Numerical implementation of solving a control problem
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Numerical implementation of solving a control problem
for loaded differential equations with multi-point condition

A linear boundary value problem with a parameter for loaded differential equations with multi-point
condition is considered. The method of parameterization is used for solving the considered problem. We
offer an algorithm for solving a control problem for the system of loaded differential equations with multi-
point condition. The linear boundary value problem with a parameter for loaded differential equations with
multi-point condition by introducing additional parameters at the partition points is reduced to equivalent
boundary value problem with parameters. The equivalent boundary value problem with parameters consists
of the Cauchy problem for the system of ordinary differential equations with parameters, multi-point
condition, and continuity conditions. The solution of the Cauchy problem for the system of ordinary
differential equations with parameters is constructed using the fundamental matrix of differential equation.
The system of linear algebraic equations concerning the parameters is composed by substituting the values
of the corresponding points in the built solutions to the multi-point condition and continuity conditions.
The numerical method for finding the solution of the problem is suggested, which based on the solving the
constructed system and solving Cauchy problem on the subintervals by Adams method and Bulirsch-Stoer
method. The proposed numerical implementation is illustrated by example.

Keywords: problem with parameter, loaded differential equation, multi-point condition, numerical method,
algorithm.

Introduction

The problem of constructing effective models finds its solution in many areas of science and
technology. Therefore, a modern approach in the theory of control and identification of parameters
should be directed to the development of new constructive methods and modifications of known
methods for solving boundary value problems with parameters for ordinary and loaded differential
equations with multi-point condition [1-7].

In recent years, an intensive study of loaded differential equations associated with various appli-
cations of problems has been observed. The problems of the applications described by these equations
include the problems of long-term forecasting and regulation of the level of groundwater and soil
resources, simulation of processes of transported particles, and some optimal control problems [8].
The theory of boundary value problems for the loaded differential equations with parameters is rapidly
developing and is used in various fields of applied mathematics, biophysics, biomedicine, chemistry, etc.
[8-13]. Despite this, the questions of finding the effective criterions of unique solvability and constructing
the numerical algorithms for finding the solutions of boundary value problems for the system of loaded
differential equations with parameters remain open. One of the constructive methods for investigating
and solving the boundary value problems with parameters for the system of ordinary differential
equations is the parameterization method [14].

The parameterization method was developed for the investigating and solving the boundary value
problems for the system of ordinary differential equations. Later, this method was developed for the two-
point boundary value problems for the Fredholm integro-differential equations [15-19]. The algorithms
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for finding the numerical solutions of the problems are considered. This approach are applied to two-
point boundary value problems for system of ordinary and loaded differential equations with parameter
[20, 21].

In the present paper, we offer numerical algorithm of parametrization method for solving the control
problem for the loaded differential equation with multi-point condition.

So, we consider a linear boundary value problem with a parameter for loaded differential equation
with multi-point condition

dw = x—i—ZK i)+ Ao(t)n+ f(t), xz€R", peR™ te(0,T), (1)

N+1
ZC’x )+ Bop=d, deR"" (2)

Here the (n x n) matrices A(t), K;(t) are continuous on [0,77], j = 1, N; the (n x m) matrix Ag(t) is
continuous on [0, T]; the n vector f(t) is continuous on [0, 7]; the ((n + m) x m) matrix By and the
((n4+m) xn) matrices Cj, i = 0, N + 1 are constants; 0 = 0y < 01 < 03 < ... < Oy_1 <Oy < Ont1=T;

[l ]| = max |z;].
i=1,n
C([0,T], R™) is the space of continuous functions z : [0,7] — R™ with the norm ||z||; = n%ax} [|z()]|.
te[0,T
A pair (z*(t), u*) , with z*(t) € C([0,T], R"), u* € R™, where n vector function z*(t) is continuously
differentiable on (0,7"), is called a solution to problem (1), (2), if it satisfies the loaded differential

equation (1) and condition (2) for pu = p*.
1. Scheme of the method

Points 0 =0y < 61 < 03 < ... < Ony_1 < On < On41 =T are given and the interval [0,T) is divided

N+1
into N subintervals: [0,7) = U [0r—1, 0r).
r=1
C([0,T],0xn, R*™+1) is the space of systems functions z[t] = (z1(t), z2(t), ..., zx11(t)), where z,:
[0r_1,0,) — R™ are continuous and have finite left-sided lim Oxr(t) for all r = 1, N + 1, with the

t—0,—
norm ||z[-]||]2 = max sup ||z, (2)|].
=T,N+F1t€[f,_1,0)

