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Mapes of secondary sources in the problem of ERT probing
2D medium: numerical method and analytical solutions

The paper considers a mathematical model of electrical tomography above the media with local inclusions.
Numerical solutions of a system of integral equations for a medium with local inclusion are compared
against a numerical implementation of the analytical solution of the problem for a case of a sphere in
homogeneous space. The parameters of local inclusion and the depth of heterogeneity are varied. Maps of
secondary sources in the ERT (Electrical Resistivity Tomography) probing problem are constructed: for
local inclusion in the form of the ellipsoid, an ellipsoid in a homogeneous space (analytical solution of the
problem) and for two-layer half-spaces as well. Numerical results are presented, and maps of secondary
sources in the cases where the immersed heterogeneity is an insulator and a conductor are computed.

Keywords: map of secondary sources; analytical solution of the problem with immersed heterogeneity;
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Introduction

Modeling the problems of electrical exploration is very relevant nowadays. The solution of direct and
inverse problems of electrical tomography are the main subject of many works ([1-13| and references
therein). In solving the problems of electrical tomography [14, 15|, the finite element method is used;
the novelty of our work is the application of the method of integral equations [16-22| to the solution
of the problem specified below.

When modeling the electric field in complex media, it is important to take into account the
geometric parameters of the desired objects (shape, number of elements, depth and dimensions) [23, 24].
The listed geometric parameters strongly affect the amplitude and shape of the electric field anomalies
[23]. Theoretical calculations by analytical formulas and numerical algorithms should be performed for
models that are found in the practice of geophysical research.

In addition to the size and the depth, the resistivity of the heterogeneity and the peculiarity of
the medium such as angles of incidence of flat boundaries and the orientation of the buried object
have a great influence on the results of the work [24]. In our work, we consider a model containing
heterogeneity in the form of an ellipsoid located in a homogeneous half-space and full space (analytical
solution) and a two-layer horizontally layered medium.

The numerical results are obtained for two types of modeling:

1. Tests of the numeral solutions have been performed using the method of integral equations
against the analytical solutions by A. I. Zaborovsky [23].

2. The distribution of secondary sources on the earth’s surface and the internal contact boundary
are shown.

The study of the electrical field for such kind of media is important for isolating and tracing
local objects, their depth and surface shape. Approximate solutions are known for a sphere, and for
compressed and elongated ellipsoids in a homogeneous medium [23, 24].

A special case of an ellipsoid is a sphere in a homogeneous medium. Due to the complexity of
calculations by explicit formulas, for mass calculations of field parameters in the software,
approximate solutions of A.I. Zaborovsky are implemented [23, 25].
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The electrical potential inside the medium with a sphere near the surface of a half-space is
determined using the exact formulas [23]. Depending on the location of the source and receiving
electrodes along the measuring profile, which does not necessarily passes above the center of the
inclusion, there are four possible analytical formulas for the potential of the electrical field:
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where 7 is a distance from the source to the receiver; a is a radius of the half sphere; d, ¢ are the
distances between the supply and receiving electrodes and the center of the hemisphere, respectively;
6 is the angle between directions ¢ and d; P, (cosf) is the Legendre polynomial of the first kind of
the order n from cos 6 and
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Using these formulas (1), we can numerically solve the problem with submerged heterogeneity in
the form of a ball and compare with the solution of the problem with immersed inhomogeneity obtained
by the method of integral equations [16] - [22].

The second part of our testing was the construction of distributions of secondary field sources.
Secondary sources of the anomalous field appear as a result of the excitation of the Earth’s surface by
a source electrode. Maps of secondary sources determine abnormal electric fields.

The authors constructed a map of secondary sources for a two-layer half-space, and for an immersed
inhomogeneity by the method of integral equations and for the analytical solution for a ball in a
homogeneous space according to A.I. Zaborovsky to show how secondary sources are distributed over
the surface.

Numerical solutions

As mentioned above, the algorithm was tested in two ways: comparing the solution obtained by
the method of integral equations with the analytical solution by A.I. Zaborovsky. For the best of
our knowledge there is no analytical solutions of the problem for the heterogeneity placed inside a
homogeneous half-space. On the other hand, we implement the method of integral equations for half-
space, whereas the Zaborovsky solution is obtained for full-space; therefore, to make a reasonable
comparison, the inclusion should be placed in such depth where the boundary of the half space does
not significantly impact on the electric field.

