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Nonlocal boundary value problem with Poisson’s operator
on a rectangle and its difference interpretation

In the present paper, differential and difference variants of nonlocal boundary value problem (NLBVP)
for Poisson’s equation in open rectangular domain are studied. The existence, uniqueness and a priori
estimate of classical solution are established. The second order of accuracy difference scheme is presented.
The applications with weighted integral condition are provided in differential and difference variants.
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Introduction

Firstly, NLBVP for Laplace’s equation in a rectangular domain was considered by A.V. Bitsadze
and A.A. Samarskii [1|. Later, the n-dimensional problem was studied by A. L. Skubachevskii [2].
V. A. I'in and E. I. Moiseev [3] studied 2-d NLBVP with Poisson’s operator on rectangle IT

Au = f(z,y), (x,y) € [I=(0,1) x (0,), N
u(x,()) = u(wi) = u(0>y) =0, u(lvy) = 1;::1 O‘ku({kay)7 T € [07 1]7 /S [O,W], &k € (07 1)

m
and proved the existence and uniquness of classical solution when Y (g + |ay|) < 1, established a
k=1

m

priori estimate |ullyzm) < Cl|f|[r,qr) when —oo < >7 ap <1 andif all ag, & =1,m have the
k=1

same sign and given this condition offered the second order of accuracy difference scheme on a uniform

grid.

In [4], E. A. Volkov demonstrated a simple proof of the existence and uniqueness of classical
solution for Laplace’s equation with the original Bitsadze-Samarskii nonlocal boundary value condition
(NLBVC), proposed a finite-difference method on a square mesh that produces a uniform approximation
by the second order of accuracy in the difference metric C', applied the method to Poisson’s equation
Au =g when g€ C*>* for 0 < A < 1. In [5], he studied a solvability of the multilevel NLBVP for
Poisson’s operator on rectangular domain by applying the contraction mapping principle.

In [6], A. Ashyralyev established well-posedness of NLBVP in the open square Q2 = (0,1) x (0,1)
by proving the coercive inequalities for solution of the differential problem

uge(t, ) +a(r)ug, (t, 1) —ou(t,r) = f(t,x) in Q, u(0,7) = u(t,0) = u(t,1) =0, u(l,2) = u(\,x) inQ,
when smooth functions a(z) and f(t,z) satisfy the conditions

a(:c)zo,f(O,x):O,f(l,a:):f()\,x),0§x§1,0§)\<1,

1
where ¢ > 0 is sufficiently large number. In 2, under the condition [ |p(t)|dt < 1, E. Ozturk [7]
0

studied well-posedness of NLBVP for elliptic equation with integral type of NLBVC (in Q) by reaching
the coercive inequalities for solution of the problem

up(t, ) + (a(x)ugy(t, ) = f(t,x), u(t,0) =u(t,1) =0, u(0,z) = ¢(x),
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1
/p u(t, z)dt + ¢ (z)
0

and offered the first order of accuracy difference scheme against the term Z lp(tj)r| <1, 7=1/N.
j=1
By returning to Laplace’s operator on rectangular domain we note, that various numerical methods
on multilevel and integral type of NLBVPs were researched in [8-11] and other papers.
In the present paper, we generalize and prove the statements of the preliminary abstract [19] and,
additionally, apply our results to NLBVP with integral conditions. We study the problem

AU(.’E,y):f(LU,y), (l‘,y) eI, . .
u(m,()) = u(x,w) = u(O,y) =0, u(lay) = ;1 OZT’LL(CT,y) - ;1 55“(%4/) =0,z € [07 1]7 RS [0777]7

where feC(ﬁ), a, >0, Bs >0, 0<C1 o <G <1 and 0<m < .. <y < 1,
m

—00 < Z ar — Y. Bs <1 when ¢, <m ; Z ar <1 when (, > n . We prove the existence,
r=1 s=1

uniqueness and a priori estimate ||ul[yzqr) < C H fllyqm of the classical solution. Particularly, we

consider the problem when n=m and (. <n., r=1,n and for this special subcase we prove the

n
existence, uniqueness and a priori estimate when w < 1. We offer the finite difference
r=1

variants on a uniform grid and prove the second order of accuracy in terms of h = /h? + h2 for
h1 < cohs, ho — 0 in respect of each difference metrics C' and VV22
As an application, we study NLBVP for Poisson’s equation with weighted integral condtion (WIC)

Au(z,y) = f(z,y), (z,y) €1,
1

u(z,0) = u(z,m) =u(0,y) =0, u(l,y) = [ p(z)u(z,y)dz =0, 0<z <1, 0<y<m
0

respectively the behavior of p(z), p(z) € COro, 7], i.e., [r0,71] C (0,1), p(x) =0 in [0,1]\ [10,71].
We prove the existence, uniqueness and a priori estimate under the conditions on p(x) subject to
whether or no the weight function changes the sign, whether or no the sign changing acts from plus to
minus or vice verca, whether or no the number of sign changes is an even or odd. Particularly, when

!

p(x) does not change the sign and —oo < [ p(x)dz <1, we prove the existence, uniqueness, a priori
70

estimate and offer the second order of accuracy difference sheme.