Let z,(t) be the restriction of function z(t) to the r—th interval [0,_1,0,), i.e. z.(t) = z(t) for
t € [0y-1,0,), r = 1, N + 1. Then we reduce problem (1), (2) to the equivalent multipoint boundary
value problem

dx, [
:ZL[; = xT+ZK x]-‘rl +A0( )M+f(t)a te [01“—1797‘)7 T:17N+]—’ (3)
Z Cizit1(6;) + C'N+1 hm 0$N+1( ) + Bop = d, (4)
t_1>10r;1_0 Tp(t) = Tp41(0p), p=1N, (5)

where (5) are conditions for matching the solution at the interior points of partition.
The solution of problem (3)-(5) is the pair (z*[t], u*) with elements z*[t] = (27(t), ¥5(t), ..., w1 (t)) €
e C([0,T),0n, RPN+, ;i € R™, where functions z*(t), r = 1, N + 1, are continuously differentiable
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on [0,_1,0,), which satisfies system of loaded differential equations (3) and condition (4) with pu = px
and continuity conditions (5).

We introduce the additional parameters A, as a values of required functions at the points of
partition: A, = z,(6,-1), 7 = 1, N 4+ 1, the (N +2)—th component is assigned the original parameter p,
i.e. Ayt2 = p. Making the substitution z,(t) = wu,(t)+ A, on every r-th interval [0,_1,6,),r =1, N + 1,
we obtain multipoint boundary value problem with parameters

N
du, .
(Z :A(t)(ur+)\r) +ZKj(t))‘j+1 +A0(t))‘N+2+f(t)7 te [07‘—1797")7 r=1,N+1, (6)
j=1
up(6,-1) =0, r=1,N+1, (7)
N
Z Cidiv1 + Onpi ANy + COnga t_ljil;lio un+1(t) + BoAn42 = d, (8)
i=0
Ap + hgmoup():)\pH, p=1,N, 9)

A solution to problem with parameters (6)—(9) is a pair of functions (u*[t], A\*), where the function
wt] = (uf(t),us(t), ..., uk 1 (t) € C([0,T], 0n, R*™+)) with continuously differentiable on [6,_1, ;)
components uy(t), 7 = 1, N + 1, and \* = (A}, A3, ..., A1, Avpe) € RMN+D+m gatisfies system of
ordinary differential equations (6), initial conditions (7) and relations (8), (9) for \; = A}, j =1, N + 2.

If the pair (z*(t), u*) is a solution to problem (1), (2), then the pair (u*[t], A*) with elements u*[t] =
(wi(t),us(t), . uiyya (1) € C(0,T]0n, RN, A" = (AL, X3, o Ay Alvg) € RIVEDF™,
where w)(t) = 2*(t) — 2*(0,-1), t € [0,-1,0,), Aj = 2*(0,—1), r =1, N + 1, X§,, = p* is a solution to
problem (6)—(9). Conversely, if the pair (a[t], ) with elements a[t] = (U1 (t), uz(t), ..., un4+1(t)) €
e C([0,T],0n, R"™+D) . X = (A, Aa, ..., AN41, ANg2) € RMNHDFM s 4 solution to problem (6)-(9),
then the pair (Z(t),z) defined by the equalities z(t) = u.(t) + A\r, t € [0,-1,0;), 7 = 1, N + 1, and
z(T) = hm 1 un+1(t) + AN+, and 1 = Any42, is a solution to the origin problem with parameter (1),
(2)-

Let X,(t) be a fundamental matrix to the differential equation Z—f = A(t)x on [0r_1,0,],

r =1, N 4+ 1. Then the unique solution to the Cauchy problem for the system of ordinary differential
equations (6), (7) at the fixed values A = (A1, A2, ..., AN+1, AN+2), has the following form

ur(t) = X, (t) / X, N () A(T)dr A + X(t) / X Y1) Ag(T)dT AN o+
Or—1 Or—1

¢ N
t) / XY ZKJ T)dT A j1 + X ( / X, (r)f(r)dr, te€lf_1,0,), r=1,N+1. (10)
=1 01

Substituting the corresponding right-hand sides of (10) into the conditions (8), (9), we obtain a system
of linear algebraic equations with respect to the parameters ., r =1 N 4 2:

