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On the calculation of rectangular plates
by the collocation method

The article is devoted to the application of the collocation method to solving differential equations, which
are the basis for calculating many problems of mechanics. In this article the structure of this method
is presented, its main components are highlighted; its types are characterized, as well as its classical
approaches. The research of the problem of rectangular plates bending is carried out by the method of
collocations in this article. The collocation method, like all numerical-analytical approximate methods, has
a number of advantages and disadvantages, which are also noted in this article. The article is focused mainly
on mechanics, engineers and technical specialists.
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A collocation method is one of the classical methods, which has been repeatedly used to solve many problems
of structural mechanics. A collocation method is a method for the numerical solution of ordinary differential
equations, partial differential equations and integral equations. The idea is to choose a finite-dimensional space
of candidate solutions and a number of points in the domain (these points are called collocation points), and to
select that solution which satisfies the given equation at the collocation points.

The collocation method for solving differential equations

The collocation method is a numerical-analytical approximate method for solving a differential equation

Ly(z) = f(), (1)

where L is a differential operator; y(x) is a function, which satisfies the given boundary conditions at the
boundaries of the interval (a,b); (a,b) is the domain of definition of the function y(z).
The solution is sought as a finite series

M
y(x) = Z A77L<pm(x)' (2)
m=1

Here ¢, () is the coordinate functions satisfying the given boundary conditions; A,, are unknown coefficients;
M is the number of members of the series.

To determine the coefficients A,,, the solution (2) is substituted into the differential equation (1), which is
satisfied at the points z; (i = 1,..., M), i.e. at the collocation points from the interval (a, b)

M
Ly(z:) = Y AnLom(z:) = f(x2). 3)

m=1

As a result, we obtain the system (3) M of algebraic equations. Having solved this system, we determine
the unknown coefficients A,,. After determining the coefficients, the function y(x) and the necessary derivatives
of this function are calculated at any point of the interval (a,b), as well as outside the interval. The accuracy
of the solution depends on both the choice of functions ¢,,(x) and the choice of collocation points.

The collocation method refers to the simplest approximate methods for solving differential equations,
requiring only differentiation, functions calculation, and solution of a system of equations. In contrast to the
grid method, after determining unknown coefficients numerical analytical methods allow to use the methods of
mathematical analysis, to differentiate, to integrate, to determine the maximum-minimum points, etc. [1]
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Internal collocation method

As mentioned above, the coefficients A,, are chosen so that equation (1) is satisfied at the points of
collocations within the domain of definition of this equation.

Boundary collocation method

For the boundaries of a complicated form, the representation of the solution in the form (2) may be useful, where
the coordinate functions ¢,,(x) satisfy equation (1), but do not satisfy the boundary conditions. The equations
for determining the coefficients A,, are obtained from satisfying the boundary conditions at the points of the
boundary [2].

The calculation of rectangular plates in bending by the collocation method

Consider a rectangular plate. We take the plate deflection function in the form

M N
y) = Z ZAmnXm(x)Yn(y)v (4)

m=1n=1

where X,,(z), Y, (y) are functions satisfying the boundary conditions of the plate support at the boundaries
=0,z =aand y =0,y =0 respectively; A,, are unknown coefficients.

We define the collocation points x;, y;, ¢ = 1, ..., K, where K = M x N is the number of points of collocations.
K is equal to the number of members of the series.

The plate equilibrium equation is satisfied at the collocation points

V4w(xi,yi) = (](xiTW’ (5)

3
where D =

substitute (4) into (5)

is the cylindrical rigidity of the plate, ¢ is the intensity of the external distributed load. We

i 8 wmn(xzyyz) +284wmn(xwyz) + a4wmn<xi7yi)
— Ozt 0x20y2 Oy*

m

_ Q(xiayi). (6)

n [ X (@)Y (yi) + 2X 00 (2) Y, () + Xon (20) Y, ()] D

-3

m=1

M
M N
Consider a rectangular plate, hinged on the contour, with the following dimensions 0 <z < a, 0 <y <b.
The boundary conditions of the plate bearing are

w(0,y) = wla,y) =0; M(0,y) = M(a,y) = 0;

w(z,0) =w(z,b) =0; M,(x,0) = M,(z,b) =0. (7)

From the condition that the bending moments on the contour are zero, we have

Pw(0,y)  Pw(ay) 0
ox2 ox2 7

O*w(x,0)  0*w(w,b)
oz oy?

Taking into account the boundary conditions, we accept

=0.

. € . )
X = Slnmwg, Y, = smnﬂ'g;
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and obtain a solution in the form of a double series

M N
w(z,y) = Z ZAmn sinmwg sinmr%.

m=1n=1

Obviously, the boundary conditions (7) are satisfied.
The system of equations for the collocation method (6) is obtained in the form [1]

M N
<g>4 Z Z Apy [m* 4+ 2(Amn)? + (An)?] sinmr 2 sinnr 2l = M,

m=1n=1 a b D
a
i=1,.,K; A=-
b
or
M N A
Z ZA C s Ti . yi _ q(@i,yi) a
mnCmn SINMT—SIMNT— = ——— —,
a b D 4
m=1n=1
where

Cpmn = m* +2(Amn)? + (An)™.