Comparison with the analytical solution has been carried out for different parameters of the
immersed heterogeneity, its size and depth. In the computations by the method of integral equations,
when we placed the ball to the lower depths than z = 1.5 r, the influence of the inhomogeneity on the
anomalies of the resistivity curves became very small, so we have to reduce the depth of the inclusion.
But in the analytical solution of A.I. Zaborovsky, the higher we lift up the ball from this depth, the
more the difference in models appears, namely, the reflection from the boundary of upper half-space
influences on the electric field.
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Figure 1. Comparison of a solution by the method of integral equations
with an analytical solution by A.l. Zaborovsky, (-) - a solution by the method
of integral equations, (- -) - an analytical solution by A.I. Zaborovsky

With the parameters of the sphere a=1 r, z = 1.5 r, it turned out that similar results are obtained.
With these data, a comparison result about of 5% is obtained.

To construct maps of secondary sources for each case, media models are considered for inclusions
that are an insulator or a conductor.

In Figure 2, the upper layer is flat, the parameters of local inclusion in taken the form
of an ellipsoid at a depth of z = 0.5 r with parameters ax = 0.21r, by = 0.2128 r, cz = 0.21 r
with layer resistivities pI = 10 Ohm-m, p2 = 100 Ohm-m. Although Matlab’s state-of-the-art math
package makes it possible to construct triangulations, for our purposes these triangulations turn to be
unacceptable. This is due to the fact that the thickening of the grid should occur in the vicinity of
the measuring line, and the source and measuring electrodes should be located at the vertices of the
triangles, in nodes with the same geometry of triangulation. Therefore, we have had to construct our
own algorithm of the triangulation. An example of a grid constructed for a case with spherical local
inclusion is shown in Figure 2.

Figure 2. Triangulation for spherical inclusion under the flat surface

Figure 3 shows the secondary sources for resistivities of the surrounding medium pI1 = 10 Ohm-m
and an inclusion with resistivity p2 = 100 Ohm-m.
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Figure 3. Map of secondary sources at pI = 10 Ohm-m and p2 = 100 Ohm-m

Figure 4 shows a map of secondary sources for the case of resistivity of the surrounding medium
pl = 100 Ohm-m and there is an immersed conductor with resistivity p2 = 10 Ohm-m.

Figure 4. Map of secondary sources for pI = 100 Ohm-m and p2 = 10 Ohm-m

Figure 5 shows a ball in homogeneous space, the parameters of the ball a=1 r. The triangulation
constructed for this case is shown in Figure 5.

ATATAVANANLY,

Figure 5. Triangulation constructed for a ball in a homogeneous space

Figure 6 shows a map of secondary sources projected on the plane (Oxy) for a ball in a homogeneous
space, for resistivities pI = 10 Ohm-m, p2 = 100 Ohm-m.
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Figure 6. Map of secondary sources at pI = 10 Ohm-m and p2 = 100 Ohm-m

Figure 7 shows a map of secondary sources projected on the plane (Oxy) for the resistivity of the
containing medium pI = 100 Ohm-m and the resistivity of the ball p2 = 10 Ohm-m.

Figure 7. Map of secondary sources at pI = 100 Ohm-m and p2 = 10 Ohm-m

Additional computations are performed for a two-layer medium in a half-space; both layers are
supposed to be plane. The triangulation constructed for this case is shown in the Figure 8.

Figure 8. Triangulation built for a two-layer environment

Figure 9 shows a map of secondary sources for the case when the second insulating layer has a
resistivity p2 = 100 Ohm-m and is contacting with the layer of p1 = 10 Ohm-m.
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Figure 9. Map of secondary sources at pI = 10 Ohm-m and p2 = 100 Ohm-m

Figure 10 shows a map of secondary sources for the resistivity of the upper layer p1 = 100 Ohm-m,
and the lower layer with p2 = 10 Ohm-m.

Figure 10. Map of secondary sources with p1 = 100 Ohm-m and p2 = 10 Ohm-m
Conclusion

Numerical solutions obtained by the method of integral equations are compared with analytical
solutions of A.I. Zaborovsky. It turns out that even the models are different (half space and full space)
the difference in apparent resistivity curves for the depth of inclusion a = 1.5r are above 5%. Maps of
secondary sources of the electric field for the following cases are constructed:

— buried inclusion by the method of integral equations,

— a sphere in homogeneous space according to A.I. Zaborovsky,

— a case of two-layer medium.