Differential problem
We consider NLBVP in the rectangle I=(0<z < 1) x (0 <y <)

Au(z,y) = f(z,y), (z,y) €I, (1)
u(z,0) =u(z,m) =0, 0<z <1, u0y) =0, Lul(y) =0,0<y<m,

where

Lu)(y) = u(l,y) Zar (G ) +Zﬂsums,y) 5 (2)
s=1

0< <. <G<L 0<m<..<ny <l Cr#ns, ar >0, Bs >0, r=1,n, s=1,m. We study
the classical solution wu(x,y) € C*(II) N C(II) that satisfies the equation and all conditions of (1).
n

Further, on default, the symbol A1 denotes the term: —oo < > a,— > s <1 holds when {, < n;.
r=1 s=1

The symbol A2 denotes: > a, <1 holds when (, > n;. The A denotes that A1 holds or A2 holds.

r=1
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Theorem 1. Let f(z,y) € C(IT). If A holds, then classical solution of (1) exists and it is an unique.

Proof. Assume that classical solution of (1) exists. To prove the uniqueness it is sufficiently to show
that u(z,y) = 0if f(z,y) =0. Put f(z,y) =0 in II. Then wu(wx,y) is the solution of Laplace’s
equation, therefore, for each natural number k& € N the function

— V2/r [ ule.y)sinlhy)dy )
0
satisfies the equation X} (z) — k*Xg(z) =0, 0 < < 1. Moreover, since u(0,y) = ¢[u](y) = 0, then

X(0) =0, Xp(1 Zarxk ¢r) Zﬁsxk 7s)-

Hence, Xj(z) is the solution of the multipoint problem
X/(z) — k*Xp(z) =0, 0<z <1, Xi(0)=0, ¢([X;] =0, (4)
where ¢[Xj] = Xx(1) — i a, Xi(G) + i BsXk(ns) . By virtue of mean value (MV) property [12,
p. 1198-1199] (see also [1;;8,20]) we getﬁ}llat solution of (4) satisfies the problem! [17, p. 92-93]
Xi(x) = B Xp(2) =0, 0 <z <1, Xp(0) =0, Xi(1) = aXi () — BXk(px) (5)

where 2 o = Z oy, B= Z Bsy ) € [C15Cnl, My € [m1,Mm] and () < gy when ¢, < 1. By virtue

of |16, p. 1298- 1299] we Conclude that ( ) has only trivial solution since A holds, i.e., Xi(z) =0 in the
interval [0, 1]. Hence, from (3), using the completeness of orthonormal system {./2/7sin(ky), k € N}
on the interval 0 < y < 7, we result wu(z,y) = 0 in Il Since the uniqueness is proved, then the
existence follows from Fredholm’s property [2]| inherent (1). Theorem 1 is proved.

Theorem 2. Let f € C(II). If A holds, then for classical solution of (1) a priori estimate holds
lullwzmy < ClALom- (6)

Proof. To prove (6) it is sufficiently to establish the estimates

C Cy
[ Xkl Lo00,1) < ?;|‘fk|‘L2[0,1]7 Xkl oo, < kaHL2[01 1 X% Lap0,1] < CsllfrllLap0,1] (7)
for k € N, where
—V2/r [ f(o.p)sin(ru)dy ®)
0

so that (7) [3, p. 142-143]| results in

ullwzay < Cullfllaanys Nuwallwzan < Coll fllLoan), Nuayllwzany < CsllfllLoa) 9)
2 2 2

'Further in similar obstacles we will say, for example: the problem (4) is reducible to the problem (5), or the nonlocal
condition (4) is reducible to the nonlocal condition (5), or we reduce (4) to (5).

2Further in this section the symbols o and 3 denote the sums a = Z ar and 8 = Z Bs.
r=1 s=1
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and, after all, (9) results in (6). Hence, our target is to prove (7) Thereto, usmg (3) and (8) for equation
Au(z,y) = f(z,y) and conditions u(0,y) =0, wu(l,y) = Z aru(Gryy) — Z Bsu(ns,y) , we conclude
that Xj(z) satisfies the nonhomogeneous multipoint problem (this problem was studied in [16,17])

3

XI(2) — k2 Xp(z) = fa(z), 0 <z <1, Xx(0) =0, Xzx(1) = zijl 0 Xp(G) = 3 BaXi(ns) . (10)

s=1

Actually, the estimate
X)) €€ @) )
k = k‘3/2 k\T LQ[O,I]
results in the estimates (7). Indeed, put Xi(x) = X (z) + ?k(x), where X (z) is the solution of
Xp(2) — KX p(z) = fi(z), 0 <o <1, X(0)=X4(1) =0, (12)
and ?k(m) is the soluion of
X, () — k2X4(2) =0, 0 <z <1, Xu(0) =0, Xp(1) = Xx(1) . (13)

