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The paper is devoted to the questions of solvability in the Sobolev classes for boundary value problem
for the Burgers equation with boundary conditions of the Solonnikov-Fasano type in degenerating domain
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Introduction

Studying of the Burgers equation has a long history, part of which is given in the works [1] and [2],
and also in the books [3| and [4].

In the works [1] and [2] were studied the solvability of the boundary value problems for the Burgers
equation in a non-rectangular domain. If in [1] it is required that it (a non-degenerate domain) be
transformed by regularly replacing (independent) variables into a rectangular domain; then in work [2]
this requirement is excluded (the domain of independent variables degenerates at the initial moment of
time). In Sobolev spaces, by using the Faedo-Galerkin methods and a priori estimates the existence and
uniqueness of a regular solution of the boundary value problems under consideration are established.

The paper [5] studies in the angular domain the boundary value problem for the heat equation with
the time derivative under boundary conditions. It is also noted there that the case of an nonhomogeneous
boundary value problem "... is useful for study of some problems with free boundaries". For example,
for single-phase problem "... Stefan under the following assumptions: the liquid phase with a positive
temperature u(x,t) occupies the segment 0 < x < s(t), at x = 0 a positive heat flow is given, and free
boundary x = s(t) starts at the solid boundary = = 0, i.e. the conditions(0) = 0 is satisfied". Note
that in the paper [5] the theorem on the unique solvability of the considered boundary value problem
in weight Holder spaces is established.

The range of application of boundary value problems for parabolic type equations in a domain
with a boundary that varies in time is quite wide. Problems of this kind arise: in the study of thermal
processes in electrical contacts [6], in the processes of ecology and medicine [7], in the solution of some
problems of hydromechanics [8|, thermomechanics during heat stroke [9], and so on.

Voluminous literature is devoted to the study of the solvability of linear and nonlinear parabolic
equations in cylindrical domains. However, regard to nonlinear boundary value problems in degenerate
non-cylindrical domains, they have been studied relatively little.

For angular domains in the Lebesgue classes, we studied boundary value problems of heat conduction
and established theorems on their solvability by reducing to the Volterra singular integral equations of
the second kind [10], [11].

In [12] we studied various cases of nonhomogeneous boundary. In these cases, it is shown that
takes place both unique solvability and non-unique solvability for the corresponding boundary value
problems.
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In this paper we study in the Sobolev classes issues of solvability of the boundary value problem
for the Burgers equation in angular (degenerate) domain with time derivatives in boundary conditions
(in some sense an analogue of the Solonnikov-Fasano problem [5] for the Burgers equation). In Sec. 1,
we give the statement of the boundary value problem, with respect to which in Sec. 2 we construct
a sequence of boundary value problems in non-degenerate domains. Here, using a transformation of
independent variables, we come to a family of problems in the corresponding rectangular domains.
A number of theorems on their unique solvability are formulated. Section 3 establishes a priori estimates
for solving the above boundary value problems. In the same section, we formulate the main result of
the work in the form of a theorem for the initial nonlinear boundary value problems in a degenerate
triangular domain. The proofs of these theorems are given in sections 4 and 5. The work finishes with
a brief conclusion.

1 Statement of the boundary value problem
Let Quy, = {z,t1]| 0 <z <t1, 0 <t1 <T) < oo} be a triangle domain, one of the vertices of which

is at the origin, and €, be a cross section of the domain @, for fixed temporary variable t; € (0,7}).
In domain @;¢, we consider the following boundary value problem for the Burgers equation:

Ot u + udpu — v02u = f, v >0, (1)
[0, u — Opu(z,t1)] |z=0 = 0, [On,u+ 20zu(z,t1)] |z=t, =0, (2)

where
f € La(Qaty) N C(Quyy ) (3)

In this paper we study the question of the existence and uniqueness of a solution to a boundary
value problem (1)—(2) in the Sobolev space (throughout the paper the notation of spaces corresponds
to those adopted in the book [13]):

we H* (Quty)/ Xty = {L2(0,T1; H2(0,81)) N HY(0,T1; La(0, 1)) } / Xooty, (4)

where (for space V') V/X,,, is a is the quotient space over the subspace X,;, consisting of all possible
constants k = const, defined on the set Q-

2 On a family of auxiliary boundary value problems
in quadrangular domains (in the form of trapezoids)

To the problem (1)—(4) we will put a family of boundary value problems, each of which is considered
in the domain representing the corresponding trapezoid.

