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Problem of describing the function of a GPR source

In this paper, we consider the problem of determining the source h(t)d(z) of electromagnetic waves from
GPR data. The task of electromagnetic sensing is to find the pulse characteristic of the medium r(t) and
consists in calculating the response of the medium to the pulse source of excitation d(¢) (Dirac Delta
function). To determine the analytical expression of the impulse response of a homogeneous medium r(t),
we use the method proposed in [1-2]. To determine h(t), the inverse problem is reduced to a system of
Volterra integral equations. The source function h(7), is defined as the solution of the Volterra integral
equation of the first kind, f(t) = fg r(t — 7)h(7)d7 in which f(¢) is the data obtained by the GPR at the
observation points. The problem of calculating the function of the GPR source h(7) consists in numerically
solving the inverse problem, in which the function of the source h(7) is unknown, and the electromagnetic
parameters of the medium are known: the permittivity ; the conductivity o; the magnetic permeability
and the response of the medium to a given excitation h(7).

Keywords: radargram processing, source recovery, mathematical simulation, calculation results.

1 Introduction

Ground-penetrating radars have builtin software, the output of which is a radarogram, i.e. time
scans of the reflected signal taken along the route. To interpret radarograms, engineering techniques
are used, and it also depends on the geophysicist’s experience and skills in reading radarograms. On
the other hand, there is a different direction of interpretation of radarograms, based on mathematical
and computer modeling of the propagation and reflection of electromagnetic waves in the medium. The
radarogram is a function of the run time to inhomogeneity. In practice, geophysicists are interested in
the physical characteristics of inhomogeneities that depend on spatial coordinates. For the numerical
solution of the inverse coefficient problem, it is necessary to have a table value of the source of the
disturbance, as well as table values of the reflected signals (medium responses) at the measurement
points. To solve these problems, we have developed an algorithm for restoring the source, and as a
result, determining the response of media corresponding to real GPR data at observation points. Here
is a brief overview of the work related to these problems. Questions of uniqueness of the solution of
inverse coefficient problems are studied in [3|. Numerical algorithms for solving such a class of inverse
problems are described in [4], which also studies the convergence of iterative methods for determining
coefficients for hyperbolic equations. The problem of restoring the source of a tsunami is considered

in [5].
In [6], we consider the inverse problem of identifying a source that depends on the
spatial variable F (z) in the one-dimensional wave equation wuy = Pug, + F(z)H(t — ),

(x,t) € {(x,t) |]xr > 0,—00 <t <T}. The measured data is taken as g(t) := u(0,t). The relationship
between this task and the GPR data interpretation task is shown. An iterative algorithm for restoring
an unknown source F'(z) is developed. The algorithm is based on the decomposition of F'(x) functions
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into a Fourier series and representation of the solution of a direct problem using the F(x) function.
Next, we solve the minimization problem for the discrete form of the Tikhonov functional, which is
reduced to a linear algebraic system and solved numerically. Calculations show that the proposed
algorithm allows reconstructing the x-dependent F(z) source with sufficient accuracy for clean and
noisy data.

In [7], it was assumed that a function h(t) of a special type was defined for each carrier frequency.
Assuming that the coefficients of dielectric, magnetic permeability, and conductivity are smooth functi-
ons, a fundamental solution for the system of the Maxwell equation is constructed in [8]. The original
problem is reduced to an auxiliary problem for vector and scalar potentials. In [9], we derive a formula
for solving the Cauchy problem of a multidimensional Telegraph equation, which allows us to reduce
the problem to quadrature forms and obtain exact solutions explicitly. Later, using these formulas, we
can obtain formulas for calculating the impulse response of an arbitrary sufficiently smooth medium.

The need to solve inverse coefficient problems for hyperbolic equations follows from practical
applications that arise in problems of seismology, electrical exploration, tomography, rock mechanics,
archeology, and many problems of natural science. A class of questions of existence, uniqueness of
solutions, regularization and stability are considered in a series of works by scientists from near and far
abroad (see, for example, [10]-[24]). Algorithms for numerical solutions of coefficient inverse problems
for hyperbolic equations are covered in monographs [15]-[17].

Note that the development of interpretation methods is still in demand in geophysical research. As
noted above, in practice, the inverse problems that arise in georadar methods are solved by various
approximate methods, the most commonly used ones are described in [25] and in the review [26]. To
study the horizontally-layered media are used for economical methods of solution of direct problems of
radar. This method is based on the method of layer-by-layer recalculation, which was proposed in [27],
and was further improved in [28]-[29]. This algorithm was used for electrical exploration and elasticity
problems in [30]-[33].

