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Solution of inhomogeneous systems for differential
equations in private derivatives of the third order

The possibilities of constructing inhomogeneous system solutions for partial differential equations of the
third order have been studied. The construction of general and particular solutions corresponding to
homogeneous system comprehensively investigated by using Frobenius-Latysheva method. Type of solutions
near the special curves are established. The number of linearly independent partial solutions is determined.
A theorem on the representation a general solution of inhomogeneous system is proved, and the application
of uncertain coefficients method for such systems is revealed. On a concrete example, it is shown that the
particular solutions of the inhomogeneous system constructed in this way are solutions of one inhomogeneous
third-order equation obtained by adding the two equations of the considered example. One of particular
solutions corresponding to homogeneous system relates to degenerate generalized hypergeometric series of
Clausen type with two variables. Properties of generalized hypergeometric series are still poorly understood.

Keywords: inhomogeneous system, regular solution, singularity, method of undetermined coefficients, system,
equations, theorem.

Introduction

Systems consisting of two partial differential equations of the second and third orders with a
common unknown have long attracted the attention of mathematicians. The American mathematician
E.J. Wilczynski used the system of second order to substantiate projective differential geometry [1].
Further research of such systems is associated with the study of generalized hypergeometric functions of
two variables, in particular the four Appell hypergeometric functions Fy — Fy [2; 155-169], [3; 210-231].

J. Horn studied the convergence of all 34 hypergeometric series in two variables and established
systems of partial differential equations of second order which they satisfy [4; 218-233].

In a number of works Zh.N. Tasmambetov [5, 6] proved that almost all Horn’s systems are special
cases of a regular joint system of second-order partial differential equations that consist of two equations

290 Zow + 2yg\V Zoy + 129D Zyy + 29 Z0 + ygW 2, + g Z =0,
v? ¢ Zyy + 2yq Zoy + 22¢P Zoo + 240 Zo + ygW 2, + ¥ Z = 0, (1.1)
with coefficients in the form of polynomials

99 (2, y) = aly + alfa",

¢V (z,y) = b(()zg + b(()li)yk.(i =0,5; k — integer).
The classification of their singular curves, the construction of solutions near singular curves and the
existence of logarithmic solutions, etc. were considered.
For different values of k from (1.1) we get a number of interesting systems.
1. When k = 0 from (1.1) we obtain a system of Euler type [6; 242-249].

2. When k =1, a%) =0, bgﬁ) = 0, then we obtain a hypergeometric type system, since the solutions
of such systems are the hypergeometric functions of two variables [5; 316-319].
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3. Transformation
¥ =u,y" =wv. (1.2)

leads the system to the previous view.

4. When k > 2 from system (1.1) as a special case, the systems are obtained whose solutions are the
orthogonal polynomials of two variables. They are expressed through the functions of Appell. Specific
examples of the application are shown in the works [2; 155-169], [7; 655-661].

5. The general condition for the compatibility of such systems is established [1]. In addition, the
integrability condition must be satisfied

CORCY

- W * @ (1.3)

6. Under these important conditions, system (1.1) has four linearly independent particular solutions
[1]. The overall solution is represented as the sum of these four solutions

4

If condition (1.4) is not satisfied, then the system has at most three linearly independent particular
solutions. Until now, inhomogeneous systems of the form

POz + P(l)Zmy + Pz + P(3)Zy +pWz = pO (2,y),

QU Zyy + QW2 + QP 2, + Q¥ 272, + QWZ = Q¥ (x,y), (1.5)

still insufficiently investigated, where P4 = P (m,y),Q(i) = QW (z,y) analytic functions of two
variables. Although the works of Zh.N. Tasmambetov and M.Zh. Talipova (8, 9| are studied the
possibilities of constructing solutions for inhomogeneous systems of the form (1.5) and some special
cases of it. As in the ordinary case [10; 146], the rightness of assertion is proved |[8§].

Theorem 1.1. The general solution of the inhomogeneous system (1.5) is represented as the sum of

the total solution (1.4):
4

7=3"CiZi(w,y),( = 1,2,3,4)
j=1

corresponding homogeneous system and particular solution Zy(x,y) of inhomogeneous system (1.5):

4

Z(w,y) = Z(x,y) + Zo(w,y) = > C;Zj(w,y) + Zo(x,y).
j=1

Disseminate previous results obtained from second-order system case to the case with system
consisting of two third-order equations. Determine the number of solutions corresponding to homoge-
neous system, near singular curves. Carry out classification of singular curves and establish the type
of inhomogeneous system solutions. Develop specific examples.