So,let ne N*={necN:n>n;,1/n <T1}, Qf, ={z,t1: 0< 2z <t, 1/n <ty <Ti < oo}
be a trapezoid, and Q; be a cross section of a trapezoid for a given ¢t; € (1/n,T}). Note that at the
point ¢ = 1/n domain Q7 no longer degenerates to a point, in addition, between the original domain
Qqt, and the domains Q7 take place strict inclusions Q};} C Qutlc .. c Qz¢, and, obviously that

xty xty
lim Qn = (Q .
n xt1 xt1

In the non-degenerating domain Q7,, (for each finite n € N*) we consider a boundary value problem:

Dty Un + UnOptiy, — VO2Up = fin, (5)
[8t1u - 81“’(:["? tl)] |93:0 =0, [8t1un + 2a$un($v tl)] |fE:t1 =0, un($7 t1)|t1:1/n =0, (6)
fn € La(Qyy,) N C(@xtl)' (7)
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We want to transform the boundary value problem (5)-(7) so that it would be placed in a
rectangular domain. To do this we will transform the independent variables: let’s move from variables
{z,t1} to variables {y,t}. We have that

X
h=_—pv=int=n—i; (8)

v =1y, t: 0<y <1, 0<t<T}is arectangular domain, and €2 is a cross section of the rectangle
yi for any fixed ¢ € [0, 77,

1
tlzl/n@t:O, t1:T1<:>t:T:n—?.
1

() 2 () R0 = 5 (). )

n—t n— n—t n—t

Since

then for derivative with respect to ¢; from function u,(z,t1) (9) we have that
Onyun(z,t1) = (n — )04 (y, t) — (n — t)y Oyiin(y, ).
Now we find derivatives from function uy,(z,¢1) (9) with respect to variable z :
Optin, = (n — t) Oy, 8§un =(n— t)23§ﬂn.
We write down the boundary value problem (5)-(7) in domain Qy,:
Orin, + (n — ) iinOyiin — VO3t — y(n — t) ' dyitn = (n — ) fa, (10)
[0y, — (n — ) 1Oy tin(y,t)] |y:0 =0, [Oiin + (n—t)"9yiy] ]yzl =0, 0<t<T, (11)

n(y,0)=0, ye Q={y: 0<y<1}. (12)

Remark 1. The relations (8)—(9) are one-to-one, i.e. reversible. In the future, we will use this
property.
Instead of (10)—(12) in domain @y, we will consider more general boundary value problem:

O, + o (1) Oyl — VO3 itn, — V(Y5 £)Oylin = Bu(t) fu, (v >0), (13)
By, — €0 (1) Dy in (y,1)] |y=0 = 0, [Osiin + 0 (t)Dyiin] |y=1 =0, 0 <t < T, (14)
Un(y,0) =0, yeQ={y: 0 <y <1} (15)

where given continuous functions ay,(t), 5, (t), Yn(y,t), 0,(t) for each fixed number n € N* satisfy the
conditions

a1 < an(t) < aop, Bln < /Bn(t) < 627“ 6171 < ’fsn(t)’ < 52717 Vit e [O7T]7

(16)
e1n < len(t)| < ony (Y, )] < Yin, |8y'7n(yat)| < Yin, V{y,t} € QZtv

with given positive constants ai,, ®2n, Bin, B2ns Oins O2n, €ins €205 Vin-
Remark 2. For the coefficients of the boundary value problem (10)—(12) conditions (16) take place
and accordingly take the form:
1

1 1 1
0<E:a1n§an(t):m§a2n:TM 0<?251n§ﬂn(t):m§/@2n:TEv
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2 2 1 1
0<*:51n§5n(t): géQnZTh 0<*:51n§5n(t): §52n:Tla
n n—t n n—t

Y 1
[ (y, 1) = [ <vn=T1, [Oym(y,t)] = [ < Yin =T1.