N

Z CiXit1 + Cnp1AN1 + CN+1{XN+1 /XN+1 T)A(T)dT AN 1+

=0 On
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N
+XN+1(T) /X]?[}’_l(T)Ao(T)dT)\N_FQ + XN+1(T) /Xl;—i-l Z KJ dT)\J+1} + BO)\N+2 =
7j=1

=d— COnt1Xn+1(T) /XX[IH(T)f(T)dT, (11)
N
Ap + X, (0 / X, T)dTAp + Xp( / X, T)dTAN 12+
0, N 0,
+X,(0p) / ZKJ T)dTNjp1 — App1 = —Xp(6p) / X;l(T)f(T)dT, p=1,N. (12)
Op—1 j=1 Op—1

Denoting by Q.(6n) the matrix corresponding to the left-hand side of system (11), (12) which is consist
of the coefficients at the parameters A., 7 =1, N 4+ 2, and then introducing the vector

T

d— Cnp1 XN (T) f X&}H(T)f@')dT
N
01
_ ~1
F*(QN) — Xl(el) {Xl (T)f(T)dT
—Xn(0n) f Xy (7)dr,
On—1
we write the system (11), (12) as
Q0NN = F.(0x), X e RrV+h+m, (13)

It is not difficult to establish that the solvability of the boundary value problem (1), (2) is equivalent
to the solvability of the system (13). The solution of the system (13) is a vector \* = (A}, A3, ..., Ay,

Nyi2) € RMVFD+M - consists of the values of the solutions of the original problem (1), (2) in the initial
points of subintervals, i.e. ¥ = 2*(0,—1), 7 =1,N+1, Xy o = p*
Further we consider the Cauchy problems for ordlnary differential equations on subintervals
dz

=AW=+ Pt), 26,0) =0, te,6] r=TN+L, (14)

where P(t) is either (nxn) matrix, or n vector, both continuous on [0,_1,6,],r = 1, N + 1. Consequently,
solution to problem (14) is a square matrix or a vector of dimension n. Denote by a(P,t) the solution
to the Cauchy problem (14). Obviously,

t
a(P,t) = X, (1) / XU\ P(r)dr, te 6], r=TNFI,
97"—1

where X,.(t) is a fundamental matrix of differential equation (14) on the r-th interval.
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3. Algorithm for finding of solution to problem (1), (2)

We offer the following numerical implementation of algorithm. This algorithm is based on the the
Adams method and the Bulirsch-Stoer method to solve the Cauchy problems for ordinary differential
equations.

1. Suppose we have a partition: 0 = 6y < 61 < 6y < ... < Oy_1 < Oy < Ony1 = T. Divide each
r-th interval [6,_1,0,], » = 1, N + 1, into N, _parts with step hy = (6, — 6,— 1)/N Assume on each
interval [0—1,0,], 7 =1, 1, N + 1, the variable 0 takes its discrete values: 6 = 0,_ 1, 0=0,_1+ s ..
0=0,_1+ (N, —1)h,, 0 = 0., and denote by {#,_1,60,}, 7 =1, N + 1, the set of such points.

2. Solving the Cauchy problems for ordinary differential equations

)

‘Z —A()z+ A1), 2(0,1)=0, telb_1.0,), r=T N1,

% — A(t)z+ Kj(t), 2(0,1) =0, tel61,6,), j=LN, r=LN+I,
% = A(t)z + Aolt), 2(6,-1)=0, te€[f_1.6,], r=LN+1,
% = At)z + f(t), 2(6,-1)=0, telb_1,6,], r=1N+1,

by using the Adams method or the Bulirsch-Stoer method, we find the values of (n x n) matrices
ar(A, D), (KJ,O) j =1,N, (n x m) matrices a,(4o,0) and n vector ar(f,8) on {0,-1,0,},
r=1N+1.