Thereby, it is sufficiently to show that the analog of (7) holds for each of the functions Xi(z) and
X (). Thereto, we use the explicit solution of (13) to get

Rl < | Xy | (Dobebdrye (1)
Rl < & X | (Jocomtithoddrys (15)
X0 < 2 | Xu(1) | (W)” g (16)
and then, in view of W <1 and W < &, from (14)-(16), we get
Rllon < S0 o (Belliaon € S0 lliaoss 1Felliaoa) < OV fellaoa (17

It means that if (11) holds, then (7) holds for the function ?k(x) Moreover, if (11) holds, then (7)
holds for Xy(z) [3, p. 143-144]. Therefore, to establish (7) for X (z) it is sufficiently to prove (11).
Let we prove (11). In view of [17, 92-93] the multipoint problem (10) is reducible to 3-point problem

Xil(x) = k*Xp(z) = fr(z), 0 <z <1, Xp0) =0, Xp(1) = aXp((p) — BXk(m) » (18)

where the points (i € [C1,Cnl, ) € [1M1,7m], so that (g < npy when ¢, < m1. Therefore, it is
sufficiently to obtain the estimate (11) for the solution of (18) when the term A holds.

Let A1 holds, ie., —oo <a—f <1 and ¢, <. Put sign(Xp(1) Xi(np) Xe(Cp)) # 0. We
consider the alternate subcases: sign(Xk(l)Xk(n[k])) = —1 and sign(Xg(1 )Xk(n[k])) 1. Note in
advance, if sign(Xy(1) Xp(np) Xk(Cpy)) = 0, then (11) results from the current proof.

Subcase 1.1 :
If sign(Xi(1)Xk(ny)) = —1, then in view of Bolzano theorem Xj(7) = 0 for 73 € (g, 1). Then
by virtue of |3, 143-144|

1 1
” Xk’ HLQ[O,T;C} < ﬁ kaHLQ[O,Tk} ) || XIZ: ||L2[0,7’k] < % ka||L2[0,7’k} . (19)
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Since Xj(0) =0, then by virtue of Cauchy-Bunyakovskii inequality

Cix
X2 () —|/Xk dx|—2/Xk )Xh(@)de] < 2 Xl oco )l Xellmapges (20)
M[k] N[k]
XR0n) = | [ XE@)del =2 | [ Xu(0)Xp(@)da] 2 10| cto | X o (21
Using (19) in (20) and0(21) we get
| Xl | < 5 elliony | Xl | < 5 lellio )

Put ¢; = a+ . From the 3-point condition (18), in view of (22), we obtain the desired estimate

V2
| Xk(D) | < erogps [l - (23)

Subcase 1.2 :
Let  sign(Xp(1)Xg(np)) = 1. Then sign(Xp(1)Xk(x)) = 1 in view of (18). By virtue of MV
property [12, p. 1198-1199] we reduce the 3-point condition (18) to

Xk(0) =0, Xk (&) = vXk((y) (24)

for & € [, 1] and v = 195 Note, 0 <wv <1 since a—pf <1, (g <& since (g < By
virtue of [12, p. 1199-1200] we specify an appropriate point 74 € [(j, &k, so that the solution of (18)
satisfies the classical boundary value condition

Xi(0) =0, Xp(7h) + huXp(ri) =0 (25)
for hy > 0. Therefore, (19) holds [3, 143-144]. Since () < 7%, then (20) holds, and then the first
estimate (22) holds. Since X(1), Xi(m), X&((x) have the same sign, then in view of (18)

2
(14 B) min{| X (1), [ Xe ()|} < af Xp(py) | < ak{/g [ frll Lafo,1] >

2
min{| X (1)], | X ()|} < 11/%{ 1l zafon - (26)

Hence, the estimate (11) follows from (26) or, in view of (22), results from (18), i.e

V2
| Xe(1) | < 23372 [ fxll 2201 > (27)

_ % if | Xk(D] < [ Xe(np)!
s Ha, i [ Xe(1)] > [Xe(p)] -

Let A2 holds, i.e., a <1 and ¢, £ m. Put () # npy » because if this two points coincide, then
NLBVC (18) transfoms to

Xi(0) =0, Xi(1) = (a = B)Xp (&) for & = (g =mnp while —co<a-pB<1,

so that the estimate (11) holds in view of [3]. Moreover, we consider the layout (y > nyy only,
since for the alternate order when (pj < 7 (note that —oco < a—f < 1 since a < 1)
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the estimate (16) is proved already in the above case under the term A1. Additionally, we put
sign(Xk(1) Xi(nr) Xk(Cry)) # 0. Note in advance, if sign(Xg(1) Xi(np) Xi(Cgy)) = 0, then the
estimate (11) results from the current proof. In summary, we have to consider the alternate subcases
when sign(Xk(l)Xk(C[k])) = —1 and sign(Xk(l)Xk(C[k])) =1 for np < (-

Subcase 2.1 :

If sign(Xk(l)Xk(C[k])) = —1 and 7y < (), then by analogy with the subcase 1.1 we obtain all
estimates (19)-(23).