2 Description of the method

The problem of accurately describing the GPR source function occurs in all known GPR series
produced. An approximate value of the source function leads to an error in interpreting the GPR data.

One of the reasons that leads to an inaccurate description of the GPR source is the effect of a pulse
of the order of 10 nanoseconds. It is almost impossible to measure the amplitude of the pulse carrier
in the specified time interval.

Note also that knowledge of the source function is necessary to solve the inverse problem, since
effective algorithms are constructed not for the function f(t) that is the response of the medium, radar
data from the source h(t), but for the r(t) pulse characteristic of the medium perturbed by the Delta
function 0(t) of the source.

The proposed method for determining the functions of the GPR source h(t) is based on the
numerical solution of the inverse problem, in which the function of the source h(t) is unknown, and the
electromagnetic parameters of the medium are known: the permittivity €, magnetic permeability pu,
conductivity o, and the response of the medium to a given excitation h(t).

We give to the description of the mathematical model. Let us consider the problem statement
formulated and studied in monographs [3,4] for the geoelectric equation:

HEWH = Wy + Weg — UOWE + ) (t) 5(2)77 (x) (1)
w|t<0 = O,Wt|t<0 =0 (2)
wl0,2,1) = r(z 1) 3)

Here: ¢ is permittivity, p is magnetic permittivity,
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o is medium conductivity, 6(¢) is Dirac Delta function,

r(x,t) is an impulse response of the medium,

We introduce the equation of geoelectrics, in which electromagnetic waves are excited by the source of
the GPR A (t):

UEWU = Uy + Ugy — pouy + 0 (2) ) (z) b (t) (4)
ulyco = Ou [;cg =0 (5)
u(0,2%,t) = f(x*, 1) (6)

Here: h(t) is a function describing the GPR source as a function of time, f(z*,t) is a the response of
the medium at the observation point z* (the radarogram trace).
To determine the impulse response of the medium, we consider the Volterra equation of the first kind:

f(z,t) = /0 r(xz,t —7)h(T)dT (7)

In this equation, the left side is known, i.e. the radar data at the observation point. The h(t) is a
function describes the radar source. The relation (7) shows the relationship between the response of
the medium, which is a trace of the solution of the problem (4)-(6) and the impulse response (3).
Obviously, it is advisable to determine the impulse response r(x,t) analytically. For this purpose, in
the future we use the method of solving the direct problem (1)-(3), with constant coefficients, given in
[1]. To analyze the numerical algorithm, we conduct experimental studies in a homogeneous medium
with known geoelectric properties.

Analytical method for determining the impulse response

Following [34], we denote:

1 o
2
= —.a=— 8
ag ,us’ ai g’ ( )
Then, taking into account the notation (8), we write problem (1)-(3) in the form:

Wit = a(%(wzz + W) + a1wy — agd (t) 0(2)n (v) 9)

wlico =) Wilyeg =0 (10)

w(0,z,t) = r(xz,t) (11)

Let’s introduce a new function ¥ instead of w using the formula
w = ey
Assuming o = a1,¢2 = —a? 4 2a; from the relations (9)-(10), we get :
Dy = af (D22 + Vae) + 20 + aon(x)d(t)

19|t<0 =0, 1975|t<0 =0

Next, to get an explicit analytical expression for the impulse response of the medium, we use the
method of work [1].
We decompose the following functions into a Fourier series in the system of function {e”z}.

I (x, z,t) = Zﬁj (2,t) 9®
y
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n(x) =Y ne’"
i

Then be
(0, — ad.s + (N)297 — 297) = n;(2)d(t)

Finally, after performing a series of calculations of relations (9)-(10), we write it differently:

9y — agdd. + (N)*) =0 (12)
W),y = 0. =0 (13)
[0:):—0 = aon’6(t) (14)

By analogy, after applying the Fourier transform, condition (11) has the form

0(0,2,8) = r(z,t) = Y 1 (1) s”

99(0,t) = i (t)

Solution of problem (12)-(14) have the form

9 (2,1) = % — ' (0)Jo (¥ Vi~ 22) (15)

Assuming z = 0,in expression (15), we obtain an explicit analytical expression for the impulse
response of the medium:

P (t) = —Jo(NM)Nmj = 1,N
8 A description of the method in the General case

In [9], a formula for solving the Cauchy problem for a linear Telegraph equation in three-dimensional
space is derived and the Kirchhoff formula for a linear wave equation that passes into it at zero
conductivity. Reducing the problem of the field of a given is derived external current source in an
infinite homogeneous isotropic conductor to a generalized Cauchy problem for a three-dimensional
Telegraph equation is considered, which allows us to reduce this problem to quadratures, and in some
cases to obtain accurate three-dimensional solutions with a propagating front, which are of great applied
value for testing methods for the numerical solution of Maxwell’s equations. As an example, an exact
solution to the problem of the field of the Hertz electric dipole with an arbitrary dependence of the
current on time in an infinite homogeneous isotropic conductor is constructed is constructed.