The following theorem holds.
Theorem 1. Let n € N* be a fixed number. Thus, if

fa € L2(Qy) N C(Qy)
and
Oén(t), Bn(t)a 5n(t)7 'Yn(y>t)
satisfy the conditions (16), then boundary value problem (13)—(15) has a unique solution
in € H*1(Qy,) = Lo(0,T; H*(0,1)) N H'(0,T; L(0,1)), iin(1,t), @n(0,t) € H(0,T),
which satisfies the estimate:

liinll 21 + In (1 Dl 07y + 1300, DLz 0,77 < K (a0 Dlliaiyyo s Ba) s (17)

where K (0, v, Bn) = 0, Bn = {Oégn, ﬁgn,’yln, 52n752n}-

From Theorem (1) as a corollary, we obtain the following statement.

Theorem 2. Let n € N* be a fixed number. Thus, if f, € La(Qy:) N C(@;), then boundary value
problem (10)—(12) has a unique solution

in € H*Y(Q),) = Lo(0,T; H*(0,1)) N H'(0,T; L2(0,1)), in(1,t), @n(0,t) € H'(0,T),
which satisfies the estimate:
linllz= gy + (LDl oz + 13000, ) 07y < K (1l Ol oy B)» (18)

where K (0, v, B) = O, B = {T17T12,T1,T1,T1}.

On the basis of Lemmas 1, 3 and 4 established in Section 3 below, the proof of the theorem 1 can
be carried out by the Galerkin method (for example, like in [13]).

We give the correspondence of function spaces in terms of independent variables {y,t} € Qyt

and {z,t1} € Qp, :

fo € La(Qp) NC(Qyy) & fn € La(Q,) N C(Quy,); (19)
n(y,t) € H*NQy) < un(z,t1) € H*'(Qp,) = La(1/n, T1; H*(0,11)) N H' (1/n, Ty; Lo (0, t1)). (20)

Further, taking into account the correspondence of spaces (19)-(20), in accordance with Theorem
2, as well as transformation formulas (8)—(9), we can formulate the following statement:

Theorem 3. Let n € N* be a fixed number. Thus, if f,, € Lo ﬁtl)ﬂC’(@zl) (19), then boundary value
problem (5)—(7) has a unique solution u,, € H*(Q"%.) (20),

xty
Un(t1,t1), un(0,t1) € H (1/n,T}),
which satisfies the estimate:
lunllzea@z,,) + len (s )l mzs) + a0 ) L am iy < Ko (ILn(@s ) om0 B) 5 (1)
where Ko (0,v,B) =0, B ={T1,T, Ty, T1, T} }.

Theorem 3 is proved in Section 4.
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3 A priori estimates for solving the problem (13)-(15). Statement of the main result

Here we establish a number of lemmas on the basis of which by using the Galerkin method we can
prove the theorems (1)—(2) formulated in the previous section.

Lemma 1. There exists a positive constant K7 independent of @, (y,t), such that for all ¢t € (0,7
the following inequality holds:

ln(y, Ol 501y + 1@ (L7, 01) + N80 (0, )17, 0.1+

+/ Hayan(ya T)H%Q(O,l)d,]— < Kl <”fn(yut)HL2(Q’;t)7V7 Bn) )

where K3 (07 v, Bn) = O; B, = {042n752n7'71n>52n752n}~
Proof. Multiplying equation (13) scalarly in L2(0,¢1) by @, (x,t1) and taking into account (14), we
have that

1d
thHun(y, )”L2 0.1y 1 V[|0ytn(y, )HL2 0,1) =

= —an(t) (@ (y: 0 in (Y. 1) 0y, 1) ) + (305, )y (9, 8) (. 1) ) +
y=1

+6n (1) (fn(y,t),ﬁn(y,t)> + l/ﬂn(y,t)ay&n(y,t)‘ =

y=0
= —an(t) ({in(y: )y n (4,0), (1)) + (0 (9,0 (. 1), (3, 1)) +

v d v

+8(0) (Fut).0(0.0)) = 275 45 (L0 = - o100,

or
1 d 1% d - 2 14 d - 2 - 2
5 il Do+ 5 g (L0 + i (0,00 + ]0,in (v, D)0, <
< an | (i DOy, 1), 0 (9,6))| + 10 | (Oyfin( 1), @ 9,6))| + B2 | (a0, Tl 1)) | (22)
Since ) — 1
(i )0y (9,0, (. 1)) = 5 [ 0 | < 5 [[(L0F + [ (0.1) ) (23)

then using inequalities (23) and

.1 ~ E o L%n ~ 2
Yin | (Oytn(y, 1), tn(y,t) 2” Ui (Y, )”L2(0 1t o Hun(?/’t)”LQ(o,l)’