Subcase 2.2 :

Put sign(Xk(l)Xk(C[k])) =1 and 7y < (- Then we have the alternate inequalities: |Xy((jx)| >
> X ()] and | Xi(Gy)| < Xk(D)].

If X3(Cpry) = Xx(1), then by virtue of Rolle’s theorem X (7x1) =0 for 731 € [y, 1]-

If [ Xp(Cry)l > [Xk(1)], then Xp(1) = v Xy ((y) for an appropriate value vy, 0 < v, < 1. Hence,
by virtue of [12, p. 1199-1200] we specify an appropriate point 7x2 € [(j], 1], so that the classical
boundary value condition holds for hy > 0: X3(0) = 0, X (7k2) + hiXp(7k2) = 0. Thereby, if
| X% (Crp)| = | Xk(1)[, then for some 7y € [y, 1] and hy >0

Xi(0) =0, Xp.(7) + hpXp(6) =0

Since 7 < ([, then using the method of section 1.1 we succesively obtain the estimates (19)-(23).
If | Xk ()l < [Xk(1)], then sign (X () Xe(1)) = sign(Xe(np) Xx(Cpy)) = —1 since @ <1 and
because sign(Xk(l)Xk(C[k])) = 1. By virtue of Bolzano theorem Xy (7) = 0 for 7 € [np), (]
Then, by analogy with subcase 1.1 we get (19), (21) and the second estimate in (22). Hence, if o <1,
then in view of (18)

2
(1= )Xl < Al ell o 2

Put ¢3 = % + /3. Using (18), in view of (22) and (28), we obtain the desired estimate

V2
| Xp(1) | < 37372 [ fll Lafo,1] - (29)
At least, if | X5 ()| < [Xk(1)] but « =1, then to estimate X (1) we reduce NLBVP (18) to
LIXp(z)] = fr(zx), 0 <z <1, Xp(0) =0, Xp(1) = Xi(Cry) — Y » (30)

where L[Xj(z)] = X}/(z) — k*Xi(z) and v = BXp(np). In view of the second estimate in (22)

il < B ell o @)
Put Xj(z) is the sum Xj(z) = Vi(z) + Wi(x), so that Vi(x) is the solution of
LiVig(z)] = fr(x), 0 <2 <1, Vi(0) =0, Vi(1) — Vi({wy) =0, (32)
and Wi (z) is the solution of
LWg(z)] =0, 0 <z <1, Wg(0)=0, Wi(1) = Wi(Cx) = = - (33)

The classical solution of (32) exists and is a unique [12, p. 1198-1200|. By virtue of Rolle theorem
Vi(mi) =0 for 7 € (Cp,1). Then similar subcase 1.1 the analogs of (19)-(20) and the first estimate
(22) hold for Vi(x). Hence, since V(1) = Vi(()

NG
[ Vi(1) | < 132 [ !l £afo,1) - (34)
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sin -1 i

n the other hand, for Cp = —v |1l — —=7— the function ) = Cp= 1s the solution o
On the other hand, for C 1— 2 T the function W, CpSEhkz s the solution of

33) since 1 — in| > 0 for () < 1. Then, in view of 2-point condition (33),

i el > 0 for Gy < 1.Th f d
sinh k¢ -1 /2
Wil < (1= 5 ) sl illzaoa - (35)
Hence, for M = Sslﬁﬁff
1 V2

Wi (1)] < mﬁ@”fk”@[o,u : (36)

Then, in view of (34) and (36), |Xx(1)| < ca 22 || (@)l Loy for e =1+ Frty .
Finally we resume, that for the classical solution of (10) the estimate (11) is proved for the constant
C = max{cy, c2, c3,cq4}. Theorem 2 is proved.
— n
Theorem 3. Let f € C(II), m=n and ( <mny, r=1,n.1f > w < 1, then
r=1
classical solution of NLBVP (1) exists, it is an unique and a priori estimate (6) holds.
Proof. Suppose that classical solution exists. In view of Theorem 2, we rewrite (10) as

LIXip(2)] = fa(@), 0 <z <1, Xu(0)=0, £[X;]=0, (37)

where L[Xg(z)] = X[/(z) — k*X)(2) and £[X;] = Xk(1) — Y [0 Xk () — BrXk(n,)] - To obtain the
estimate (11) we put Xy(z) = Vi(x) + Wi(x), so that Vk(x)_'s the solution of problem

e

LVi(z)] = fr(z), 0 <z <1, Vi(0)=0, Vi(1) =0, (38)

and Wy(z) is the solution of problem
LWi(z)] =0, 0<z <1, Wi(0)=0, (W] =—L[Vk]. (39)
For solution of (38) the analog of (7) holds (see Theorem 2). Hence, since V4 (0) =0 and ¢, € (0,1),

n- € (0,1), »=1,n, then

V2 V2
Ve(Gr)] < WkaHLQ[O,I]a Vie(nr)| < Wka”Lz[O,l] :

