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On classification of degenerate singular points of Ricci flows

We consider the normalized Ricci flow on generalized Wallach spaces that could be reduced to a system of
nonlinear ODEs. As a main result we get the classification of degenerate singular points of the system under
consideration in the important partial case @, =a,, i,j€{1,2,3}, i # j. In general the problem can also be
considered as two-parametric bifurcations of solutions of abstract dynamical systems. Thus the problem un-
der investigation is interesting not only in geometrical sense, but concerns the theory of planar dynamical sys-
tems.
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Introduction

In the present work we continue investigations started in [1-7]. Consider the autonomous system of
nonlinear ODEs obtained in [6]:

dx x dx
1 _ 2 3 _
. f(x19x27x3)7 . g(x19x29x3)3 -~ h(x19x27x3)9 X; = Xl-([) > 09 (1)
dt dt dt
where
X X X
1 2 3 .
f(xl,xz,x3)=—1—a1x1[ - — +x,B;
XXy XXy XX,
X X X
2 3 1 .
g(x1ax2’x3)=_1_a2xz£ - - +x,B;
XXy XXy XXy
X X X
_ 3 1 2 .
h(xl,xz,x3)——1—a3x3£ - - +x,B;
XXy XXy XX

-1
1 1 1
Bzz( f—t— 2 5 ] [i+i+iJ ,a,€(0,1/2], i=1,23.
apx;  AyXy  GyXy XpXy o XX XX, a a4, a
Recall that system (1) arises at investigations of Ricci flows ([8], [9]) on generalized Wallach spaces
(see details in [3-5]). As it was proved in [6], system (1) could be equivalently reduced to a system of two
differential equations of the type

% (), @

dx, -
dt _f(xlaxz)a dt

where

R}

f(xl’xz) = f(x,%,,0(x,x,)), &(x,x,) = g(x,X,,0(x;,x,)), O(x,x%,)=x“ x,

]
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In Theorems 1-3 of [2] we investigated the case a, =a, =b, a, = ¢, important from a geometrical point
of view, where b,c €(0,1/2], and determined all possible values of the parameters » and ¢ ensuring the
system (2) degenerate singular points with x, =x, (see [1] for detail).

In the present work these investigations are continued. More precisely, we offer a qualitative classifica-
tion of such singular points. The main results of the present work are contained in Theorems 2—4.

The paper is organized as follows. In section 1 we reformulate some well-known facts. In section 2 we
prove Lemma 1. In section 3 we prove Theorems 2—4.

1. Preliminaries
It is obvious that the functions f (x,,x,), g(x,,x,) are analytic in a small neighborhood of an arbitrary
point (x;,x;) # (0,0), and consequently the following representations are valid:
FOa2,) = iy (5 =x)) + i (6, = 33) +F(0,3,);
23 = Jo (% =X) + jion (1, = X)) +G(x,,,),
A J
g, &,

where j; are entries of the Jacobian matrix J=J (x,x)) :( , F', G are some analytic

(Grpory)=(x) 3)
functions in a neighborhood of the point (x/,x)) and F =G=F =F =G, =G,_=0 at the point
(7).
Let A,, &, be eigenvalues of the matrix J =J(x/,x}) and let [,|<[%,| without loss of generality.
Recall some well-known definitions of the qualitative theory of ODEs.
(x),x)) is called a singular point of (2) if ]7 =g=0 at (x,x)).
(x,x)) is called degenerate singular point if &:= det(J)=0.
In the qualitative theory of ODEs the degenerate case consists of the following subcases [10]:
Semi-hyperbolic case (L, =0, A, #0, J #0). There exist 3 types of phase portraits: saddles, nodes and

saddle-nodes;
Nilpotent case (A, =0, A, =0, J#0). In this case 13 topologically different types of phase portraits are

possible (saddle, node, saddle-node, focus, center, cusp, et.c.);
Linearly zero case (A, =0, L, =0, J =0). This case is more difficult for investigations and contains 65

different types of phase portraits due to classifications of [11].
One can easily obtain from general results of [7] that nilpotent case does not occur for (2), and linearly
zero case may appear only at @, =a, =a, =1/4.

In semi-hyperbolic cases we will use the following theorem.

