I n z‘BW) (—%I . z’Bl/Q) E’“) } o

—1—%3_1/2{(—%[— Z-Bl/2> Rk+1 _ (—%]+Z.Bl/2) RkH}B_l/Qw. (12)
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Applying the formulas (11) and (12), using the triangle inequality and the estimates (3) and (4), we
obtain

« 1 _
luelyr < [lal+ 1=l [ 14+ 5 ———| | Il + || B2 (13)
§2 — o2 H
4
and
e e e ] PGPy
4

From (13) and (14), they follow the estimates (6) and (7) for 2 < k < N.
Now, let mN +1 <k < (m+ 1)N for m = 1,2,3.... It is clear that

UmN+1 = UmN + TBl/QRé <B—1/2umN—TumN—1> (15)
and

p1/2UmNEL ZUmN _ p R p—1/2UmN ~ UmN -1 16)

T T .
Applying formulas (15), (16) and using triangle inequality and estimates (3) and (4), we get
—1/2UmN — UmN-—
lumnt1llg < lumnll g + HB 1/2%mN = YmN-1 an
T H

and

HBl/meﬂwvH <l + HBW“mN—“le | "

T H i Y

So, from these estimates they follow the estimates (8) and (9) for £ = mN, respectively. Now, we will
prove estimates (6) and (7) for mN +2 <k < (m+ 1)N, m = 1,2,.... We have that (see [21])

uy = RR (R’ - R) o (R’f*mN*1 - fé’f*mN*I) U + (E - R) o (fé’f*mN - R’f*mN) YN 11

k-1 e o By
+jm§];+1 RR (R—R) (Rk J _Rk J) aTQAu[jX,;"fV]NerN (19)

for the solution of the difference problem (2). Using formula (19), we get

up = {a +(1- a)%B_l/Q [(‘2‘“1 - iBl/2> RF=mN=L <_20‘I + z‘BW) E"f—mN*H UnmN

+% B2 (Rﬁ)il [E’H”N _ Rk-mN } (“mN “T_ HUmN ) . (20)

Applying the formula (20) and using triangle inequality, we get

_ UmN+1 — UmN
rmeSbmmmm+MBlﬂ<’”+;mﬂ\- (21)
H
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From (21) it follows the estimate (8). Using (20), we obtain

B—l/Quk+1 — U _ |:(1 _ a)% |:B—1ARk—mN _ B—lAék‘—mN}] U N

T

[(_%B_l/z B l) R-1pk—mN _ (_%3_1/2 4 Z) é—le—mN} B1/2 <“mN+1_“mN> (22)

-I—i
2 T

Now, applying (22) and using triangle inequality, we get

_ 5 a _
"B_I/QUk+1 Uk < ’1 . CL‘ _ ||UmN||H + 1+ 2 HB—1/2 (umN—l-l UmN) H . (23)
T g §— ﬁ T H
4
From (23) it follows the estimate (9). Therefore, the proof of Theorem 1 is completed. O

By applying operator B2, in the same manner of proof of Theorem 1, we can obtain the following
stability results.
Theorem 2. For the solution of difference problem (2), the following estimates hold:

B, < b5t 21
max || BY 2w < b B%|| + 1wl (24)
= <el|B
_ <cl||B d , 25
[pax, . s |, T alvla (25)
max HBl/2ukH <b max HBl/ZukH
mN+1<k<(m+1)N H (m—1)N<k<mN H
n max el N | R T (26)
(m—1)N+1<k<mN T H
max el <c max HB1/2U;€H
mN+1<k<(m+1)N T " (m—1)N<k<mN H
+d max il § | R BN (27)
(m—1)N+1<k<mN T H

Applications

Now, we consider the applications of abstract Theorem 1 and Theorem 2.
As first application, we consider the initial value problem for the delay telegraph equations with
nonlocal boundary conditions

(up(t, ) + au(t,z) — (a(x)uz(t, x))y + ou(t, )

= a(=(a(@)ug ([1], )z + ou(lt], x)), 0 <t <o0, 0 <z <, o)
28
w(0,2) = p(x), us(0,2) = Y(x), 0 <z <1,

u(t,0) = u(t, 1), ug(t,0) = ug(t,1), 0 <t < oo.