Let us present formulas for solving the Cauchy problem for the telegraph equation described in [9].
The Cauchy problem for the spatially three-dimensional linear telegraph equation is considered, the
formulation of which is completely similar to that for the wave equation

0? 0 9 3
LET:ﬁET‘i‘A(;aET—C AET:(S(IZ’,t), rEeR y t>0 (16)
0 0 0 3
ET(:L‘at) |t=0 = ET(x)a 7ET(:E7t) |t=0 = (ET)t ($)7 r€ER (17)

ot
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Here: \s > 0, ¢ > 0 are set constants, 6(z,t) is the Delta function, Ep(x,t), (Er)?(z) are
set functions. Then the exact solution of problem (16)-(17) for a spatially three-dimensional linear
Telegraph equation has the form:

o(t)
mésct (z) +

wl(t)0 (ct — |x|)

Ame2y/ (ct)? — |z|?

T () (et)? = |2]) (18)

Er(x,t) = e” 27
C

Here: 6(t) is a theta function, dg,,(x) is a simple layer on the sphere S = {x : |x| = ct} with
: _ _0

density 1, A\s = BE-
In [8], a fundamental solution for the system of the Maxwell equation is constructed.

rot H = 5(%E+ oE) + j% (z—a%) é(t), 2 € R

rot H = —M%H, (v, t) € RY (19)
on the construction of its generalized solution satisfying the conditions
H ;<o = Eli<o =0. (20)
Assuming that €, u, oare smooth functions of the point z € R3,e >0, u >0,
j=3%(x—2a° 6(t), 2" € R®, (21)
49 is some numeric vector, § is the Dirac Delta function. We consider the vector potential
H:l rot A, E:—QA—V(,O (22)
7 ot
Here the Lorentz gauge condition is
divA +ep(pr+op) =0, ¢lco=0. (23)
The scalar potential is found through the vector by the formula
o (z,t xo) S /t e? @ iy A (2,2 xo) dz (24)
. e (@) p () Jo o ’

Problem (19)—(21) is reduced to some auxiliary problem, for vector (22) and scalar potentials
AA, p: (see (23)-(24))
For a vector potential, the Cauchy problem is studied:
LA = (%2214%-0% - i ’AA%—% V% X rot A—
-V (i) div A + iVJ fg @ EDdin A (ac, z,:I:O) dz = %j,

Alico = 0.
Conclusions

When numerically modeling the solution of the inverse coefficient problem, the question arises
about the table value of the source of the disturbance, as well as the table value of the reflected signals
(medium responses), at the measurement points. To solve these issues, we have developed an algorithm
for restoring the source. Next, it is necessary to carry out measurements using ground-penetrating
radar in a homogeneous environment, for example, a sand pit with known geoelectric properties. The
response of the medium obtained by georadar from a test environment is used to calculate the table
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values definition source excited by the GPR. Then the obtained source value is used in algorithms for
determining the geoelectric section of the object under study. The authors of this article have developed
a series of algorithms for the numerical solution of inverse and ill-posed problems, and they can be
found in published monographs and scientific articles [3, 4, 6, 20].

In General, using exact formulas (18) for solving the Cauchy problem for a spatially three-dimensional
linear Telegraph equation, one can obtain formulas for calculating the impulse response of an arbitrary
sufficiently smooth medium.

The work was supported by a grant from the Ministry of education and science of the Republic of
Kazakhstan under contract No. 132 dated 12.03.2018 under the project AR05133922 and KPFI SB
RAS project No. 26.
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C.U. Kabanuxun, K.T. Uckakos, JI.K. Tokcent, M.A. [lurmrennn, A. Toitbekon