Therefore,
- V2
€[V < (Zlm +60)) 573l lago.y - (40)
The problem (39) has the solution Wy(z) = WySEhkr =y, — A ;
1—(sinh k)=! 3" [ sinh k¢ —Br sinh kny |
r=1

where the denominator of Wj, is nozero when 3 > [(ar - Br) + oy — BT|] < 1. In view of (40),
r=1

M=

V2
Wi(1)] < e
k3/2[1 -1 ;(ar — Br + o — B])]

(a’f + 67‘)

1

[ £kl Lafo,1) -

Hence, (11) holds since Vi(1) =0, ie., | Xp(1) | < C% [|fullzaj0, -
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n
At least, put 3 > [(ar — Br) + |y — ﬁ,” =1, then similar (35), but in view of (40), we get
r=1

inh 1. ﬂ
W)l < (1= 22 T[S a4 6)] s fellzapn

r=

where p, 1 <p <n is anatural number, so that

( Bp) + |O‘p | >0, but (ap+i - erJri) + |O‘p+i - Bp+i|

. 5 =0 forall ’L,p<2§nv

and p=n if i doesnot exists. Hence, (11) holds for 3 >~ [(ar—B,)+|ar—B,|] =1 since V(1) = 0.

n

In summary, for the solution of (37) the estimate (11) holds when % > [(ar — Br) + |y — BTH <1
r=1

Hence, in view of Theorem 2, a priori estimate (6) holds for NLIVP (1), thereto the solution of (1) is

a unique and, therefore, in view of Theorem 1 the solution exists. Theorem 3 is proved.
Difference variant
We consider the difference variant of NLBVP (1)

AY = Yfz + ng = f(xiayj)7 (xi)yj) € H>
Yo = Y]yer =0, 25 € [0,1), Yoo =0, y; €[0,7],

[ 1)h = r—1c. h
Ly — Zar{ Zg‘w][( <r+h) 1—Grl +YZ j[C hir 1}}_ (41)

1

_ 258{ %J%’HMJFYMSH W}_YNIJZQ j=T1,Np —1,

\

where iCrh‘l <G < (iCr -+ 1)h1, r = 1,7, inshl <ns < (ins + 1)h1, s =1,
hy < %min{CT—i-l =G, 7 =0,n, Ns41 —ns, s =0,m, |C7“ - 7’8|7 r=1, §
Cat1 = NMmy1 =1, h1 < coha, ha =m/Na.

fOl“ hl = 1/N1,
m}, G =m =0,

S

Theorem 4. Let the term A holds and u € C®(II) is the solution of NLBVP (1). Then solution
of the difference problem (41) approximates wu(z,y) by the second order of accuracy in terms of
= \/h? + h3 when hy — 0 in respect of difference metrics C, W3 .
Proof. We denote z =Y — u and obtain the difference problem

Az=f—Au=F, (ih1,jho) €Il, z|p—0 = z|y=0 = 2|y=r =0, Lz = —Lu. (42)
For this problem F = O(h?), Lu = O(h?) [14, p. 81, 229]. Put z = Z+ 2, where Z is the solution of
AZ=0, (ih1,jhe) €II, Z|pmg = Zly—0 = Zly=r =0, LZ=—Lu, (43)

and 2 is the solution of
Az =F, (ih1,jh) € 11, Z|p—0 = Z|y—0 = £|y=r =0, LZ=0. (44)

kNgl

To estimate Z we use [14, p. 113] the orthogonal system of mesh functions {sin(ky)}; , so that

Z wsin(ky), y=jha, j=0,N
k=1
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thereto Zp, k=1, Ny — 1 is the solution of difference problem
A2k — M2 =0, Zkla=0 =0, LZ=—Q, (45)
where A1Z = Zz,, A\ = 4h2_2 sin?(khy), Qr = (Lu)p so that, in view of [3, p. 142-143],

Zy; = Apsinh(ilng), Ap = —Qx/Llsinh(ilng)], i=0,N1, g, =1+ M\hi/2+ \/\h? +A2h1/4.

By acting £ in the denominator of the fraction Ay, we get

—L[sinh(i1n g;)] > sinh(NVy Ingx) — Z a, sinh((i¢, + 1) Ingy) + Z B sinh(iy, Ingy) . (46)

r=1 s=1
Hence,
—L]sinh(i1n g)] > sinh(Ny Ingx) — S'sinh((i¢, + 1) Ingz) (47)
for
Zar_ Zﬁsa if CTL<7717
S = Tﬁl s=1
Ny, it G>m.
r=1
Then
—L[sinh(i1n g;)] > C'sinh(Ny Ingg) (48)
for C >0,
1, if —o0o< Zar_26s§07 Cn<771;
r=1 s=1
C= 1—(2051”_253), if O<ZQT_ZBS<17 Cn <M1
r=1 s=1 r=1 s=1

1-=> ap, if ap<1, §>m.