. ~ 1 - B2
Ban (fn(y,t),un(y,t)>’ < §an(yyt)H%2(o,1) + %Hun(yat)”a(o,n?
and integrating the relation (22) from 0 to ¢, taking into account (15) we get that

t

+ / 10y in s D)2, 01y < As + Ay / [50(r) + (E(r) 2] . (24)
0

0

where
T (t) = in (y, )7y 01y + |80 (1, 8)* + |8 (0, )],

2 2 2
A1=min{1;y;y;V}, A1A2:max{ San fhn /82n}7
2n &2n 3
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A1 A = an(?/ﬁ)H%z(Qyty
From (24) we will have the following inequalities:

<A3+A2/ b ))3/2} dr, te (0,7, (25)
0

t

J 10,0 oy < s+ s [ [5a(r) + ()2 ar, € (0,7,
0
For inequality (25) we will apply the following Lemma 2 from the work of Bihari I. [14] which we
cite in its original formulation.
Lemma 2. Let Y (t), F(t) be a positive continuous functions a < t < b and &k > 0, M > 0
(constants), further w(v) be a non-negative non-decreasing continuous function for v > 0. Then from
the inequality

where b/ < b,

G(v)—/j(sj) (vo >0, v>0)

and v = G~() is an inverse function for G(v): v — ¢ (G~(¢): ¢ — v exists due to monotonicity
G(v)).

It is obvious that variable ¢ may belong to a sub-interval (a,b’) from (a,b), so that the argument
v=G(k)+M f F(7)dr would belong to the function domain G~!(v)). Therefore, it may turn out that
condition (26) Will be satisfied only for a < t <V with some definable &’ < b.

In our case we have

Y(t) =0p(t), k=A3, M =Ay, F) =1, wlw) =v+0*2 a=0, b="T. (27)

First of all note that by (27) w(v) : (0,00) — (0,00) is a strictly increasing function. We calculate
the integral

v

dw [ dw w=r
v =G0) /W(w) /w+w3/2 [( +2f)]wv0 >
V0 V0
Taking into account (28), for the value 1 we have
w—ln[v]—ln[Ag}+At—G(A)+At (29)
T a2V T (1t 2vAs)? 2T s R
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Further, to find the inverse function G~!: v — v it is necessary to solve the following algebraic
equation with respect to v:

v

(NG ¢, where ¢ =exp{¢} >0. (30)
We reduce the equality (30) to the following quadratic equation (v = 2?2)
(1—4¢)z* —4¢z— (¢ =0. (31)
For the roots z1 and 29 of equation (31) the inverse functions G~': ) — v will correspond:
1/16, if1—-4¢ =0, ¢
vlz{(lzgoz’ i1 4¢ £0, vgszorCZO, (32)

where ¢ = exp{¢} > 0.

The first inverse function from (32) is non-negative on [0, 00), but is not suitable for our purposes,
since it has a discontinuity of the second kind at 1 — 2,/¢ = 0. The second is devoid of this feature, it
is continuous and bounded everywhere on [0, c0). Hence,

exp{¢}

=G '(y) = : 33
R (e T (7 %)
Now from (33) and (29) we have that
_ _ - As
v=Gty)=GHG(A +At:G1(ln[]+At>,
() = 67 (G As) + Aat) T
ie. )
v = A" expidat} , where 0 < A= 27143 < 00
4 (14 Aexp{Ast/2}) 1+ 2v/As
Now, applying the inequality (26) from Lemma 2 for (25), we have the estimate
. A% exp{Ast}
<
On(t) < 4(1+ Aexp{Aat/2}) —
A% exp{Aat}
< = .
= Oléltag}g“ 4 (1 n AeXp{Azt/2}) Cl (||fl/(y7t)HL2(Qyt)7 v, Bn) , e (O’T] (34)

¢
It remains to get the estimate for the summand [ |0yt (y, 7')”%2(0 1)d7. On the basis of estimate
0 7

(34) we get
t
/Hay@n(yﬁ)H%Q(o,ndT < G2 (I1£o (¥, Oll2@ye)» v> Bn) » € (0,7, (35)
0

Note that constants C1 and Cy in estimates (34)—(35) satisfy conditions
Ci1(0,v,B,) =0, Cy(0,v,B,)=0.