3. Construct the system of linear algebraic equations with respect to parameters

QMOx)A = Fi(0y), X € RiN+D+m, (15)

Solving the system (15), we find A", As noted above, the elements of Ab = (/\ )\E, . )\]EVH, )\51\42) are
the values of approximate solution to problem (1), (2) in the starting points of subintervals: " (6,_1) =
— N =T N+, 0 = Ay

4. To define the values of approximate solution at the remaining points of set {6,_1,6,},
r =1, N + 1, we solve the Cauchy problems

dx h
= ;U—I—ZK +1+A0(t))\}]<[+2+f(t)v

2(0_1) =N, te[0_1,6,), r=1,N+L

And the solutions to Cauchy problems are found by the Adams method or the Bulirsch-Stoer method.
Thus, the algorithm allows us to find the numerical solution to the problem (1), (2). To illustrate the
proposed approach for the numerical solving linear boundary value problem with a parameter for an
loaded differential equation with multipoint condition (1), (2) on the basis of parameterization method,
let us consider the following example.

4. Example
Consider a linear boundary value problem with a parameter for loaded differential equation with
multipoint condition

N
= Az + Y Kj(t)x(0;) + Ao(t)u+ f(t), =€ R?, peR® te (1), (16)
j=1

dx
dt
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N+1
> Cix(6;) + Bop=d, de R (17)
=0
1 4 6
-4 6 2
t —
where A(t):G ffs_(@ Ao(t):(é :2 i+§> Bo=|1 7 -2
-4 3 11
1 0 4
Case 1. Let N=1.0=0,0, =1, 6 =1, Ki(t) = ! t=1
' o RCERERE B 3t+1 t ’
—t4 72 — 2 AT 19et — cos(wt)cos(t) — teos(t)
f(t): _ o943 _ 2 ﬁt_&_z _ : )
2t° — 19t + = g — tocos(mt) — msin(mt) + 2cos(mt)
2 5 1 6 -2 5 1007
0 2 4 5 0 4 149
Co=|6 -4, Gi=|3 2|, Co=]6 4|, a=] %
1 0 0 —4 8 0 150
3.1 3 5 3 -1 159

We use the numerical implementation of algorithm. Accuracy of solution depends on the accuracy of
solving the Cauchy problem on subintervals. We provide the results of the numerical implementation of
algorithm based on the Adams method and the Bulirsch-Stoer method by partitioning the subintervals
[0, 0.5], [0.5, 1] with step h = 0.05.

3 _
Solution to problem with parameter (16), (17) is pair (z*(¢), u*), where z*(t) = <t _ﬁ cos?frt)) ,

)
p* =1 19 | . Table 1 provides the numerical solution values (Z(t), ).
9

The following estimates are true:
using the Adams method for solving the Cauchy problems for ordinary differential equations

max ||pu* — ]| < 0.00005, max |z*(t;) — z(¢;)|| < 0.00008;
j=0,20

using the Bulirsch-Stoer method for solving the Cauchy problems for ordinary differential equations

max ||u* — fil| < 0.00000002,  max ||z*(t;) — Z(t;)|| < 0.00000002.
§=0,20

1
CaseQ.LetN—S.HO—O,Hl—}1,92—5,93—2,94—1,K2(t)—<t t2—1>’

4315
-1 6 3 5 Lo
-5 12 5v2 4 2P
Ks(t) = 22 Cs=| 7 2 Ci=| 0 -4 d= 31
sity={e 5] G= 4= = I :
2 0 4 -1 0 166 — 44/2
-3 5 3 -1 83

ft) = ( —t* 4+ 718%2 — 308 4 @ + @ + 88 — 19¢! — cos(mt)cos(t) — tcos(t) )

_0f3 _ 233142 | % — V264 3V2 4017 _ t2cos(mt) — wsin(mt) + 2cos(nt)

128 2 2 64
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Results received by using MathCad15

T1(t)

To(t)

71 (t)

T (t)

Adams method

Bulirsch-Stoer method

0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5
0.55
0.6
0.65
0.7
0.75
0.8
0.85
0.9
0.95

-0.0000768202
-0.1999451311
-0.3990642033
-0.5966839083
-0.7920541444
-0.984424811
-1.173045817
-1.3571670797
-1.5360385196
-1.7089100632
-1.875031638
-2.0336244073
-2.1839925346
-2.3253604761
-2.4569780171
-2.5780953578
-2.6879621167
-2.7858287117
-2.8709446048
-2.9425595558
-2.9999235398

1.0000483623
1.0377205669
1.0510744329
1.0410116624
1.0090107586
0.9570903823
0.8877597447
0.8039568233
0.7089759575
0.6063867668
0.4999462346
0.393563497
0.2909724033
0.1959893476
0.112185956
0.0428566274
-0.0090590279
-0.0410520677
-0.0511055772
-0.0377405131
-0.0000548018