Problem (28) has a unique smooth solution (¢, z) for smooth funtions a(z) > ag > 0, (z € (0,1)),
a(l) = a(0), 6 > 0, ¢(z), Y(x), (z € [0,1]) and 0 < a < 1. This allows us to reduce the problem (28)
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to the initial value problem (1) in a Hilbert space H = Ls[0,!] with a self-adjoint positive definite
operator A* defined by the formula (28).

The discretization of problem (28) is carried out in two steps. In the first step, we define the grid
space

0,]p, ={z=2n:2p=nh, 0<n <M, Mh=1}.

We introduce the Hilbert spaces Lop = Lo([0,1]s) and Wi, = Wi([0,{],) of the grid
functions " (x) = {¢n})! defined on [0,1];, equipped with the norms

1/2

1/2

hl

2
h
ol ()]

h _|.n
1y, = "

Lop, * Z

xe|0,l|p

respectively. To the differential operator A* defined by (28), we assign the difference operator A} by
the formula

A" (2) = {—(a(@)p)on + dpn}y ! (29)

acting in the space of grid functions ¢"(x) = {p,}}! satisfying the conditions po = @ur, 1 — o =
©m — pm—1. It is well-known that A7 is a self-adjoint positive definite operator in Loy. With the help
of A7, we reach the initial value problem

d?ul (t,x)
dt?

@t b At (1, 2) = adfut (1], ),

0<t<oo, z€[0,h, (30)

ut(0,2) = " (2), u(0,2) = 9"(z), 2 € [0,
In the second step, we replace (30) with the difference scheme (2) and we get

h _ h
gy (2) = aAﬁ“[k;]TlN]NerN(x)a

uz+1(a:)72ug‘(a:)+uzil(:r) 4 aug+1(x3-fu2(ac) I A

T2

ty =kr, z€[0,lp, Nr=1, m—1)N+1<k<mN-1, m=1,2,..,
(31)

ug(a:) = cph(a:), ((1 +ar) I + T2Agﬁ) M = wh(m), x € [0,]n,

h . h
((1 +Oé7') I +T2Ai) UmN+1($7)— U v () _ Ymn TmN—l om=1,2, .., x¢€ [Oal]h‘
Theorem 3. Suppose that § > %2. Then, for the solution {u} (a:)}év of problem (31) the following
stability estimates hold:

h h h
II’SI};%XN HukHLQh S Ml {ng HL2h + Hw HLQh} )

h h
Up — Up_q

T

< My {Jl"l,y + 11"y,
Loy,

h
1ShEN Hu’“”W%h T
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h
max luglle,,
mN+1<k<(m+1)N
h h
up —up_
< Ms max b, + max k kol ,m=12 ..,
(m—1)N<k<mN 2h (m—1)N+1<k<mN T
Lan
h
h Y — Uk—1
max llugll , + max
MmN+1<k<(m+1)N Warn  mN+1<k<(m+1)N T .
2h
h _ ,h
up —up_
< M, max lufll , + max h_ kol ,m=1,2,..,
(m—1)N<k<mN Won  (m=1)N+1<k<mN T
Lan
where My, My, M3 and My do not depend on ¢"(z) or ¥"(z).
Proof. Difference scheme (31) can be written in abstract form
h h h h h
Upyq —2up Uy, Ukt1 % )b _ Az, h
72 +a—= + Ajuy .y = aAhu[’“;VT{V}NerN’

tp=kr, Nt=1, (im—1)N+1<k<mN-1, m=1,2,..,

h h

uf = ¢ (14 ar) Iy + 7247) "2 = g,

h

2 Az “?nN+1_“%N Up N U N 1
((1+oz7’)[h+7' Ah) = = — ,m=1,2,..

in a Hilbert space Lo, with self-adjoint positive definite operator A, = Aj by formula (29). Here,
ull = ul(x) is unknown abstract mesh function defined on [0, 1], with the values in H = Loy,. Therefore,
estimates of Theorem 3 follow from estimates (6), (7), (8) and (9), respectively. O

For second application of abstract Theorem 1 and Theorem 2, let 2 C R™ be an open bounded
domain with smooth boundary S, Q = QU S. In [0,00) x Q, we consider the initial-boundary value

problem for the delay telegraph equations
wnlt,) + @t ) = 3 )i, (60D, = (= 3 (orlohs (), ).
r=1

x= (21, ...,y) €Q, 0 <t < 00, (32)

w(0,2) = ¢(z), 2902 — y(2), z €1,

u(t,z) =0, x €S, 0 <t < oo,

where a,(z), (z € Q), p(x), ¥(z), (x € Q) are given smooth functions and a,(z) >0 and 0 < a < 1.
We introduce the Hilbert space Lo(Q), the space of all integrable functions defined on €2, equipped
with the norm

N

11l @) = / / f(x))? dzy...dzy,

z€Q
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The discretization of problem (32) is carried out in two steps. In the first step, we define the grid
space

ﬁh:{x:x'l‘:(hljla"'7hn.jn)7 j:(jla"'7jn)a OSj'I‘SNra N’rh'r’:L T:17"'7n}7
thﬁhﬂg, ShzﬁhﬂS.