Calculations by the method of integral equations have shown that the distribution of secondary
sources on the surface of inhomogeneities that determine the structure of an anomalous electric field
is close to the solutions known in the theory of geophysics.
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J1.C. Pakumena, I.H. Momun, B.I. Mykanosa

2D opraaapeinbiH, ERT 308aTay ecebingeri KaiiTajiaMma 3apsaaTapIblH
KapTaJjlapbl: CAHABIK 9/1C >KoHe aHAJUTUKAJIBIK, IIeIliMIep

Maxkasaa JToKaabIl KOCBLIYBI 6ap aHAJTUTUKAJIBIK, IIETM VITH 3JIeKTPJIK TOMOTPaOUSHBIH MATEMATHKA-
JIBIK, MOJIeJT KapacThIpbutral. HTerpaaabik TeHaeysep Kyilecine Heri3mesreH JITHICOn T TYPiHIe KOCBLIY b
0ap MaTeMaTHUKAJIBIK MOJIEJIb MeH OipTEeKTeC OPTaJarbl IIap aHAJIUTUKAJIBIK IIENIIMHIH CAHIBIK eCenTesryi
caJIBICTRIPBLLABI. EKi 2Karail yIniH JIOKaaIb/Ji KOChLIY/IbIH TapaMeTpJiepiMeH TepeHIiriH e3repTill, OIITUMAaJI-
bl Teperiik anbikTasbl. ConbiMen karap, ERT Gapiay ecebinje, /uIuncoiiy] koHe GiprekTec opTajarsl
map TYpiHJe JIOKaJIbIi KOCBUIYBI 6ap KoHe €Ki Ka0aTThl OpTa KaFrJailyiapbl YIIH KOCAJIKBI 3apsAnTap Kap-
Tachl KyPbIIFaH. AHAJUTUKAJIBIK, MIEMIIMMEH CAJIBICTBIPYbIH, CAHIBbIK, HOTUKEJEPIMEH aTajIbIll KETKEH YIII
2KAFIaJIbIH, ©TKI3TIII IeH U30JISITOP OPHAJIACKAH KOCAJIKBI 3apsiITap KapTaChl KeJITIPiJIreH.

Kiam cesdep: KocaKbl 3apsiiTap KapTachl, KOHIBIPBIIFAH 6ipTeKkTeci 6ap aHAIUTUKAJIBIK, IIEIIiM, HipTeKTec
OpPTaJIaFbl AP, UHTEIPAJIILIK, TEHJIEYJIEP O/IiCi.

J1.C. PakumeBa, I.H. Momun, B.I. Mykanosa

Kaprtbl BropniHbiXx UCTOYHNKOB B 3a7ade ERT 3onanpoBanus
2D cpena: yncaeHHBINT METO/1 U aHAJUTUYIECKNEe penieHus

B crarpe paccMmorpena maremaTHuecKas MOIETb JIEKTPUUECKON ToMorpaduu Ajs aHATIATHIECKOTO pe-
IIEHUsI C JIOKAJIbHBIM BKJIOYeHUeM. [IpoBesieHO cpaBHEHUME ¢ MATEeMaTUYEeCKON MOJEJIbI0, OCHOBAHHOU Ha
CHCTEME WHTETPAJIbHBIX YPaBHEHHH C JJOKAJIbHBIM BKJIIOYEHHEM B BHUJE IJJIUIICOUA, C YUCIEHHBIM PeIleHn-
€M aHAJIMTUYIECKOrO DeIlleHns 3a/a4u C IIapoM B OJHOPOJIHOM IIPOCTPAHCTBe. BapbupoBaauch mapamMeTpsl
JIOKAJILHOT'O BKJIFOUEHUSI U TJIyOWHA 3ajIeraHusl JIJIsT ONPEIEIEHUsT ONITUMAJIBHOM TUIYOUHBI JIJIsT 0O0UX CJIyda-
eB. [locTpoeHbl KapThl BTOPUYIHBIX UCTOYHUKOB B 3a1ade ERT 30HnpoBanus: 1jist JIOKAJIBHOTO BKJIIOUEHUST
B BHJIE SJUIMIICOUA, /Il SJUIUIICOUIA B OJHOPOJHOM IIPOCTPAHCTBE (AHAIMTUYECKOE DENIeHUe 33J(a4u) U
JBYXCJIOMHBIX TOJIYIPOCTPAHCTB. IIpuBeseHbl 4uCI€HHBbIE PE3yJIbTAThl JJIsi CPABHEHUS C AHAJIUTUICCKUM
peleHneM M KapThl BTOPUYHBIX UCTOYHUKOB B CJIydasdaX, KOIJIa IMOTPYyrKeH U30JIATOP WX IIPOBOJHUK.

Karouesvie caosa: KapTa BTOPUIHBIX UCTOYHUKOB, aHAJIMTUYECKOE DeIlleHne 33/1a9i C IOTPYKEeHHOM HeOJ-
HOPOJHOCTBIO, JIJTUIICOUT B OJTHOPOJHOM IIPOCTPAHCTBE, METO/I MHTETPAJILHBIX YPaBHEHUH.
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