Theorem I (Theorem 2.19 in [10]). Let (0,0) be an isolated singular point of the system
dx dy
—=X(x,y), —=Ay+Y(x,v), A>0, 3
5 Xy, o =hy+Y(x.y) 3)

where X and Y are analytic in a neighborhood of the origin (0,0) with
X(0,0)=Y(0,0)= X ,(0,0)=7,(0,0) =X (0,0)=Y,(0,0)=0.
Let y =o¢(x) be the solution of the equation Ay +Y(x,y)=0 in a neighborhood of (0,0), and suppose
that the function y(x) = X (x,@(x)) has the expression y(x) =¢, x" +o(x"),
where m>2 and e, #0.

Then
1) if m is odd and e, <0 (respectively e, >0), then (0,0) is a saddle (respectively an unstable node);

ii) if m is even, then (0,0) is a saddle-node.
Put p, = 2XQO 1 ITO.0)
Tl (n=0)! ox"'oy! il (m=i0)! ox" oy
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Remark 1. By the implicit function theorem the equation Ay + Y(x,y)=0 has an unique analytic solu-
tion y=@(x), (0)= ¢'(0) =0, in a sufficiently small neighborhood of (0,0).
Since Y(x,y) is represented by Taylor series then y=¢(x) is represented by power series

y=0(x)= E v,x". Moreover, v, = — G V5= —X(vqu,1 +q3’0), .... By the same reasons y(x)= E ex"
n=2 n=2

with
v(0)=y'(0)=0,e,=p,g, &s=v,p,; + Ps, -
It is clear that there exists a first nonzero term e, in y(x)= Zenx”. Otherwise we have y(x)=0, i.e.
n=2
we have the family of non-isolated singular points of (2) along the line y = ¢(x) in spite of our conditions.
Remark 2. The case A <0 can be reduced to (3) by the transformation ¢+ —¢. It is clear that

€, ==Dygs € ="VyD1 | = Psgs -
2. Auxiliary results

As the calculations show the direct substituting x, = @(x,,x,) into f and g leads to very complicated

expressions for partial derivatives of J; and g. We offer an effective way to avoid it.

Lemma 1. Let (x,x),x3)=(Y,4,Y,4,Y5q), Where gq,y, are positive real numbers. Then for partial de-
rivatives of f (x,,x,) and &(x,,x,) the following formulas are valid at the point (x,x)):

Z, =z, +2,0,;

'xl

inxj = inx/ +Zx,»x3q)x/ +(Zx3x. +Zx3x3(px/ )(px,» +Zx3(px1xj;

J

N

_ 2
XXX - inxixj +Zx,-x,-x3 (px/ —'—2(Zx‘.x_,»)c3 + inx3x3 (px_,» )“Px,» +22x,-x3 (pxix/- +(Zx/)c3)c3 + Z)c3x3x3 (‘ij )((Px‘. ) +

+2Zx3x3 (‘Px‘. (‘Pxix/ + ( szx/- + Zx3x3 (pxj )(pxixi +Zx3 (Pxixixi s

where

VY, 9

Q... =—&(&+1) ﬁ+28,.j Z3 iz,
Y a;\ 4 a,; YiV; 4

9, is the Kronecker’s symbol, i, j € {1,2}.

a a,| a Y, 1
ZE{f,g}, (Pxi = a3Y3 s (px,'x- =_3(_3+6[j} _3_,

Proof. This follows by using the chain rule several time:
8904,%) _ o

B

0 0 0
a_x[.Z(xlaxza(p(xpxz)) :a_ij(xpxza)%) +6_)C32(XI 5 Xy 9x3) P

3. Main results
Now we shall formulate and proof main results of the present work. Denote D :=1-4(1-2c)(b+c),
p=1x JD asin [4], and recall the special values of the parameters b,c used in [2]:
b=(\3-1)/4b=(R2-1)/2,b=(5-1)/4, b, =2/4;
¢, =(1-2b—~4b> +4b—1)/4,c,=(1-2b+~4b* +4b—1)/ 4;
¢, =(16b° —4b+1)/(2-16b%), ¢, =(1-8b) / (8b).
We will separately consider the cases when 6=0 by D=0 and &=0 despite the fact D #0 in the formula

D+\D

= 8b(b+c)— obtained in Theorem 1 of [1].
4([)Jrc)zuzqz( (b+c)—p) [1]
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Case 1. Degenerate singular points with D =0
As it has proved in Theorem 1 of [2] only for fixed be[b,,1/4),c=c¢, or be[b,,1/2],c=c, the sys-
tem (2) has an isolated singular point of the kind (x/,x))=(2(b+c)q,2(b+c)q) with D=0, where
4=q(@)=(20+0)*" >0,d=(26" +¢7) .