We introduce the Hilbert spaces Loj = Lo(,) and W), = W} (€),) of the grid functions
o"(x) = {o(h171, ..., hyry)} defined on Qy, equipped with the norms

|

1/2

(S @] hem)

Z‘GQh

Lap

1/2
o + Z Z %T,jr(x)‘ hi---hy 7

ey r=1

h _ h
"l ="

respectively. To the differential operator A” defined by (32), we assign the difference operator A7 by
the formula

Ayl — — Zn: (ar(epd,)
r=1

where A} is known as self-adjoint positive definite operator in Loy, acting in the space of grid functions
u” (z) satisfying the conditions u” (x) = 0 for all z € Sj,. With the help of the difference operator A%,
we arrive at the following initial value problem

2, h h
Fu ) 4 oD | Azyh (¢, ) = aATuP ([t], ),

0<t<oo, €y, (33)
u(0,z) = (), u(0,x) = Y"(x), z €

for an infinite system of ordinary differential equations.
In the second step, we replace (33) with the difference scheme (2) and we get

2“2—&-1 () = aAﬁul[lk]—vaNerN(a?)a

u2+1(m)—2u22(ac)+u271(:v) i au2+1(z)—u2($) LA
T T

tk=kr, 2€Qp, N71=1, (im—1)N+1<k<mN-1, m=1,2,..,
(34)

h —uh z o
ull(z) = "), (14 ar) I +7247) U@ _ yhry 2 eqy,

h _,h h _h —
((1+ ar) I + r2Ap) et @7y @ oy @2ty 1@ ey 212,

T

Theorem 4. Suppose that § > %2. Then, for the solution {uz (x)}év of problem (34) the following
stability estimates hold:

h h h
1g}€a§XN HukHLmL < Ms {H(‘O HL% 11 HL%} ’
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h up —up h h
e Tt ) <y { }
(max Jugll,, + max | —— < Mo llo®llyy A+ 17y, ¢
Lap,
h
max u

mN+1§k§(m+1)N|| ’“HL%

h h

U, — U

< My max lufll,  + max —k kel , m=1,2,..,
kllL
(m—1)N<k<mN 2k (m—1)N+1<k<mN T

Lap

h

uy —u

max Jullll , + max k__ kol
MmN+1<k<(m+1)N Wor  mN+1<k<(m+1)N T .
2h
h Uy — “2—1
< M;g max lugll. , + max ,m=1,2,..,

(m—1)N<k<mN Wan  (m—=1)N+1<k<mN T

Lap,

where M, Mg, M7 and Mg do not depend on ¢"(z) or ¥" ().

Proof. Difference scheme (34) can be written in abstract form (2) in a Hilbert space Loj = Lo(Q4)
with self-adjoint positive definite operator A, = A? by formula (33). Here, uf = ul'(z) is unknown
abstract mesh function defined on €2;, with the values in H = Loj,. Therefore, estimates of Theorem 4
follow from estimates (6), (7), (8) and (9) and the following theorem on the coercivity inequality for
the solution of the elliptic difference problem in [22]. O

Theorem 5. For the solutions of the elliptic difference problem

Arul(z) = W), © € Qy, u(z) =0, 2 € 8,

the following coercivity inequality holds:

n
h

3

r=1

where My does not depend on h and w”.

< M9Hwh||L2h7
Lop

Numerical results

When the analytical methods do not work properly, the numerical methods for obtaining approximate
solutions of telegraph differential equations play an important role in applied mathematics. In this
section the first order of accuracy difference scheme for the solution of the initial boundary value
problem for one dimensional telegraph differential equation with nonlocal boundary conditions is
presented.