Main results

2. Construction of homogeneous system solutions consisting two equations of third order
Problem statement. A nonhomogeneous regular system consisting two third-order partial differential
equations near the singularity is considered.

2390 Z i + 22ygW Zogy + 229D Zpw + 299 Zoy + 2gW 2, +ygD 2, + 997 = g7 (2, ),
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¥34 9 Zyyy + 224V Zoyy + 24P Zyy + 2yqP Zoy + 2¢V 20 + 9D 2, + 92 = ¢ (2,y),  (21)

where Z = Z(x,y) total unknown, coefficient

9" = gD (z,y) = aff) + affa",

¢ = ¢ (z,y) = bgg + bgfyk (i=0,6) (2.2)

and the right parts ¢(7) (z,y), q\" (z,y) analytic functions or polynomials of two variables. Required to
construct a general solution of inhomogeneous system (2.1) with coefficients in type (2.2) and show
that it is represented as the sum of total solution Zy(x,y) corresponding to homogeneous system and
particular solution of inhomogeneous system (2.1).

2.1. Construction of reqular solutions corresponding to homogeneous system

Construction features of regular solutions corresponding to homogeneous system

2%9" Zsww + &2yg\" Zoay + 229" Zow + 2yg® Ziy + 129 25 +yg© 2, + 9O 7 = 0,

ygq(O)Zyyy + $y2q(1)nyy + y2q(2)Zyy + xyq(S)ny + $q(4) Zy + yq(S)Zy + q(G)Z =0, (2.3)

where Z = Z(x,y) total unknown, not studied enough.

This system requires the establishment of a general method for constructing solutions near regular
singularities (0, 0) and (0o, 00), determining the number of linearly independent solutions, as well as the
classification of regular and irregular singularities, compatibility conditions and integrality. Systems
(1.1) and (2.3) differ only in orders. Therefore, to construct a third-order system solution (2.3), it
is advisable to use the Frobenius-Latysheva method [6], which has proved itself well in studying the
second-order system (1.1).

The use of this method involves the fulfillment a number of conditions:

1. Suppose that system (2.3) is joint and the integrality condition is also represented in type (1.3).
However, these concepts need further clarification.

2. Special curves at k = 1 determine by equating the coefficients at higher derivatives to zero Z,,,
and Zyyy: (0,0), (0, ~bog /857). (~agg /agy’,0), (~agg /agy), (=g /b4). (0, ), (00,0), (00, ~bgg /).
(—ag%)/ a((ﬁ), 00). As before, single out two pairs of features (0,0) and (0o, c0) at building a solution.

3. In case under consideration, the coefficient (2.2) is reduced to the form of the previous case,
using the transformation (1.2).

4. The solution near the feature (0,0) is represented as

Z(‘Tv y) = l,pya Z Am,nxmynv AO,O 7’é 0 (24)
m,n=0
a near the feature (0o, 00) in form
Z(IE, y) = xpya Z Bm,nximyina BO,O 7& 0 (25)
m,n=0

where p,0, Ay, n, Byyp(m,n =0,1,2,3,...) unknown constants.

The application of the Frobenius-Latysheva method assumes [6] compilation characteristic functions
system and determination systems of defining equations for the singularity (0,0):

1 0 1 2 3 4 5 6
féo)(Pa o) = aéo)P(P -1(p-2)+ at()o)P(P - 1o+ at()o)P(P -1+ aéo)pa + aéo)/) + aéo)a + aéo) =0,

5 (p.0) = b o(0 = 1)(0 = 2) + b o (0 — Do+ b o (0 — 1) + b por + bl p + b5 o + b = 0, (2.6)
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and concerning feature (0o, 00) :

(1 )( (0) 3) (4) (5) (6) 0,

1 2
p,o) =ayyp(p—1)(p—2)+ ago)P(P —1)o + ago)P(P —1)+ajypo+aygp+ago+ayy =

@ p.0)=bo(o—1)(0—2)+bVo(o—1)p+bPa(c = 1)+ 5 po + bV p+ 5o + b8 = 0. (2.7)

From (2.6) have been determined indicators of the series (2.4), and from (2.7) row indicators (2.5) as
pairs (pt, o¢). It is important to determine the index ¢, since the number of such pairs allows determining
the number of linearly independent particular solutions of system (2.3) near the singularities (0,0) and
(00, 00).