Let we show that when S =1 in (47), then the inequality (48) holds for C' =1 — m subject
to an appropriate 0, 0 < ¢ < 1. Indeed, in view of (47)
o ) sinh((i¢, +1)Ingy)
— L[sinh(iln g)] > sinh(N; 1 [1— n }>o.
[sinh(i1n g )] > sinh(N7 In g) Sinh(Ny 0 1)
Hence,
qunJ’_l _ q_(iCn+1)
—L[sinh(i1n g)] > sinh(NV; In gx) [1 — & ~ k,N (49)
9 ' — 9 !
Since g > 1, then
i, t1 (i, +1) icr, +1 —2(i¢,, +1) icn 1
' g g g T g (50)
A i | By "

Since hy <@ for 6 = imin{G1— G, v =0,n, o1 —ns, s=0,m, |G —ns|, v =T,n, s =1, m},
then for specified 6 =1—¢, —6 the inequality ¢, +hy; <1—4 holds. Hence, i¢, +1 < hy*(1—4).
Then from (60) it follows that

iC'nJ’_l _(iCn+1) Nl(lfé)
9 — 4 < dx < 1
N- —N — N- — N :
qx ' — 9 ! 9 ! qx 10
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Hence, in view of (49),

1
—L[sinh(71n g)] > (1 o 6> sinh(Ny Ingy) - (51)
4y,
Since q,ivl > (14 vVAch1)M > (1+vAh1)M > (14 /A1) > 1+ 2 | then from (51) we obtain
L 1 .
—L[sinh(ilng)] > [1 - m} sinh(N7 Ingy) . (52)
In summary, if the term A holds, then
—L[sinh(i1ngg)] > Csinh(Njlngg) > 0. (53)

Finally, in view of (53), by virtue of [3, 150-151], we obtain the estimates

max |Z;| =
l?]

Therefore, max; ; |2;;| = O(h?),

O(h%), |Izllwz = O(h?), max |2i;] = O(h?), |I2llwz = O(h?).

2] lwz = O(h?). Theorem 4 is proved.

Corollary 1. Let n = m, ¢ < ny, = 1L,n. Let u € CW(I) is the solution of NLBVP (1).
n
If > w < 1, then difference solution of (41) approximates u(z,y) by the second order

r=1

of accuracy in terms of h = \/h} + h3 when hy — 0 in respect of difference metrics C, W2
Proof. By virtue of (42)-(46) we get the inequality for the denominator of the fraction Ay:

—L[sinh(71n gg)] > sinh(NV; In gx)
r=1

Since ¢, +1 <14y, r=1,n, then

-3

—L[sinh(iln g;)] > sinh(N7 In g)

n n
— Z a, sinh((i¢, +1)Ing;) + Z By sinh(iy, Ingy) .

r=1

— Br) sinh((i¢, +1)Ingg) .

r=1
Hence,
n i A1 —(ig,+1)
— L[sinh(iln gp)] > [1 =S (ar = B) ( k k- )} sinh(NV7 In ).
r=1 qk Yk
Then
n ZCT‘J’_l (iCr+1)
. . Ay — + |« .
—L[sinh(ilng)] > [1 - Z <( r =) 5 o 6T‘)< k N )} sinh(Ny In gi,). (54)
r=1 qk — 4
Put p is a natural number, 1 < p <n, so that
(ap — Bp) ;‘ lap — Byl >0, but (p+i — Bp+i) ‘2|‘ lap+i — Bp+il —0 forall i,p<i<n
(if such p does not exists, or if such ¢ does not exists, then put p = n). Hence, in view of (54),
i+l —(ig,+1)
—L[sinh(i1ng)] > [1 — 5 O } sinh(Ny In gx) (55)
qk; —q
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for S = > w . By analogy with (50), for g > 1 and for 6 =1—(,—0 we get

r=1
ingrl 7(’i<p+1)
— 1
Qk qk_Nl S NS (56)
qk — 4 qx

since the inequalities (, +h1 <16 and i¢, +1 < hi'(1—6) hold. Hence, the analog of (47) holds,
then (51)-(53) hold, too. Thereby, in view of Theorem 4, the proof is finished. Corollary 1 is proved

NLBVP with integral condition

Here we apply the results of the previous sections to NLBVP with weighted integral condition (WIC).
We consider the differential problem in the rectangular 11

AU(CU, y) - f(x,y), (a:,y) S H’ (57)
u(z,0) =u(z,m) =0, 0<z <1, u0,y)=0Zu(y) =0, 0<y<m,

Tlul(y) = u(t.9) - [ p(o)ula,y)de. (53)

where p(z) € Clro, 11, [10,71] C (0,1), 70 <7 and p(z) Z0 in |79, 71].
Theorem 5. Let the function p(z) changes the sign® no more than once in the interval (79, 71). Let :

T
—00 < /p(x)dm <1, if p(z) does not change the sign, or changes it from plus to minus ;
7o

T1

/ de <1, if p(z) changes the sign from minus to plus .