)—2d/h

Table 1
Types of degenerate singular points of the system (2) in the case D =0
Values of ¢,
and corresponding types of degenerate singular points of (2)
Values of b

Semi-hyperbolic type, Nilpotent type, Linearly zero type,

A4=0,4,#0,J%0 A=4,=0,J=20 A=4,=0,J=0
be(0,b,) - - -
be[b2,1/4) C=C¢, C=C,, — _

saddle-node

b=1/4 - - c=c,=1/4, saddle
be(/4,1/2] ¢ =c¢,, saddle-node - -

Theorem 2. Let D =0. Then for the singular point (x,',x)) = (2(b+¢)q,2(b+c)q) of the system (2)
only the following types of singularities are possible shown in Table 1:

(@ (x),x)) is a semi-hyperbolic saddle-node only for be[b,,1/4), c=c, or be[b,1/4)U
(1/4,1/2], c=c,;

(b) (x!,x)) is a linear zero saddle onlyat b=1/4, c=1/4;

(c) There are no values of b,c such that ()cl0 , xg) could be a nilpotent singular point.

Proof. (a) Case be[b,,1/4), c=c,.

Then we have

(x),x9) = (2(b+¢)g,,2(b+¢)q)), 4)

where ¢, :=¢q(c,)>0.

I -1
By Theorem 1 of [1] at the point (4) the matrix of linear part of (2) takes the form: J =k, ( {1 ],

1-2b++/4b> +4b -1

where k, = 5 >0 whenever be[b,,1/4).
q,

J has the eigenvalues 4, =0 and A, =2k, #0, there fore, we deal with a singular point of semi-

hyperbolic type. Using the transformations

X =x060) =X +(x+)/2, %, =x,(x ) =x, +(x-y)/2, (5)
one can move (4) to the origin (0,0). Thus the system (2) can be transformed to the form as in (3):
dx dy
—=X(x,y), —= 2ky+Y V), 6
5~ Xoy), = =2y + Y (%) (6)

where
X(X,y) = F(xl (an)axz (X,y)) +G(x1(x,y),x2(x,y));

Y(x’ y) = F(xl ()C, y)>x2 (x’ y)) _G('xl (X, J’)a X, (X, y))
Since ' and G are analytic in a neighborhood of (4), then X and Y are analytic in a neighborhood
of (0,0).
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Obviously, F, =f, .G, =g, .
Taking into account (5) and using Lemma 1 we get

1 1/~ < ~
Pro =3 X 0.0 = oo + 20 + 1)

(g, +28.,. 4.

(q.)=(x9) 8 (3.%0)=(x{" x9)
~ 1+4c¢, -8
=——1 1
16b(b +¢,)q,

By Lemma 1 in [2] the function ¢ =c¢,(b) satisfies the condition O<¢ <1/2 at bel[b,,1/4).
Then 1+4c¢, —8¢; >0, and consequently p,,>0 forall be[b,,1/4).

In other words, the system has saddle-node at the point (0,0) according to Theorem 1 and Remark 1.

Going back to the system (2) we conclude that (4) is a saddle-node for (2).
Case be[b,,1/4)u(1/4,1/2], c=c,.

In this case we have (x/,x))=(2(b+c,)q,,2(b+c,)q,), where g, = q(c,) > 0.

1 -1
Using the formulas of Theorem 1 in [1] we find that J =k, ( {1 j, where

1-2b—+4b* +4b-1
2q, '

It is not difficult to see that k, >0 at be[b,,1/4) and k, <0 at be(1/4,1/2].
In the same manner as in the previous case we can easily find that
le(O,O) _ l+4q —8c§2
2 16b(b +c,)q;
because of 0 < ¢, <1/2 forall be[b,,1/2] by Lemma 1 in [2].

By Remarks 1 and 2 (depending on the fact whether £, >0 or k, <0) and by Theorem 1 such point
(x),x))=(2(b+¢,)q,,2(b+c,)q,) is a saddle-node for (2).

(b) Letnow b=1/4, c=c,.

Then c=c,=1/4, k, =0 and (x{,x))=(1,1).

k

2

Pro =

0
Therefore, J = [0 0], and according to [10] we have a linear zero case.

Using the results of [11] it has proved in [6] that (x,x))=(1,1) is a saddle point with six hyperbolic
sectors around it (see fig.).
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Figure. The phase portrait of (2) at b=c=1/4

(c) We considered all possible values of b,c ensuring D =0. Therefore, under the conditions of The-
orem 2 the system (2) has no singular points of nilpotent type. The theorem is proved.
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Case 2. Degenerate singular points with D >0, n=1+ JD

According to Theorems 2 and 3 in [2] the system (2) has an isolated degenerate singular point of the
kind

(x],x))=(2(b+¢cy)q5,2(b+¢,)qs) )
for all fixed be(1/4,b,], c=c, or be(0,1/4), c =c,, where
95 :(2(17"'03))72‘1/1) s >0, ﬁ:%> 0, d :(zbfl re )*1.