I'eopagap nepekke3iHiH YHKIMSICBIH TYCIHIAIPY MaceJieci

Maxkasaia reopajiap MoJIMETTEPIHEH JIEKTPOMATHUTTIK TOMKBIHAAPABIH h(t)0(x) NepeKKe3iH aHbIKTay Mo-
ceJieci KapacTbIPBUIIBI. DIEKTPOMATHUTTIK 30HATAYABIH MiHgeTTepi 7(¢) OPTACHIHBIH UMILYJIbCTIK PEaKI-
sicblH Taby GOJIbII TaObLIAIbl XKOHE OPTaHbIH, NMITYJIbCTIH KO3y JAePEKKO3iHe PeaKIUsIChIH eCeITell MIbIFapy
4(t)(Dirac delta dpynkmmscer). ABropaap 6iprekTi r(t) OPTAHBIH UMITYIHC PEAKIIUICHIHBIH AHAJTATHKAJIBIK
epHerin aHpIKTay yiiid [1, 2] yceiHbuFan ozicTi Kommauapl. h(t) aHbIKTay YIIiH Kepi ecen BOJILTEP/iH MHTe-
rpaJiJIbIK, TeH ey Iep XKyitecine kenripingi. @yukius 6ipinnn Tunteri BosbreppaHblH HHTErpaJIIbIK, TEH e~
yiHIH memmiMi periage aHbIKTaNAbL, f(t) = fg r(t — 7)h(7)d7m-ne h(7) — 6yn GPR Gakpuiay HyKTesnepinge
aspiaral Masiverrep. GPR, mepekkesi h(7) dyaknusaceH ecenrey ecebi Kepi ecenti CaHABIK MIENIYJEH Ta-
pansl, ouza h(7T) mepekkesi (yHKuuscH Gesricis, ajg OpTaHBIH JEKTPOMArHUTTIK Hapamerpsepi Gesrisi:
OTKI3TIMTIK €; oTKi3rimTik conductivity ¢; marauT erkisrimriri permeability p >kone oprambIH GepiireH
KOB/IBIPYFa peaknuscel h(T).

Kiam cesdep: paiaporpaMMaHbl OHJIEY, [ePEKKO3/1i KaJIIbIHA KEITIPY, MATEMATHKAJIBIK MO/JIENIbJIEY, ECEIITEY
HOTUIKeJIEP].

C.U. Kabanuxun, K.T. Uckakos, /I.K. Tokcent, M.A. Iumnennn, A. Toiitbekos

Ba,zl;aqa oImmcaHnngd (bYHKHI/II/I NCTOYHHUKa reopajapa

B crarpe paccMmoTpena 3amada onpepenenus uctoaHuka h(t)d(r) 37MeKTPOMATHUTHBIX BOJIH IO JAHHBIM
reopajiapa. 3ajada 3JeKTPOMATHUTHOTO 30HAMPOBAHUS 3aK/II09aeTCs B HAXOXK/IEHUM UMITYTbCHON Xapak-
TepUCTUKU cpezpl 7'(t) U COCTOUT B BBIYUCIEHUN OTKJIMKA CPEJbl Ha MMILYJIbCHBIN NCTOYHUK BO30Y2KIEHUS
4(t) (mempra~-dynxmus dnpaka). s onpeesieHns aHATATHIECKOTO BBIPAXKEHUST MMITYJIbCHON XapaKTepu-
CTUKHU OJHOPOIHOHN cpenpl 7(t) aBTOpaMM MCHOIL30BAH METOJ, IpeJIoxKeHHbll B [1, 2|. s onpenenenus
h(t) paccmarpuBaemasi o6paTHasl 3a/a9a CBOAUTCS K CUCTEME BOJIBTEPOBCKUX MHTEIPAJIbHBIX ypPABHEHMIL.
QOyukius ucTouHuKa h(T) OnpenesseTcs Kak pelieHne NHTErpaibHOTro ypaBHeHus Bojbreppa nepBoro poja
fit) = fot r(t—7)h(7)dr, B xoTOpOM f(t) — HmAaHHBIE, IOJIYYEHHBIE TeOPAJIAPOM B TOUKaxX Habroaenust. 3a1a-
4a BbIYHMCIIeHNs] DYHKIMA UCTOYHUKA reopajsapa h(7T) COCTONT B UMCJIEHHOM pelleHnu oOpaTHOM 3a/auu, B
KOTOPOI HEU3BECTHOI sABjsgeTcs (byHKIUs UCTOYHUKA N (T), & U3BECTHBIMHU MPEJCTAIOT 3JIEKTPOMATHUTHBIE
napamMeTphbl CPeJIbl: JIU3JIEKTPUIecKast IPOHUIIAEMOCT €; IIPOBOJIUMOCTD 0°; MarHUTHAsA TPOHUIAEMOCTD [ 1
OTKJIVK CpeJbl Ha 3aaHHoe Bo30yxKaeHue h(T).

Kmouesvie caosa: 06paboTka paaporpaMMbl, BOCCTAHOBJIEHHE UCTOYHUKA, MATEMATHIECKOE MOJIEIMPOBa-
HU€, Pe3YJIbTAThl PACUYETOB.
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