70

Then classical solution of (57) exists, it is an unique and a priori estimate (6) holds.
Proof. Assume that classical solution exits. Since

/ (1,y) sin(ky)dy = // u(z,y)dx sin(ky)dy = 7[)(»@)(]%%1/) Sin(k‘y)dy> dv

) 0

then from (57)-(58), in view of (3) and by virtue of Theorem 1, we conclude that the function Xj/(z)
satisfies the problem

X(z) — k*Xp(x) =0, 0 <z <1, Xi(0)=0, Z[X}] =0, (59)

T1
where Z[Xj] = Xi(1) — [ p(2)Xj(z)dz . By virtue of the integral type of mean value theorem, we
70
reduce WIC problem (59) to the 3-point problem
X/ (z) — k*Xp(z) =0, 0 <z <1, Xg(0)=0, {[X;] =0, (60)

where
T1

(X = X(1) - ( / Wd) XelGe) + ( / ol dx) Xlm) (6

70

3The sign changing number and order are regarded as argument z shifs towards 7.
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for some (i € (19, 71) and n € (79, 71). Denote

oo [ty Fiol-ato),, ©2)

70
If p(z) does not change the sign, then:
Xk = Xi(1) —aXp(() and 0 <a <1, if p(x)is a nonnegative function ,

[ Xk) = Xi(1) + BXi(nk) and —oo < —F <0, if p(x) is a nonpositive function .
If p(xz) changes the sign, then ¢[Xj] = X (1) — aXk (k) + BXk(nk) , so that

—co<a—pF<1, ¢ <n if p(x)changes the sign from plus to minus ,

a <1, np < if p(x) changes the sign from minus to plus .

Hence, in view of (61)-(62), for the 3-point NLBVP (60) the term A holds in extended form [16, p. 917],
i.e., includes the option when o =0 or = 0. Then, in view of Theorem 1, the problem (60) (and in
turn the problem (59) of course) has only trivial solution Xj(z) = 0, and, therefore, u(z,y) =0 in
the rectangle II. Since the uniqueness for the problem (57) is proved, then the existence follows from
the Fredholm’s property inherent such NLBVP with WIC [15, p. 68-70|.

To prove a priori estimate (6) we follow Theorem 2 and, in view of (8), get WIC problem

Xil(x) = K Xg(z) = fu(z), 0 <z <1, Xp(0)=0, Z[Xx] =0 (63)
(this problem was studied in [17]) and, in view of (60), reduce it to the multipoint problem
Xil(x) = K Xi(z) = fu(z) , 0<z <1, X4(0) =0, ([X3]=0. (64)

In view of (61)-(62) and by virtue of Theorem 2, we ascertain that (11) holds for solution of (64) and,
thereby, it holds for solution of (63). Further proof is similarly of Theorem 2. Theorem 5 is proved.
Corollary 2. Let the function p(z) has an arbitrary order and a finite number of sign changings.

T1
If [ wdx < 1, then classical solution of (57) exists, it is an unique and a priori estimate (6)
70
holds.
Proof. The proof results from Theorem 1 and Theorem 2 by using Theorem 5. Corollary 2 is proved.
Corollary 3. Let starting from plus to minus the function p(z) changes the sign 2n — 1 times in

the interval (79,71) for specified natural number n and ¢&,...,&2,—1 are the sign changing points.
Put =7 and &, =7 If

"4 Sok ok
— <
Z 2( / p(x)dx + ‘ / p(m)dw’ ) <1,
k=1
§2(k—1) Ea(k—1)

then classical solution of (57) exists, it is an unique and a priori estimate (6) holds
Proof. 1t results from Theorem 1-2 and by using of Theorem 3, Theorem 5. Corollary 3 is proved.
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Difference application for WIC

We consider the difference problem

Ylyo = Y]yer = 0, 2; € 0,1), Yl]oeo=0, y; € [0,7],

N (65)
TY =5 27 YpYij+ pic1Yic1j)h — Y, ; =0, j=1,Ny — 1,
i=1

where p(z) does not change the sign, p(z) € C[0,1] and p(z) =0 in [0,70] U [, 1], pi = p(zi) ,
hy < %min{Tg, 1-— 7'1}, hi1 < Cth, hi = 1/N1, hy = 7T/N2.

— T1
Corollary 4. Let w € C(TI) is solution of WIC NLBVP (57). If —oo < [ p(z)dx < 1, then the

70
solution of (65) approximates wu(z,y) by the second order of accuracy in terms of h = /hi + h3
when hg — 0 in respect of difference metrics C, W3.
Proof. Following Theorem 4, for z =Y —u we obtain the difference problem

Az=f—Au=F, (ih1,jhe) €I, z|p—0 = 2|y=0 = 2|y=r =0, Tz =-Tu, (66)

thereto F' = O(h?) and Tu = O(h?) as a neglect of the trapezoid method. Put z = Z + 2, where 2
is the solution of

AZ=0, (ih1,jhg) €T, Zlamo = Zlymo = Zlyer =0, TEZ=—Tu, (67)
and % 1is the solution of
Az=F s (ihl,jhg) ell, 2|x:0 = i‘yzo = ZA"y:W =0, Tz=0 (68)

By virtue of the orthogonal system [14, p. 113| of the mesh functions {sin(ky)}, h= N2 !