Therefore, estimates (34)—(35) complete the proof of the Lemma 1.
Lemma 3. For the positive constant K5 independent of @y, (y,t), for all ¢ € (0,7] the following
inequality holds:

t t

r@mwﬁ%mm+/@@ﬂme+/@@mnWm+
0 0
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+ [ 10880 ) 0y < K (1500 Olliag 14 Bn) (36)
0

where Ko (0, v, Bn) =0, B, = {042n7 Bons Yins 02n, 52n}~
Proof. Multiplying equation (13) scalarly in L (0,t1) by —02%,(z,t1) and taking into account (14),

we have that
1d

2dtH8 tn(y, )HL2 o1 T V(|95 (y, )HL2 0,1) =
= an(t) (n(y, )y (9 £), 03y, ) = (90 (y: DOy in . 1), iy, 1) ) —
~ y=1
~Bult) (Ful,0), 020, 1)) + Outin . )0y, 1) =

y=0
= an(®) ({in (Y DOy in(y: 1), Oiin(y: 1)) = (109 8)Dyin (9, 8), Oin (v, ) ) -
_6n(t) (fn(% ) a Un(% )) - % |atﬂn(1at)|2 - i |8tan(07t)|2>
2n €2n

1d 1 N 1 -
2 1m0 Do + 5 10 (L OF + - |04 (0. 0 +

018y, 17,01y < 02n

(fm(y, 1)y (4, 1), 02in (v, t)) ‘ N

110 | (tn (9,0), 02 (9.0) | + B | (Fu 0 ). BRin(1) ) |. (37)

First we consider estimate of nonlinear summand from (37). First, we have

[ (0 (9, )0y (9,£), 82000 (9,0)) | < i (0, D)0, 19y (0, ) 10 0.1 10y Dl a0y (38)
Next, given the interpolation inequality from ([15], Theorems 5.8-5.9, p.140-141)
1/2 -
g [|Bytin (Y, )| Ly (0,1) < CllOytin(y, )||H1(01 |8y (y. )17 0.1 Y Oyin(y,t) € H'(0,1),

from (38) we get

Qon

({10 (v, )00 (3, £), 900 (4.)) | <
< CHun(ya )HL4 0 1)”a un(y7 )H 10 1)”8 un( )||2/220 1)

*||a un(y, )HLQ(O T [ + Calltn(y, )HL4 01)} |0y tin (y, )||L2 0,1)" (39)

Here we used Young’s inequality (p~! +¢~ ! =1):

(al/pA> (al/qB)‘ < 24P+ - ¢ By,
a I qa

|AB| =

where
- 3/2 v 4
A= 0yin(y. D300 B = Cllin(: D)l 1,00 18y DIl 01y @ ==

Next, for the last two summands from (37) we have:

~ ~ 14 ~ ~
Yin | (Bytin . 1), 82 (4,1 )| < 10200y, )12, 0.1y + CollOyin ) 01
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~ - vV - ~
Bn | (Falys 0, 020, 1) ) | € 1020 () 0,1y + CallFa (0,010, (40)

From (37), (39)-(40) we get

d - 2 . 2 5 -
a”ayun(yat)H%Q(o,l) + S |Oiin (1, 1) + o |Oriin (0, ) + V(|05 (y, )17, 0.0) <
v

< 2C4an(yvt)H%2(071) + |:4

or, integrating (41) on ¢ from 0 to ¢, we obtain

+ 205y, )%, 0.1y + 203 1940 (3 )1, 0.1 (41)

t t
2 2
||3yfbn(y,t)||%2(0 nt— / ‘875%(1,7')‘2617'—1— — / ’a'ran(oaT)’2dT+
’ 52n 0 Eon 0

t t
+V/||85ﬁn(y77)||%2(0,1)d7 = 204”,1?71(11775)”%2(@&) —|—/A5(7)H8y&n(y,7-)||%2(071)d7-, (42)
0 0

where
v

4
From inequality (42) in the same way as in the proof of the Lemma 1 we get the required estimate
(36). Lemma 3 is completely proved.
Lemma 4. For the positive constants { K3, K4, K5} independent of {@,(y,t), @,(1,t), @,(0,t)}, for
all ¢ € (0, 7] the following inequalities hold:

Ay =2Cy, As(t) +2Co||n (y, )11, (0.1) + 2C5-

0rin (v, )13 ) < Ks (1l DIz v Ba)

18sian (1, )17, 0.1y < Ka (an(%t)HLg(Qgt), v, Bn> :

1842n (0, 8)17, 0.1y < K5 (an(yvt)HLg(Qgi), v, Bn> ,

where K3 (0, v, Bn) =0, Ky (0, v, Bn) =0, K5 (07 v, Bn) =0, B, = {042m Bans Yin, 02n, 52n}~

Proof. The statement of the Lemma 4 follows from Lemma 1 and Lemma 3, as well as from equation
(13) and boundary conditions (14).

Therefore, applying the Galerkin method [13], and using the Lemmas (1), (3) and (4) we directly
obtain the validity of the statement of Theorem 1 and a priori estimate (17), and with them the validity
of the Theorem 2 and a priori estimate (18).

Now we can formulate the main result of our work.

Theorem 4 (Main result). Let f(z,¢1) € La(Qqt,) N C(Qyy, ). Then problem (1)—(2) has a unique
solution (4)

u(z,t1) € H*N(Quty)/ Xt -

Moreover, traces of the solution satisfy the conditions wu(t1,t1), u(0,t1) € H(0,Ty).
Proof of the Theorem 4 will be given below (section 3).

4 Proof of the Theorem 3

Here we establish a series of lemmas, on the basis of which we will prove the Theorem 3 formulated
in Section 2. The following three lemmas are consequences of the lemmas 1, 3—4, respectively.
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Lemma 5. There exists a positive constant K; independent of uy(z,t1), such that for all
t1 € (1/n,T1] the following inequality holds:

||un(x7t1)||%2(07t1) + Hun(t17t1)“%2(0,t1) + ||un(0?t1)”%2(0,t1)+

t1
+ / H8$un('r7Tl)”%g(o,tl)dTl < K1 (an(ﬁf,tl)HLQ(Qgtl),% B> )
1/n

where K1 (0,v,B) =0, B={T1,T, Ty, T1, T} }.
Lemma 6. For a positive constant Ks independent of w,(x,t1), for all t; € (1/n,T] the following
inequality holds:
”axun($at1)"%2(0,tl) + |0ptn (1, 11)]? + [90un (0, 11) [+

t1
+ / 102 un (22, T2 5 1 oty A1 < Ko (an(%tl)HLz(Qgtl)W? B) ;
1/n

where K2 (0, v, B) = O, B = {Tl, T12,T1,T1,T1}.
Lemma 7. For positive constants {K3, K4, K5} independent of {un(z,t1), un(t1,t1), un(0,t1)},
for all t; € (1/n,T1] the following inequalities hold:

90 wn 00y, ) < B3 (It |1z B)

108w (b1, 00) 17 5 00) < K <||fn($,t1)||L2(Qgt1), v, B) ,

900,10 0.1y < K5 (Il 12) a4 B)

where Kg (0, v, B) = 0, K4 (0, v, B) = 0, K5 (0, v, B) = 07 B = {Tl,le,Tl, Tl,Tl}.
Based on the statements of the Lemmas 5-7, using the Galerkin method [13], we establish the
validity of the Theorem 3.

5 Proof of the Theorem 4

The proof of Theorem 4 is based on Theorem 3. In boundary value problems (5)—(7) each element
of sequences

{un(z,t1), falz, t1), {z,t1} € Qs unltr,t1), un(0,t1), t1 €

(1/n,T1); n € N*} continue with zero, respectively, over the entire triangle domain (4, and the interval
(0,T1). As a result, we obtain a sequence of functions denoted by

—_

{un(x,tl), Ful@rt), un(tn, t1), un(0,41), neN*}. (43)

Obviously, each four functions from the sequence (43) satisfies the boundary value problem
(1)—(2) according to the statement of the Theorem 3. In addition, we note that estimate (21) will be

strengthened if its on right side || fn(@, t1)|1,(Q..,) is replaced to expression || f(z, 1) 1,(Q,.,). Since

Ko (1@ 0)ll12(@uey > B) < Ko (15 @0 | a(@uey) v B)

where Ko (0,v,B) =0, B = {T1,T, Ty, T1, Ty }.