We consider the initial-boundary value problem

U (€, ) + 2us(t, ) — uge (t, ) + u(t, x) = 0.001 (—uze([t], z) + u([t], x)) ,
0<t<oo, 0<z<m,

(35)
u(t,z) = e tsin(2z), -1 <t <0, 0<z <,

u(t,0) = u(t,m), ug(t,0) = uz(t,m), 0 <t < o0

for the delay telegraph differential equation with nonlocal conditions.
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By using step by step method and Fourier series method, it can be shown that the exact solution
of the problem (35) is

where

Thi1(t) = Tp(n)e ' cos(2t) +

Tn(n)
2000

+

u(t,z) =Tp(t)sin(2z), n—1<t<n, n=1,2,...,

999
= e
1000

T (1)

~tcos(2t) —

1
2000

e sin(2t) +

e

1000’

sin(2t)

(2 — 2™ cos(2(t — n)) — e~ sin(2(t — n))) L n=1,2..

Using first order of accuracy difference scheme for the approximate solutions of problem (35), we
get the following system of equations

_ k41 k41, k41
up ™t —2uk fuf ! I Quﬁ“fuﬁ _ Upg—2un tup Ty 1okt
T2 T ]’L2 n
k—mN k—mN k—mN
PR vmy AR N emy B N em k=mN] 4 N
un+1 _2u’” +un71 [ N+1 ] +m
=0.001 | — 7 + U, ,

tp=kr, Nr=1, mN+1<k<(m+1)N-1, m=0,1,2,...,

Tp=nh, Mh=m, 1<n<M -1,

. 1_,0 u; —2u}l+u317
u) = sin(2nh), (1+27) 2" 471 (— L L+ u}L)
ud | —2ud +u? .
+7 (”“T’H - u%) = —sin(2nh), 0 <n < M,
mN+1_ mN umN+1—2umN+l+umiV+1
(1+27)—"n— 47 (— n+1 o nol MmN+
u7nN _QU';LrLN_;'_umN mN _, mN—1
—|—7‘< SRS —uf;N) =T 0<n< M, m=1,2,..,
ub =uk, o ub —ub =k, -k, mN<E<(m+1)N, m=0,1,2,...

We can rewrite system (36) in the matrix form

114

k—mN

CcUk+t + DUF* + EU+1 — © (U[m]N+mN) ,k=1,2,3,..

0

sin(2h)

UO

0

sin(2h)

, Ut=r"1a

sin(2(M —1)h)
0

(M+1)x1

sin(2(M —1)h)
0

Umi+l = ptHU™Y — PNl om =12,

(M+1)x1

(36)

(37)
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k—mN

where C, D, E, F, G and H are (M + 1) x (M + 1) matrices, ¢ (U[mw+1]N+mN) and U, 1 = k, k+1
are (M + 1) x 1 column vectors defined by

1 0 0 0 0 0 0 -1
a b a 0 0 0 0 0
0 b a 0 0 0 0
C: . 9
0 0 0 0 a b a 0
0 0 0 0 a b
| 1 -1 0 0 . 0 0 -1 1 | (M+1)x(M+1)
0 0 0 0 0 0]
0 c 0 0 0 0
0 0 c 0 0 0 0
D: . )
0 0 0 0 c 0
0 0 0 0 0 c 0
| 0 0 0 . 0 0 0 0 | (M+1)x (M+1)
0 0 0 0 0 0 0]
0 d 0 0 0 0 0
0 0 d 0 0 0 0
FE = . )
0 0 0 0 d 0 0
0 0 0 0 0 d 0
L 0 0 0 0 0 0 01y
[ 0 0 0 0 0 —1 7
e e 0 0 0 0
0 e e 0 0 0 0
F: . )
0 0 0 0 e p e
0 0 0 0 0 e e
|1 -1 0 0 . 0 0 -1 1 | (M+1)x (M+1)
i 0 0 0 0 0 -1
e e 0 0 0 0
0 e e 0 0 0 0
G: . )
0 0 0 0 e e
0 0 0 0 e
| 1 -1 0 0 . 0 0 -1 1 | (M+1)x (M+1)
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[ 0 0 0 0 0 -1
e g e 0 0 0 0
0 e g e 0 0 0 0
H= . )
0 0 0 0 e g e
0 0 0 0 0 e g
|1 -1 0 0 . 0 0 -1 1 ] (M4+1)x (M+1)
S ur
o Uy
(p(U[f{zw”N*mN) = L, U™ = , forr =k, kF1,
PM-1 Ubr—1
T
L 0] (M+1)x1 L Uy (M+1)x1
where (e _ [y [ (o
_ —mNIN L mN
©F =0.001 | — It 2 W o +—uLJV+1] o ) for k=1,2,...,

m=0,1,2..,1<n<M-—1.