0.0000000206

-0.1998749798
-0.3989999803
-0.5966249809
-0.7919999817
-0.9843749827
-1.1729999838
-1.3571249852
-1.5359999867
-1.7088749883

-1.87499999

-2.0336249926
-2.1839999946
-2.3253749967
-2.4569999988
-2.578125001

-2.6880000032
-2.7858750057
-2.8710000083
-2.9426250112
-3.0000000144

0.9999999887
1.0376883286
1.0510565038
1.0410065115
1.0090169819
0.9571067693
0.8877852415
0.8039904905
0.709016987
0.6064344599
0.4999999973
0.3935655316
0.2909830051
0.1960095024
0.1122147524
0.0428932257
-0.0090169855
-0.0410065138
-0.0510565047
-0.037688328
0.0000000132

[i1 = —4.9999451449
fiz = 19.0000319553
fis = 8.9999764358

(1 = —5.0000000147
2 = 18.9999999821
13 = 9.0000000058

Table 1

In this case we provide the results of the numerical implementation of algorithm by partitioning
the interval [0, 1] with step A = 0.25 and partitioning the subintervals [0, 0.25], [0.25,0.5], [0.5,0.75],
[0.75, 1] with step hy = 0.025. For the second case the following estimates are true:
The errors of using the Adams method

max || — ff] < 0.00002,

§=0,40

The errors of using the Bulirsch-Stoer method

max || — fil| < 0.000000001,

§=0,40

max |z*(t;) — z(t;)|| < 0.00002;

max |z*(t;) — Z(t;)|| < 0.000000003.

As we can see, the numerical algorithm based on the Bulirsch-Stoer method proposed is effective and
allows us to obtain the numerical solution to the the problem with a parameter for loaded differential
equation with multipoint condition of higher order accuracy.

Below in the Figure 1, we plot graphs of the exact and numerical solutions to the problem (16),
(17) on the interval [0, 1].
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x(t) = t + cos (mt)
x,(t) = t3 — 4t 0.5]

o
o
oo o
00000 °ooo
oo o
oo o

0 03 i

-05

Figure 1. The exact solution values are indicated by the light blue solid line and the numerical

solution values obtained by the Bulirsch-Stoer method are indicated by the symbol o
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KennykreJii mapTbl 0ap >KykKTeJreH auddepeHimansgblk TeHJaeyaep

YIIiH O0ackapy eceOiH IIeInydiH CAaHABIK »Ky3ere achbIpbLIybl

Kennykresi mapret 6ap »Kykreares auddepeHuaiablK TeHIeyIep YIIiH napamMeTpi 6ap ChI3bIKTHIK, IIETTIK
ecel 3epTTesai. KapacThIPBIIBII OTBIPFAH €CEITi IIeNTy YIIiH TapaMeTpJIey 94ici KoaasIHbINAb. KemaykTesti
mapThl 0ap XKyKTearen quddepeHInaIIbK, TeHIeYIep VIl 6acKapy ecebiH merry aaropuTMi YCHIHBLIIHL.
Kenunykresi maprel 6ap kKykrejren muddepeHImaiblK, TeHIeyIep YVIIiH mapaMeTpi 6ap ChI3bIKTBIK, IIeT-
TiK ecen GeJry HYKTeJIEPiH/Ee KOCBIMIINA ITapaMeTpJIep €Hri3y apKbLIbl Iapa-nap napamerpsepi 6ap merrtik
ecenike Kesripinai. [lapa-map mapamerpiiepi 6ap merTik ecemn kait muddepeHITuaNIbIK, TEHIEYIED XKylieci
yuria mapamerpJiepi 6ap Ko ecebineH, KomHyKTe i MIapThIHAH »KOHE Y3iIiCCi3 K mapTTapblHaH TYPabl.
ITapamerpuiepi 6ap »kait quddepenumanabik Tegaeynep xkyiteci yrrin Komu ecebinin memivi muddepen-
UAJIIBIK, TEHIEY/IiH (PyHIaMEHTAIbIK, MATPUIIACHIHBIH KOMETiMEH TYPFBI3bUIABL. TYPFBI3bLIFAH T MHIH
ColiKeCc HYKTeJIEPIHJET1 MOH/IEPIH KOITHYKTEJI IIapTKa *KOHe Y31JIiCCi3 K IapTTapblHa KOsl OTBIPHII, Hapa-
MeTpJiepre KaTBICTHI ChI3BIKTHI aJre0paJsiblK, TeHIeysIep Kyieci Kypbliabl. KapacThIpbIIbIl OTBIPFAH €CenTi
LIy iH KyPbIIFan »KyleHi koHe imki apasbikrapiarbl Komm ecenrepin Agnamc xone Bymupru-IITTép
SIiCTePiH KOJIJIAHBII, IIENIyTe HETi3/IeJreH CaHIbIK O/IiCi YCHIHBIIIBI YKOHE OJI YKY3€re aChIPhLIY MbICAJIMEH
KOPHEKTEJIII.