Examples of the calculation of a rectangular plate with one member of the series (4) and with three members
of the series (4) are given in [1]. As can be seen from these examples, the accuracy of the calculation depends
on the number of members of the series and also on the ratio of the plate sides. For a square plate, the accuracy
of the calculation by three series members as compared to the calculation with one series member increased
about three times for both deflections and bending moments. For a rectangular plate with A = 1.5 the accuracy
increased significantly only for deflections, for bending moments the accuracy changed slightly.

It is also shown in [1] that the accuracy of the calculation results depends on the choice of collocation points.
It can be seen from the results of calculation that for a square plate the change of collocation points led to a
certain increase in the accuracy of deflections and a decrease in the accuracy of bending moments. At the same
time, the values of deflection and bending moments were greater than the exact values, while in the previous
calculation their values were less than the corresponding exact values. For a rectangular plate the change in
collocation points led to a certain increase in the accuracy of the deflection and a more significant increase in
the accuracy of the bending moments [1].

In the case of a bending problem for a rectangular plate, the desired deflection function w(z,y) can be
represented as a sum

M
w(z,y) =Y Ampm(z,y), (8)

where A,, are the sought-for constant coefficients,

Om(®,y) = Em(2)Nm(y)

are pre-selected functions that determine the possible deformation of the plate and satisfy all boundary
conditions.
Substituting (8) into the plate equilibrium equation

DV*V?w = q(z,y),

where V2V?2w is the biharmonic operator, we get the expression

M
S e (€LY @ma(v) + 260 (1 (w) + @l )] = L2 0

m=1

which is generally not satisfied for any values of the constants A,,.
We require that the expression (9) be satisfied at M points (z1,41), (Z2,¥2),.-., (Zn,Yn) in the considered
domain. Then from (9) we get the system of algebraic equations
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Xl\i A [E8Y (@ 0)mm (y1) + 280 (@) (y1) + Em(z)nlY (11)] = q(xliD,yﬂ;
M IV " " v q<x2,y2).
> q(nr, ynr)
22 A &0 (@) (ye) + 267, @an)nin (an) + m(@ar)in (yar)] = =57

of which M constants A,, are defined.

In this case, if the selected functions ¢,,(z,y) do not satisfy all the boundary conditions, then in addition
to the equations (10), it is necessary to write for several points of the plate contour such equations that satisfy
the given boundary conditions.

For example, if the edge of the plate = a is free from fixings and loads, and the selected functions ¢, (z,y)
do not satisfy the conditions

Mm(aa y) = Qw(aay) = 07

then for k£ points of this edge one should write down

M
M(a,ye) = =D 32 Am (&5, (@)1 (yr) — vEm(a)niy, (yk)] = 0;
m=1
(11)
M
Qu(a,yr) = —D 21 A (6 (@)1 (yr) + (2 = V)&, (@), (ye)] = 0.
m=
Naturally, the total number of equations of type (10) and (11) should be equal M, i.e. should be equal
the number of constants A,, to be determined. From this it follows that in case of an unsuccessful choice of
functions ¢, (z,y), the accuracy of solution of the main differential equation of the problem decreases due to
the fact that in the domain occupied by the plate, it is necessary to reduce the number of collocation points.

As an example, we consider a square hinged plate loaded with a uniformly distributed load ¢. We confine
ourselves to the first approximation, i.e. we keep in (8) only the first member of the series

w(z,y) = Arpr(z,y) = A& (@)m(y).
For coordinate functions, we take the following expressions
{ & (z) = 2t — 2023 + au; 12)
12
m(y) =y* - 2ay® + a’y,
which are functions of deflections of a hinged beam of length a and satisfy the given boundary conditions on
the plate contour. Derivatives of these functions (12), included in the equation (10) have the form
I(z) = 122% — 12az; 0y (y) = 129% — 12ay;
V(@) =245 Y (y) = 24.

We choose the collocation point in the center of the plate, i.e. we write (10)

A6l (waym () + 261 (e () + Eaanmt” ()] = 5.
for 1 = y1 = a/2

Ay (7,50 + 18a* +7,5a*) = %,
then we obtain
q
Al = O,O3a4D.
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Deflection in the center of the plate is

2 4
a a a a q 9 4 qa
_ = = A — —) = _ J— = 2 —_—
w(5:3) = AG(GIm(3) =0.03—1 (16a> 0,00293%%
Comparing this result with the more accurate solution 0, 00406% given earlier in [3], one can see that the
error is 28 %.
If we took a point with coordinates x1 = y; = a/4 as a collocation point, we would get

q a a qa*

A =0,048—0 w (2, 2) = 0,00469°%-,

that is, a slightly more accurate solution with an error of + 15.5 %. It follows that the collocation point does not
always need to be taken in the place of the least rigidity of the structure, as some researchers have recommended.