Theorem 2.1. If the system (2.3) with coefficient type (2.2), where coefficient a © # 0,

b(o # # 0,h = 1 meet compatibility conditions. Then the system (2.3) near the smgularlty (0,0)
has nine linearly independent regular particular solutions in type (2.4), where row indicators (p¢, 0¢),
(t =1,9) are determined from the system of defining equations (2.6), and unknown coefficients

Agfl),n(m, n=0,1,..; t =1,9) series (2.4) determined from recurrent sequence systems
t
Z AD iy nEDalp+ =m0 +v—n) =0, (2.8)
m,n=0

(u,v=0,1,2,....,;5 = 1,2;t = 1,9) obtained by substituting a series (2.4) to the original system (2.3)
with coefficients of the form (2.2).

Proof. In general, to establish compatibility conditions is very difficult. If the system is hypergeo-
metric type, then compatibility conditions are determined by the Kampe de Feriet method [2; 155-159].
The method for hypergeometric type of equations is shown in [11; 21]. Determine how many roots have
the system of defining equations (2.6) and (2.7). To this end, write down system (2.6) in expanded

form, using (2.5). From the second equation f(%)(p, o) = 0 we have discovered

B bé%)a(a —1)(oc—2)+ b(2) (c—1)+ bé%)a + b(()%)
b(()%)) (c—1)+ b(3)0 + b(4)

and substituting in the first equation féé) (p,0) = 0 systems (2.6), after exclusion o get the ninth degree
equation for p. In the case when only simple roots exist, it is possible to determine the nine roots of the
resulting equation. In the same way, we define nine simple roots oy, (t = 1,9 and make of them nine pairs
of roots (p¢, o¢), (t = 1,9). These indicators correspond to nine linearly-independent particular solutions
of the system (2.1) and (2.2), after determining unknown coefficient AﬁQn, (m,n=0,1,2,...;t =1,9)
from the system of recurrent sequences (2.8). Similarly, we can verify that system (2.1) and (2.2) also
has nine linearly independent particular solutions near the singularity (oo, 00).

Theorem 2.2. If systems (2.1) and (2.2), where coefficient ag%) # O,b((ﬁ) # 0,h = 1 conditions of
compatibility and integrability are satisfied (1.3). When systems (2.1) near the singularities (oo, 00)
have nine linearly independent regular partial solutions in type (2.5), where a number of indicators
pt,o¢(t = 1,9) determined from the system of defining equations (2.7), and unknown coefficients

Bg?n(m, n=0,1,2,..;t =1,9) series (2.4) determined from recurrent sequence systems

H,v
. A
> Bfﬁm,ufnféi,)n(p —p+m,o—v+n)=0,

m,n=0

(v =0,1,2,....;5=1,2;u—m > 0,v —n > 0,t = 1,9) obtained by substituting series (2.4) into the
original system ( ) (2.2).
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In Theorems 2.1 and 2.2, the conditions a(g%) # 0, bé%) # 0 and a%%) # 0, b[()ol) # 0 essential since the
ninth degree equations are relatively p and o turns out only when they are non-zero. This shows that
near regular singular curves (0,0) and (0o, 00) there are nine regular linearly independent particular
solutions Z(x,y), (t =1,9).

Theorem 2.3. Common solution of joint system (2.1), (2.2) in case of the integrability condition
(1.3) is satisfied, is represented as the sum

ZCZmy =1,9) (2.9)

where C;(t = 1,9) arbitrary constant.

Remark 2.1. Theorems 2.1 and 2.2 have been formulated for the case h = 1. This is due to the
classification of singular curves. They are true and generally, where £ > 2. Then particular solutions
are expressed through Z = Z (2%, y*), (k > 2).

Remark 2.2. Theorem 2.3 is also valid when the coefficients of system (2.1) are analytic functions
or polynomials of two variables.

2.2. Construction of inhomogeneous system solutions.

A theorem on the construction a general solution is formulated analogously to Theorem 1.1.

Theorem 2.4. The general solution of inhomogeneous system (2.1) is represented as the sum of
total solution Z(z,y) corresponding to homogeneous system (2.3) and a particular solution Zy(z,y) of
inhomogeneous system (2.1):

9
t=1

The form of the general solution (2.9) is established by Theorem 2.3. To construct a particular
solution near the singularity (0,0), we apply the method of undetermined coefficients generalized
for the case of two variables series. To this end, a series of the form (2.4) representing a particular
solution Z(x,y) substitute into the inhomogeneous system (2.1) and obtain the system of Frobenius
characteristic functions

2Py {Coof§3(ps o) + [Crofdy (p + 1.0) + Coo 3 (p, o))z + [Con fly (p, o + 1) + Confd (p, o)y +