Here, we denote a = —1/h?, b=1/72 +2/7+2/h?2 + 1, c= —-2/72 - 2/7,d = 1/7%, e = —7%/h?,
p=1+2r+724272/h%, s=1+7+72+27%/h? and g = 2 + 27 + 72 + 272 /R

Hence, we have a second order of difference equation with matrix coefficients. We find the numerical
solutions for different values of N and M and here, u® represents the numerical solutions of the
difference scheme at (tg,z,). For N=M =40, N =M =80and N =M =160int € [0,1], t € [1,2]
and t € [2,3], the errors computed by the following formula are given in Table 1.

EY = max u(ty, ) — uk].

mN+1<k<(m+1)N, m=0,1,...

0<n<<M

Table 1
Errors of Difference Scheme (36)

N=M=40 N=M=80 N=M=160
t €1[0,1] 0.045895 0.023073 0.011568
te [1,2] 0.042967 0.021574 0.010810
te [2,3] 0.019786 0.010107 0.0051085

As it is seen in Table 1, the errors in the first order of accuracy difference scheme decrease
approximately by a factor of 1/2 when the values of M and N are doubled.

Conclusion

In this study, we consider the initial-boundary value problem for telegraph equations with time
delay in a Hilbert space. Theorem on stability estimates for the solution of the first order of accuracy
difference scheme is established. In practice, stability estimates for the solution of the difference schemes
for the two type of the time delay telegraph equations are obtained. As a test problem, one-dimensional
delay telegraph equation with nonlocal boundary conditions is considered. Numerical solutions of this
problem are provided.
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Cobosiecknuii 11.E. Paznoctubie MeTOpl TpubIIMKEHHOTO perieruns JTuddepeHnaibHbIX ypaB-
nennii / I1.LE. Cobosnesckuii. — Boponex: zn-Bo Boponex. roc. yu-rta, 1975.

A. Ammipansies, K. Typk, /. ArupceBen

Kigiprmesai Teaerpad TeHaeyi YIIiH OPHBIKTHI
ANBIPBIM/IBIK, CXEMAChI TYPAJIbI

I'mabbept KenicTiringe kerrirysi tejerpad Tengeyi yinin 6acTanKbl-IIETTIK €CceOiHiH KYBIKTay IIENTiMiHIH
OPHBIKTBI AMBIPBIM/IBIK, CXEMACHI YCHIHBLIFAH. ANRBIPBIMIBIK CXEMACHIHBIH, OPHBIKTBLIBIFBI TYPAJIbl HEIi3ri
Teopemachl Gepinren. Koceimimacbinma yaksIT Kigiprmeci 6ap Temerpad TeHzeyiniy eki Typi yimiH aiibr-
PBIMJIBIK, CXEeMACBHIHBIH, IIENIIMiHIH OPHBIKTBHLIBIK Oarambl aJibIHIAbI. TecTisik ecebi perimie, GeittoKaJIb/Ii
mapTrapbIMeH GepinreH Kimipriesi Tererpad Gipesmemai TeHaeyi KapacTbpbLiabl. CaHIBIK ecenTeyrepi
MaKaJjaja KOPCeTiITreH.

Kiam cesdep: aflbIPBIMIIBIK, CXEMACHI, KEIMrysi Tejerpad TeHIeyl, OPHBIKTHLIBIK,

A. Ameipaseies, K. Typk, /. Arupcesen

OO0 ycroitunBoOii pa3HOCTHOI cxeme JJid
ypaBHeHUs Tejierpada c 3a/1ep2KKoii

IIpencraBiena ycroitumBast pa3HOCTHAs CXeMa I MPUOJIMKEHHOTO DEIIeHNs HAaYaJbHO-KPAeBOM 3aaduu
JjIs TesierpadHOTO ypaBHEHUsI C 3ala3bIBaHuEM B I'MJIBOEPTOBOM IIPOCTPAHCTBE. YCTAHOBJIEHA OCHOBHAS
TeopeMa 00 YCTONIMBOCTH PA3HOCTHON CXeMbl. B MPHUIOKEHUSIX Oy IeHbl OIIEHKH YCTOWIMBOCTHU PEITEHUST
Pa3HOCTHBIX CXeM /[JIs JIBYX THUIIOB TejerpadHBbIX yYpaBHEHHII ¢ BpeMeHHON 3ajepKKoil. B kadecTBe Te-
CTOBOII 33129 PaCCMOTPEHO OJHOMEPHOE ypaBHEHHE 3aJepPKKHU Tejierpada ¢ HEeJIOKAJIbHBIME YCIOBHUSIMUA.
YHucneHHbIE PE3yIbTATHI IPUBE/IEHBI B CTATHE.