If the number of members in the row (8) increases, the accuracy of the solution naturally increases. Thus,
for two terms in a series (8), for coordinate functions represented by power polynomials of type (12) and for
two collocation points x1 = y; = a/2, the deflection in the center of the plate is equal to 0, 00394qa4/D, ie. it
differs from the exact solution by 3 %.

It can be seen that the use of the collocation method is connected, as in the variation methods, with
the intuitive choice of functions. Compared to variation methods, the collocation method gives less accurate
solutions with the same number of held constants. If in variation methods the error appears only when we
choose approximating functions, then here, moreover, it arises when we choose collocation points.

Moreover, in the collocation method, the reciprocity of the coefficients of resolving algebraic equations is
violated; as a result, these equations do not have symmetry. In addition, the collocation method is simpler
than the variation methods. There is no need to integrate functions ¢;(z,y) within the considered domain and,
therefore, less time is required for the preparation of algebraic equations.
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[''A. Ecenbaena, /I.H. Ecbaesa, H.K. Cozabikosa, I1.A. Axknanos

Kosokamust aaiciMeH TiKOYPBINITHI IIJIACTUHAJAPABI €CenTey TYPaJibl

MakaJjia MexaHUKAHBIH KOITEreH eCelTepiH ecenTeyIiH Heri3i O0IbIn TadbLIaThIH JuddepeHITnaIbIK, TeH-
JeyJIep/ii IIenryre KOJIOKAIAs 9JIiCiH KOJIJIaHy MoceJieciHe apHajraH. Makajajga OChl 9MICTiH, KYPbLIbIMbI
OepiyireH, OHBIH Heri3ri KOMIIOHEHTTEPI KOPCETIIreH, COHJIai-aK OHBIH TypJiepl MEeH KJIACCUKAJBIK TOCLI-
Jepi cumarTaJFal. ABTOpJIap KOJTOKAIUsT 9iCIMEH TIKOYPHIIITHI IJIACTUHAJIAPIBIH UiTyi TypaJibl eCenTep/i
zeprreai. Conaii-ak 6apJsIblK CaHIbIK-aHAJTUTUKAIBIK, KYBIKTAJTFAH OJIICTEp CUSKTHI KOJIJIOKAIIHS OICIiHIH
OipkaTap apTBHIKIIBLIBIKTAPBI MEH KeMIMijikTepi 6ap ekeHi kepcerkeHn. MakaJia, HerizineH, MexaHUKTEpre,
WHXKEHEepJIEpre YKOHE TEXHUKAJIBIK MaMaHIBIKTAFbl MaMaHIapra OarbITTa IFaH.

Kiam ceadep: xoutoKaius oJiici, KOJIJIOKAIWs HYKTeJepi, TIKOYPBIIITH! IJIACTHHAHBIH UiIYyl, IJIaCTUHAHDBIH
iy OYHKIUSICHI, IJIACTUHAHBIH TEe-TEH K TeHJIeyi.

158 Bectuuk Kaparanmurckoro yuuBepcurera



On the calculation of rectangular plates...

['A. Ecenbaesa, /I.H. Ecbaesa, H.K. CoizapikoBa, 11.A. Aknanos

O pacdere InpaMOYI'OJIbHBIX IIJIACTHMH MEeTOAdOM KO.H.J'[OKaI_II/Iﬁ

CraTbsl TIOCBSIIIEHA BOMPOCY MPUMEHEHHS MeTOJa KOJIOKAINY K PeIeHno qudOepeHITnalbHbIX YPaBHe-
HU, SBJISIONIAXCS OCHOBOI pacdeTa MHOIMX 3aJa49 MeXaHUKH. B craTbe IpeacTaBjieHa CTPYKTypa JaHHOIO
METO/1a, BBIJIEJIEHBI €0 OCHOBHbIE KOMIIOHEHTHI, OXapaKTEPU30BAHBI €0 BU/IbI, & TAKyKe €ro KJIACCHYECKUe
MO/IXOABI. ABTOpaMU MPOBEIEHO MCCIEIOBaHUE 3a1a9u 00 u3rube MPsiIMOYTOJIbHBIX MIJIACTUH METOIOM KOJI-
Jiokanuii. MeTos KoJIJToKaIuii, KaK U BCe YUCIEHHO-aHAJIUTUIECKUE PUOJIMKEHHBIE METO/bI, UMEET PsiJl
MIPEUMYIIECTB U HEJIOCTATKOB, KOTOPbIE TAKXKe OTMEYEHBI B JIaHHON pabore. CTaThbsi OpUEHTUPOBAHA, TJIaB-
HBIM 00pa30M, Ha MEXaHUKOB, NH?KEHEPOB U CIIENNAJINCTOB TEXHUIECKUX CIEIHATLHOCTE.

Kmouesvie caosa: MeTON KOJTOKAIAN, TOYKHU KOJLIOKAIIN, M3TUO MPSMOYTOJBHON IJIACTHHBI, (DYHKITUS
nporu6a MJIaCTUHBI, YPaBHEHNE PDABHOBECUS IJIACTHHBI.
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