+[Cl,1f(§,jg(P +1lo+1)+ C1,ofé, (p+1,0) + Coi f} 0(070 + 1)+ Co 0f1 DVp, o)y + .} = fi(x,y)

where f1(x,y) = ¢"(z,y), f2(z,y) = ¢"(z,y) and f(])( o), (j = 1,2) determines the system of defining
equations for the singularity (0,0) of the form (2. 6)

Further reasoning depends on form of right side representation fj(x,y),(j = 1,2). Let them be
represented as generalized power series of two variables in increasing degrees of independent variables
x and y :

fil,y) = 97 (2, y) = 2y° Z U na™y", (a0,0 # 0)
m,n=0

fo(z,y) = (@, y) =27y Y bmnz™y", (boo #0) (2.11)
m,n=0

Then a series of form (2.4) representing a particular solution

Zo(.ilf, y) = xpya Z Cm,nxmyna (CO,O 7& 0) (212)

m,n=0
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will be a formal particular solution only when uncertain coefficients Cy, ,(m,n = 0,1, 2, ...) satisfy the
following recurrent system

Coofd)(p.o) = o]
cwﬁ§@+1my+amﬁ?@md=a%
)
1

1
Corf8(pyo +1) + CoofP(p, o) = af

Crafs)(p+ Lo+ 1)+ Crofd (p+1,0) + Cor £ (p,0 + 1) + Coof (p, ) = o)

Cooff) (p+2.0) + Crof Q) (p+1,0) + Con sy (p,0) = o)
CoafD(p,o+2)+ Corf (0,0 +1) + Coo fD (p,0) = o)

.......................................................................................................................... (2.13)

The recurrent system determines the coefficients Cy, ,(m,n = 0,1,2,...) of series (2.12). When

j =1 and j = 2 it breaks down into two systems. When j = 1 in the right part (2.13) ag?n = Gmn

at j = 2 coefficients ag?n determines over by, ,(m,n = 0,1,...), where a, , and by, ,, coefficients of
generalized power series ¢(7)(z,) and ¢(7)(z,y). Coefficient Cmn(m,n = 0,1,2,...) determined at
j =1 and j = 2 of the two sequences of recurrent systems must be identical. From the recurrent
system (2.13) they are determined only under the condition (a+ k1, 8+ k1) and (v + k2, d + k2) where
k;j(j = 1,2) any natural numbers, are not indicators of homogeneous system (2.3) solution. Series
convergence f;(z,y)(j = 1,2) involves the convergence of right-hand side series (2.12). When fulfilling
the above conditions, particular solution Zy(z,y) the inhomogeneous system (2.1) with coefficients of
the form (2.2), when the singularity (0,0) can be constructed regularly.

Remark 2.3. If (a + k1,8 + k1) and (v + k2,0 + k2), where k;(j = 1,2) any positive integers are
indices of homogeneous system solution, then we obtain a more complicated «resonance» case. This
case requires additional investigation.

Remark 2.4. If in coefficients (2.2) constant k£ = 1, then in the recurrent sequence starting from
fl(Jl) (p, o) all expressions fg(jo) (p,o), 5]2) (p,0), 35‘70) (p,0), ... will be zero.

Remark 2.5. The transformation (1.2) of the considered case will lead to a simpler form k = 1.

Thus, based on the above reasoning, we can conclude that the statement is true.

Lemma 2.1. Let inhomogeneous system consisting of two third-order equations (2.1) with coefficients
in type (2.2), where the right-hand sides ¢(")(z,y) and ¢(7)(x,y) analytic functions of two variables
regular near the singularity (x = 0,y = 0). Then system’s particular solution (2.1) has the form of the
right-hand side (2.11), if (a+ k1, 8+ k1) and (77 + ke, d + ko) does not coincide with any pair of solution
indicators corresponding to the homogeneous system (2.3) for any natural k;(j = 1, 2).

2.8. Construction and study properties of specific system solutions

J. Kampe de Feriet [2; 155-162] provides a method for constructing systems of third and fourth
orders consisting of two equations, using the system

jtk=w+1
> (s — agua)zly*pip =0,
j+k=0

Jjtk=w+1

Y (k= Biwy)aly pjp = 0. (2.14)
j+k=0

This technique ensures the compatibility of two equations systems hypergeometric type (2.3). The
solutions of such systems are generalized by hypergeometric functions of two variables. Consider a
particular special case [2; 159] of such system and we will study the properties of its solutions.
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Theorem 2.5. The system of partial differential equations consisting two equations of third order
22 Zpuw + XY Zyay + (Y + 0+ )22y + 0yZyy + 702, — Z =0,
Y Zyyy + TY Zagy + (v + 8 + 1) yZyy + 8 &2y + 70 Zy — Z = 0, (2.15)
has nine linearly independent particular solutions
o