Karoueswvie caosa: PAa3HOCTHBIE CXEMbl, YPABHEHUA TeJIerpa(ba C 3alla3JbIBaHUEM, yCTOﬁ‘IHBOCTL.

References

Minorsky, N. (1942). Self-excited oscillations in dynamical systems possessing retared actions.
Journal of Applied Mechanics, 9, 65-71.

Birkhoff, G. & Kotin, L. (1966). Integro-diferential delay equations of positive type. Journal of
Differential Equations, 2, 320-327.

Macdonald, N. (1989). Biological delay systems: linear stability theory. Cambridge Univ. Press,
Cambridge.

Driver, R. D. (1977).Ordinary and delay differential equations. Appied Mathematical Sciences,
Vol. 20, Springer, Berlin.

Bulletin of the Karaganda University



On the stable...

10

11
12
13

14

15

16

17

18

19

20

21

22

El'sgol’'ts, L.E. & Norkin, S.B. (1973). Introduction to the theory and application of differential
equations with deviating arguments. Academic Press, New York.

Winston, E. (1971). The global existence of solutions of delay differential equations. Journal of
Differential Equations, 10(3), 392-402.

Ashyralyev, A. & Agirseven, D. (2013). On convergence of difference schemes for delay parabolic
equations. Computers & Mathematics with Applications, 66(7), 1232-1244.

Ashyralyev, A., Agirseven, D. & Ceylan, B. (2017). Bounded solutions of delay nonlinear evo-
lutionary equations. Journal of Computational and Applied Mathematics, 318, 69-78.

Feireisl, E. (1991). Global in time solutions to quasilinear telegraph equations involving operator
with time delay. Application of Mathematics, 36(6).

Vyazmin, A.V. & Sorokin, V.G. (2017). Exact solutions to nonlinear delay differential equations
of hyperbolic type. Journal of Physics, Conference Series, 788(1).

Lamb, H. (1993). Hydrodynamics. Cambridge University Press, Cambridge, 6th edition.
Lighthill, J. (1978). Waves in fluids. Cambridge University Press, Cambridge.

Taflove, A. (1995). Computational electrodynamics: the finite-difference time-domain method.
Artech House, Boston, Mass.

Srivastava, V.K., Awasthi, M.K., Chaurrasia, R.K. & Tasmir, M. (2013). The telegraph equation
and its solution by reduced differential transform method. Modelling and Simulation in Eng-
ineering, 2013, Article ID 746351.

Golay, M.J. (1957). Vapor phase chromatography and the telegraph’s equation. Analytical Chem-
istry, 29(6), 928-932.

Chang, S. & Weston, V.H. (1997). On inverse problem of the 3D telegraph equation. Inverse
Problems, 13(5), 1207-1221.

Gao, F. & Chi, C. (2007). Unconditionally stable difference schemes for a one-space-dimensional
linear hyperbolic equation. Applied Mathematics and Computation, 187(2), 1272-1276.

Biazar, J., Ebrahimi, H. & Ayati, Z. (2009). An approximation to the solution of telegraph
equation by variational iteration method. Numerical Methods for Partial Differantial Equations,
25(4), 197-801.

Ashyralyev, A. & Modanli, M. (2015). An operator method for telegraph partial differential and
difference equations. Boundary Value Problems, 41(2015).

Ashyralyev, A., Agirseven, D. & Turk, K. (2016). On the stability of the telegraph equation with
time delay. AIP Conference Proceedings, 1759, Article Number 020022.

Ashyralyev, A. & Sobolevskii, P. E. (2004). New Difference Schemes for Partial Differential
Equations. Birkhauser Verlag, Basel, Boston, Berlin.

Sobolevskii, P.E. (1975). Raznostnye metody priblizennoho resheniia differensialnykh uravnenii
[Difference Methods for the Approzimate Solution of Differential Equations| Voronezh State
University Press. Voronezh: Izdatelstvo Voronezhskoho hosudarstvennoho universiteta [in Russian]|.

MATHEMATICS series. Ne 3(99)/2020 119