Remind that l+\/B:}1 at be(l/4,b,], c=c, and 1—\/52;1 at be(0,1/4), c=c,.

Table 2
Types of degenerate singular points of the system (2) in the case 0 <D <1, p=1 D
Values of ¢,
Values of b and corresponding types of degenerate singular points of (2)
Semi-hyperbolic type, Nilpotent type, Linearly zero type,
A=0,4,#0,J%0 A=4,=0,J=0 A=4,=0,J=0
be(0,1/4) ¢ =c,, saddle - -
be[l/4,1/2] - _ _

In this case the following two theorems are valid.

Theorem 3. Let 0<D<1, u=1- JD. Then for the singular point (7) of the system (2) only the follow-
ing types of singularities are possible shown in Table 2:
(@) (x/,x)) is a semi-hyperbolic saddle only at b € (0,1/4), ¢ = c,;

(b) There are no values of b,c such that (x,x)) could be nilpotent or linearly zero singular point.
11
Proof. (a) Let be(0,1/4),c=c,. Then by Theorem 1 in [1] we have J =k, (1 1], where

4b -1

, =—— >0, i.e. there is a semi-hyperbolic case again (A, =0, A, =2k, #0).
(2b-1)g,
Put
x =x(xy)= x10 +(x+)/2, x, =x,(x,») =x3 +(y—x)/2. (3
Then the system (2) can be transformed to the form:
dx dy
—=X(x,y), — =2k, y+Y(x,y), 9
o Xy), == 2y + Y (x,y) )
where

X(xny) = F(xl (x’y)ﬂxz(x’y)) _G(xl (an’)axz (X, y))z

Y(x,y) = F(x(x,9),%,(x, ) +G(x,(x, ), X, (x, ).
From (8) we have

1

X0,0)= (7o =2F + /1) ! 2

(50)=(xf 19 _Z(gx‘xl 2 +gw2)
1 -

oty g \on ")

>
0 0
(x,x)=(x7 ,%3)

X,,(0,0)= i(ﬂm o)

()= 19)

1,. ~ ~
+_(gxx _2gxx, +gx X; )
(Xl,x2)=(x]0,xg) 4 1%1 12 2%2

00 = o(Fry =3 #3 s~ o)

1

—g(gw =38, 3800~ Fu )

1,00= (7., ~27. 4 )

s
0 0
(x1,%)=(x,x3)

(x,2)=() %)

()= )
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Desired partial derivatives of the functions f and g we shall calculate using Lemma 1. Thus

1
Dro = EXXX(O’ 0)=0,

1 (8b° +4b> —4b+1)8b> —1)_

- X_(0,0)= |
(R R T VST PR
1 1 (4b% +2b-1)(8h* —1
qz,oz—Yxx(O,O)=——( )2( 2 );
2 2 (2b_1) q;
1 1 (24D +4b* — 6b+ 1)(8> 1)
Pro =~ X, (0,0)= —+ B 1)
6 8 b2b-1)¢;
It easily follows that
%20 _ 8P -1D'@2b+1) 1

Do+ Diog= —Piy t D30 =

2k, 8b(2b-1)q; 4b-1

(8h* 1)’

It is clear that >0 for be(0,b,]. There fore, p,,v, + p;, <0 for be(0,1/4).

Since k; >0 then e, =p,,=0, e;=p,,v, + p;, <0 forevery be(0,1/4) by Remark 1.

Hence (0,0) is a saddle of (9) by Theorem 1. Then (7) is a saddle point for the system (2) respectively.

(b) We checked all values of b,c leading to degenerate singular points in the case 0<D<],
uzl—\/ﬁ by Theorem 3 in [2]. Hence nilpotent or linearly zero cases never can occur for (2) if

p=1- JD , 0< D <1. This proves the theorem.