Z ksin(ky), y = jha, m,
k=1
thereto Zp, k =1, No — 1 is solution of the problem
AMZ— M2k =0, Zkla=0 =0, TZr=—Q% (69)

for A1Z = Zps, A = 4hy2sin?(khy), Q= (Tu);, and, in view of [3, p. 142-143],
2, = Apsinh(ilngg), Ay = —Qp/Tlsinh(ilngy)], i =0,Ni, g = 14+ \eh?/2 4+ \/Ah? + AEhi/4.
Acting by T we get the inequality for the denominator of the fraction Ay:

—T [sinh(iln gx)] > sinh(N7 In g;) Z 27 (pZ sinh(é1ng) + pi—1 sinh([¢ — 1] In qk)>h1 . (70)

If p(x) <0, then —7[sinh(ilngg)] > sinh(NiIngg) . If p(z) > 0, then for i,h1 < 70 < (ir, + 1)1
and irlhl << (iTl + 1)h1

iry +1

—7T[sinh(iIn g;)] > sinh(Ny Ingy) — sinh ((ir, + 1) Ingx) Z 27 (pi + pi—1)h1 .
i=irg+1
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ir 1
Denote Sp, = Y. 27Ypi + pi—1)h1, then
=i +1

—T[sinh(ilngg)] > (1 — Sp,) sinh(Ny Ingy) .
1
Since [ p(xz)dz < X for specified A, 0 < A <1, then Sj, < A for sufficiently small h;. Hence,
0

—Tsinh(ilngg)] > (1 — A)sinh(NyIngx) > 0.

In summary,
—T [sinh(i1ng)] > C sinh(Ny In gx) (71)

for

c— 1>0, if p(x) <0,
Sl 1=-X>0, if p(z)>0.

In view of (71) and by virtue of Theorem 4, the proof is finished. Corollary 4 is proved.
Conclusion

We considered NLBVP for the Poisson’s operator on a rectangular domain and obtained new
accurate conditions of the existence, uniqueness and a priori estimate of classical solution. We applied
our results and researched NLBVPs with weighted integral condition. We offered the difference variants
and proved the second order of accuracy on a uniform grid.

The author thanks to Prof. Dr. A. Ashyralyev for his attention to author’s preliminary results [19]
which preacted this paper research.
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JI.M. /loBieroB

Tikoypernnrta Ilyaccon onmepaTopbiMeH OepijireH OeiijToKa b Ii
HIeTTiK ecebi >KoHe OHBIH, aiibIPBIMAIBIK NHTEPIIPETAIUSICHI
2Kywmpicta ambik TiKOYpoIiTe! 001bIcTa [Iyaccon Ternmeyi yimin 6eitmokabai meTTik ecebinin auddepenn-
AJIIBIK YKOHE aflbIPBIMJIBIK HYCKAJIAPbl KApacThIpbLIral. Kiraccukasblk merriMinig 6ap 6051ybl, KaIFbI3Ibl-
FbI >KOHE AIlPUOPJILIK OaraMbl aHBIKTAJFaH. EKIHINT perTi JMoJIiKieH albIPpbIMIBIK CXeMaChl KOPCETIJIreH.

CaJMaKThbl MHTErPaJIbIK, apTTaphl 6ap KochIMIIaaap AuddepeHnralablK *KoHe afbIPhIMIBIK, HYCKAIa
YCBHIHBLIFAH.

Kiam cosdep: myaccoH omeparopbl, 6eHIOKabIl METTIK ecebi, TIKOYPHII, aifbIPBIMIIBIK, CXEMACHI.
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.M. dosneron

HenokanbHasa KpaeBas 3aja4a ¢ onepaTopom Ilyaccona Ha
NpsAMOYTOJIbHAKE U €€ PA3HOCTHAs WHTepIIpeTanus

B crarpe uzyuens! quddepennnanbable 1 PASHOCTHBIE BAPUAHTHI HEJIOKAJIBHON KPaeBOil 3a/1a4u /I ypaB-
Henus [lyaccoHa B OTKPBITOI MPSIMOYTOJIBHOM OOJIACTH. YCTAHOBJIEHBI CYIIECTBOBAHNE, €IMHCTBEHHOCTh U
aIpHUOPHAsi OIEHKA KJIaCCUIeCKOro pemrenusi. [IpeacraBiera pasHOCTHAS cXeMa BTOPOTO MOPSIIKA TOYHOCTH.
IIpusoxkennsi ¢ BECOBBIM MHTEI'DAJIHHBIM YCIOBHEM JAHBI B 1 depeHnnajbHOM U PA3HOCTHOM BapHUAHTAX.

Karoueswie crosa: orepaTop HyaCCOHa, HeJIOKaJIbHasd KpaeBas 3aa4a, IIPAMOYTOJBbHUK, PA3HOCTHAA CXeMa.
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