78 Becrnuk Kaparanmurckoro yHuBepcurera



On Solonnikov-Fasano problem ...

Therefore, we obtain a bounded sequence of functions (43), from which we can be extract a weakly
convergent sequence, i.e. (for this subsequence, we keep the notation n for the index). We have that

up(z,t1) = w(x,t;) weakly in H2’1(th1), (44)
un(t1,t1) = w(t1,t1) weakly in Hl(O,Tl), (45)
um) — w(0,t;) weakly in H(0,T}). (46)

Since from (44) it follows that

un(x,t1) = w(z,t1) strongly in Lo(Qu, ), (47)

then by (44)—(47) we can pass to the limit as n — oo in integral identities

P P

0:/T&@EEWHMLM@%@m%w%%@h%ﬁ&wﬂ@@hMMﬁ%
Quty

— / [8t1w(x,t1) + w(z, t1)0pw(x, t1) — V@iw(:n,tl) — f(ac,tl)] o(x,t1)drdty, Yo € La(Quy),

tal
(48)
Ty
0= / [atlun(az,tl) — (%un(m,tl)} 0 (po(tl) dtl —
T
— / [atlw(x,tl) — (%Cw(x,tl)]\xzo QO(](tl) dtq V(po S LQ(O,Tl), (49)
0
T
Oz/PmM%m—%w@mﬂmtwmwh%
; 1
T
— / [atlw(a:,tl) — 6xw(x,t1)]\$:tl ng(tl) dtl V(pl S LQ(O,Tl). (50)
0

So, we have established that the boundary value problem (1)—(2) has a weak solution w(x,t1) in
the sense of integral identities (48)—(50).

Now we show the uniqueness. Let boundary value problem (1)-(2) has two different solutions
uM (z,t1) mwu® (z,t1). Then their difference u(z,t1) = u (z,t;) — u® (x,t;) will satisfy the homoge-
neous boundary value problem:

D, u + udpu — v02u =0, v >0, (51)

[0 u — Opu(z,t1)] |z=0 = 0, [0¢,u + 20,u(x, t1)]|z=t;, = 0. (52)

We establish that the boundary value problem (51)-(52) nwill not have a non-trivial solution that
differs from the constant. It is clear that

u(z,t1) € Loo(0,Ty; HY(0,t1)), u(ty,t1) and w(0,t1) € Loo(0,Ty). (53)
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Multiplying equation (51) by function u(x,t;) scalarly in L2(0,¢;) and taking into account (52), we
obtain

1 d
3t B o) vy b 0) + v (0,00 + v s, ), 1) =

— ([u(:c,tl)]z,8mu(1)(x,t1)> - <u(2)(a:,t1),u(:r,tl)azu(x,tl)) . (54)

Integrating by parts

t1

—2/u(l)(x,tl)u(a:,tl)amu(af,tl)da:,
0

x=t1

t1
/[u(x,tl)]Qamu(l)(x,tl)dw = Ju(z, t1)2u™M (z, 1) »
0

from (54) we have that

1 d d
3 ) B0 + v Tt )+ v a0, ) + vy, )]0y =
t1
— a0 (e, ) futtr, )P ~ a0, a0 )P+ [ (20D (a,01) = 0@ 1)) ula,t)Osu(a, ) da. (55)
0

Now we estimate the right side of the relation (55). Using the (53), we obtain

t1
u® () |ults, 012 — uD (0, £) (0, 1) + / [2u(1)(x,t1) @ (x,tl)] w(z, t1)dpu(z, 1) dz <
0

< ™ (trs 1) | oogo,r [t t1) [P+ [atD (0, 21) | oogo,my) [0, 1) P+

1
+o 2”u(1)(I’tl)HLoo(sz1)+”u(2)(x’t1)HLoo(szl)] e, )17 0,.0) + VI1Owu(@, 875040

From here and from (55) we get

t
/ v(m)dr, me. w(t)=0, Vt; € (0,T1],
0

where
o(t) = min{1, 20} | (@, 1)[13,0.,) + s, 01) P + (0, 1) 7]

. 1 2
C = min{1,2v} max {2 210D (@, 1) oo(@uey) + 142 @, ) Eooi@uny)]

2D (b1, 1) | ooz 2000, mnmm}

Therefore, the uniqueness of the solution of the boundary value problem (1)—(2) is established, and
together with it the Theorem 4 is completely proved.
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Conclusion

In the paper, we established in Sobolev classes the solvability theorems for boundary value problem
for the Burgers equation in a degenerating domain with degenerate point at the origin.