Kiam cesdep: mapamerpi 6ap ecerr, KyKTeared 1udepeHuaiIblK, TEHIEY, KOMHYKTE apT, CAHIBIK, 9IiC,
aJICOPUTM.
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YHucienHnaa peaausanus penieHus 3aa4u yIIpaBJIeHUs
JJI Harpy2kKeHHbIX AnddepeHnnaJbHbIX ypaBHEeHUIA
C MHOT'OTOY€YHBIM YyCJIOBUEM

WccnenoBana nneiinast KpaeBast 3a7[ada ¢ TapaMeTPOM JIJTst HATPYKEHHBIX M depEeHITNATbHBIX Y PABHEHUI
C MHOI'OTOYEYHBIM ycJaoBHeM. [ljisi perennsi paccMaTpUBaeMoOi 3a/1a49u IPUMEHEH METO/I IIapaMeTPU3aIHH.
IIpenyozken aaropuT™m pelleHus 3a0a49¥ yIPABIEHUs JJI CUCTEMBI HAUDYKEHHBIX IudhepeHnaaIbHbIX
ypaBHEHUI C MHOTOTOYEYHBIM ycaoBueM. JlumHeiiHass KpaeBas 3ajada C MapaMeTPOM JJisi HATrPY2KEHHBIX
nuddepeHnaIbHbIX YPABHEHH C MHOIOTOYEYHBIM YCJIOBUEM IIyTeM BBEJIEHUS JONOJHUTEJbHBIX apaMeT-
POB B TOYKax pas3sOMEHUsl CBOJWTCS K SKBUBAJIEHTHOW KpaeBOil 3ajiadye C mapaMeTpaMu. DKBUBAJEHTHAsI
KpaeBas 3ajlada C mapaMeTpaMH COCTOUT u3 3aaadu Ko 1jis cucTteMbl OOBIKHOBEHHBIX JauddepeHtin-
aJIbHBIX YPaBHEHUIl C IapaMeTpaMy, MHOIMOTOYEYHOIO YCJIOBUsI M YCJIOBHs CKJIeMBaHUs. PereHue 3a1a4du
Ko mytst cucrembl 06BIKHOBEHHBIX TuddepeHIINaTbHBIX YPABHEHUN € TAPAMETPAME CTPOUTCS C TIOMOIIBIO
byHIAMEHTAIBHOM MATPUITHI AuddepeHITnaILHOTO ypaBHenust. [lomcrasiiss 3Ha4eHnst B COOTBETCTBYIONIAX
TOYKAX [IOCTPOEHHOIO PEIIEeHUs] B MHOINOTOYEYHOE YCJIOBHE U YCJIOBUs CKJIEMBAHUSI, COCTABJISIETCS CUCTEMA
JINHEWHBIX aJIredpandecKux yYPaBHEHUNM OTHOCUTEIHLHO MapaMeTpoB. [IpesioskeH YuC/IeHHBI METO/T, HAXO0XK-
JICHUsI PEIIeHUsl 33/1a91, OCHOBAHHbBIN Ha, PEIIIEHUU [TOCTPOEHHON CUCTEMBI U 3a1a4u Ko Ha moabplHTepBa-
sax o merogaMm Anamca u Bysnupma-IlItépa. [Ipemiaraemas unciienHast peaausaiiust IPOUIIIIIOCTPUPOBAHA
MIPUMEPOM.

Karoueswie caosa: 3amada ¢ mapaMeTpoM, HarpykeHHoe nuddepeHnnaIbHoe YPpaBHEHHe, MHOIOTOYETHOE
YCJIOBHE, YUCJIEHHBI METO/I, aJIlTOPUTM.
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