Table 3
Types of degenerate singular points of the system (2) in the case D >0, y=1+ JD
Values of b Values of ¢,
and corresponding types of degenerate singular points of (2)

Semi-hyperbolic type, Nilpotent type, Linearly zero type,

A4=0,4,#0, J%0 A=4,=0,J=20 A=4,=0,J=0
be(0,1/4) - - -
be(1/4,b,] ¢ =c,, saddle - -
be(b,,1/2] - - -

Theorem 4. Let D>0, u=1+ JD. Then for the singular point (7) of the system (2) only the following
types of singularities are possible shown in Table 3:

(@) (x],x]) is a semi-hyperbolic saddle only at b e (1/4,b,], ¢ = c;;

(b) There are no values of b,c such that (x{,x}) could be nilpotent or linearly zero singular point.

Proof. This theorem can be proved in a similar way as above taking into account the fact that

8p* -1’(2b+1) 1
PriVat Py = 3
8b(2b—-1)q; 4b-1

for be(1/4,b,], ¢c=c¢, determined from Theorem 2 in [2].

However, k&, = ﬁ <0 forsuch b, therefore we have e, =—p,,v, — p;, <0 again by Remark 2.

—1q;

The theorem is proved.

>0
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Conclusion

In Theorems 2—4 we investigated the important (from a geometrical point of view, see [3—7] for detail)
partial case a, =a, =b, a, =c¢ and gave a qualitative classification of degenerate (5 =0) singular points of

the system (2) of the kind x] = xJ.

Our further publications will be devoted to non-degenerate cases (6+0). Here we briefly announce
some general results obtained in this direction: non-degenerate singular points of (2) could be only hyperbol-

ic nodes or hyperbolic saddles at D > 0. Moreover, nodes are stable (respectively unstable), if p =1+/D
(respectively n=1 —JDand D< 1).

Acknowledgements. This research was supported by Grant 1452/GF4 of Ministry of Education and
Sciences of the Republic of Kazakhstan for 2015-2017.
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H.©.O0ues

Puyum arpIMIapbIHBIH 03rellie/IeHIeH epeKIle HYKTeJIepiH
KJIaccu(puKaAuMsAIay TypaJibl

Makanana CBI3BIKCHI3 KapamaibiM AudQepeHnnaIIsK TeHaeyIep JKyieciHe KeNTipuIeTiH KalbulaHFaH
VYomnax KeHiCTIKTepiHAeri HOpMaJacTHIPbIIFaH Puaun areMaaps! KapacTsIpsiisl. Herisri HoTke peTinme
3EPTTENIHIN JKATKaH KYHEeHIH MaHb3Abl @, =a,, i,j € {1,2,3}, i # j, nepbec arnaiiblH/aFbl O3relIENCHIEH
epeKIlie HYKTeJIepiHiH Kilaccu(pUKaIMsIchl anbiHabl JKanmbl xargaiiaa Oyi1 ecenti abCTPaKkTThl AMHAMHUKAIIBIK
Kyite IenrimMAepiHiH eki mapamerpii Oudypkauuscel periHae ae Kapacteipyra Oonansl. COHBIMEH,
3epTTETIHETIH ecell TeK TeOMEeTPHSUIBIK TYPFBIIAH FaHa KbI3BIKTH 00JIMACTaH, jkKa3bIK JUHAMHKAIIBIK XKyHenep
TEOpUSICHIHA 1A KATHICTHI OOJabI.

10 BecTHuk KaparaHauHckoro yHvusepcuTeTa
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O kynaccupukanum BbIPOKIEHHBIX 0CO0BIX
TOYEK NMOTOKOB Puyun

B craTtbe paccMOTpeHBI HOpMaIN30BaHHBIE NOTOKM Puaun Ha 000OMIEHHBIX MPOCTpAHCTBaX Yolulaxa, IpH-
BOJMMBIE K CHCTEME HEIMHEHHBIX OOBIKHOBEHHBIX MU {epeHIMaIbHbIX ypaBHEHUH. B kauecTBe OCHOBHOTO
pe3yabTaTa MojyueHa KiacCH(UKanus BEIPOXKAEHHBIX OCOOBIX TOYEK HCCIETYEMOM CHCTEMBI B BaXKHOM Ua-

CTHOM cily4ae a,=a,, i,j€{,2,3}, i#j. B obmem ciaydae 3Ty 3aJauy MOXKHO H3y4aTb KaK JBYX-

j’
rapaMeTpHiecKylo Oudypkanuio penreHuit abCTpakTHON JUHAMUYECKOH cucTeMbl. TakuMm oOpa3oM, 3amada
MHTEPECHA HE TOJIKO ¢ N€OMETPUUYECKON TOUKU 3PEHHs, HO TAKXKE UMEET OTHOIICHHE M K TCOPUU IIOCKHX
JUHAMHYECKUX CUCTEM.
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