The results of the work can be generalized to case when we have a domain of independent
variables Qz, = {z,t1 : 0 < x < ¢(t1), 0 < t; < 11 < oo}, presented in a curved triangle whose
moving side can change according to the rule x = (1), t1 € [0,71], and the condition ¢(0) = 0
is satisfied. In addition, from the function ¢(¢;) some natural conditions are required. For example,
function ¢(¢1) must satisfy the following two conditions: 1°. in a sufficiently small time interval (0, ¢})
function ¢(t1)would have a representation ¢(t1) = pti, where p is a given positive constant (in our
work it was equal to unity); 2°. on the interval [}, T}] function ¢(¢;) would be continuous differentiable
and would have the property of monotonicity, providing a one-to-one transformation from independent
variables {z,¢1} to variables {y,t}.
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M.T. Jlxxenanues, M.I1. Pamazanos, A.A. Aceros

Bioprepc tengeyi ymiin CononankoB-Pa3aHo ecebi TypaJibl

Makasia HyKTere KoibuiaTbi 00sibicTa, CononHnkoB-PazaHo TUIITI IMIEKAPAJIBIK MAPTTAPMEH OeplireH
Broprepc tengzeyi yiimin mekapaJsblK ecernTiH cODOJIEBTIK KJIaCTapblHa IMIENIIyl CypakKTapblHa apHAJFaH.
OOGJIBICTBIH, JKOMBLTY HYKTECI KOoOpauHaTaJIap 6achlHIa OpHAJTACKAH. [ aJepKUH YKoHe alpUOpPJIbIK barasiay-
Jlap 9JiCTepiH KOJIJIaHy apKbLIbl KAPACTBIPBLIBII OThIPFaH IIEKapaJblK, eCelTiH, MeliMiHig 6ap O0JIybI XKoHEe
2KaJIFBI3/IBIFBI Ty paJibl TeOpeMaJiap, COHbIMEH KaTap OepiireH (pyHKIMsIap/IbIH TErICTIr apTKAHIa €CeITiH
PETYJISPIIBIFBL JIDJTEIIEHTEH.

Kiam cesdep: Broprepc Tenjeyi, IeKapaJiblK, ecell, cO60JEBTIK KJacTap, »KOWBLIATHIH 00JbIC, [ alepkuH
9JIici, aITPUOPJIBIK, barataysap.

M.T. JIxxenanues, M.I1. Pamazanos, A.A. Aceros

O 3amaue CosonnukoBa-Pa3aHo Jjiss ypaBHeHHsa broprepca

Pa6ora nocssiena BompocaM paspenrmMocT B COOOJIEBCKUX KJIACCAX MPAHUYHON 3aJa49M JIs YPaBHEHUST
Broprepca ¢ rparmynbivu yemoBusimu tuna CosonankoBa-®Pazano B BeIpoxkgarorieiicst obactu. Todka BbI-
pOKJieHusT 06JIaCTH HAXOAWTCsI B Hadajie KoopauHat. Vcnosib3oBanueM MeTofoB ['ajlepkuHa U alpruOpHBIX
OIIEHOK JOKa3aHBbI TEOPEMBI O CYIIECTBOBAHUM W €IMHCTBEHHOCTU PEIIEHUs PACCMATPUBAEMON T'PAHUIHON
334, & TAKXKE €ro PEryJIsipPHOCTD MIPU MOBBIMNEHUHN TVIAIKOCTH 3aJaHHBIX (DYHKIIHIA.

Karoweswie caosa: ypaBHenue Broprepca, rpanntdHas 3aja4da, cOOOJIEBCKUE KJIACCHI, BBIPOXKIAONIAsICH 00-
J1acTh, MeTos ['alepKuHa, alIpUOpHbBIE OIEHKH.
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