/ 1 ™y

m,n=0

_s T Y Ty
Zofw,y) =y {14 S T1=0)  EoE1=0) e - ra=0)

— Y Yy Ty
2 TSI W i Sl 7 Yo iy S ovarag sy B2

Za(w,y) =y {1+ 5+ 4 + 2 b s )

7 _ 15,15 1 x y
@) =yt o =) T @20 -0

+ Ll
2-0)2-0)y+2-86-8)(vy+3—-6-7¢)

T

— 1=, 1—y z Y zy
Aol =T S e 1) T @G-y 5)

+
)
X
Y+

4

2
e e [C RS Ty Bl o e ey ey

)

_ - — fU Y
Zs(ay) = 'y {1+ - NE-0)6rl—n) (a2

Ty
(2-0)22-70+1-7)(3-¢)

+ + ...}

_ _ x Yy
Zo(z,y) = 27y {1 + + +
) U epari-y T
Ty
2-7)3B-7)A+d-7)(1+5 —7)
Proof. The system is consistent in construction system (2.14). We will construct solutions using the

Frobenius-Latvian method, based on the results of clause 2.1. The system of defining equations for the
singularity (0,0):

1 +..} (2.16)

5 (p.0) = p(p—1)(p—2) + plp— D)o+ (v + 6+ D)p(p — 1) + 6po +76 =0,

Dipo)=c(c—-1)(0—-2)+po(c—1)+ (y+8 + Do(c—1)+ 5 po+~5 =0 (2.17)

has nine pairs of roots:
1.(p1 = 0,01 =0);2.(p1 = 0,00 =1 — 5/);3.(p2 =1-46,00 =0);
4(p1=0,05=1-7);5.(p2=1-08,00=1-0);6.(pp=1—,03=1—7);

T(p3=1-7,00=0);8.(p3=1—7,00=1-08)9.(p3=1—7,03=1—).
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Using the system of recurrent sequences (2.8), we determine the unknown coefficients of the series
(2.4) sequentially substituting the values of the roots pairs (p¢, ¢ )(t = 1,9) of system defining equations
(2.17).

In this way, we obtain nine linearly independent particular solutions (2.16). The theorem is proved.

Now we proceed to construct a particular solution of an inhomogeneous system

82 Zaww + 2Y Zwmy + (Y + 0 + )8 2y + 0y Zny + 7020 — Z = gD (a2, y),

yZZyyy + Y Zyyy + (v + 5 + )yZyy + 5/33ny + ’Y(S/Zy —-Z= 9(7) (z,y), (2.18)
where the right side has the type

/ 1 1
(7 2 L
g\ (x,y) =700 +’y§x+75,y,
¢ (z,y) = %66 + Lov Ly (2.19)
b 76 ’75/

Theorem 2.6. The general solution of the inhomogeneous system (2.18) with the right part (2.19)
is represented as the sum (2.10) of the total solution Z(z,y) the corresponding homogeneous system
(2.15) and a particular solution Zy(z,y) heterogeneous system (2.18).

Indeed, by virtue of Theorem 2.3, the general solution of the corresponding homogeneous system
(2.15) is represented as the sum of nine linearly independent particular solutions Z;(z,y), (j = 1,9)
(2.16):

Z(z,y) = Y CiZix,y), (i

m,n=0

1,9).

It remains to build a particular solution Zy(z,y) of heterogeneous system (2.18) with the right part
(2.19) using the method of uncertain coefficients described in clause 2.2 based on the right part of task
g (z,y) and ¢V (z,y) in view of

Zo(x,y) = Coo + Cr oz + Coay. (2.20)
Substituting (2.20) into (2.15) we determine the unknown coefficients: Cp g = —(7255/4—1), Cip= —%,
Cop = —ﬁ obtain a particular solution of the inhomogeneous system (2.18) with the right side
g (z,y) and ¢ (z,y) in view of
/ X y
Z = —(v%56 +1) - = — = 2.21
o(o9) = ~(788 1) = - & (2.21)

Therefore, the general solution of inhomogeneous system (2.18) with the right-hand side (2.19) is
represented as

9
_ ’ X
7j=1

where Z;(z,y), (j = 1,9) particular solutions corresponding to homogeneous system (2.16).

It is easy to verify that the sum of two equations (2.18) also satisfy the particular solution of the
inhomogeneous system (2.21).

Theorem 2.7. A particular solution of the inhomogeneous system (2.21) is also a solution of a
third-order partial differential equation

mQsz + mZ/Z:c:cy + yQZyyy + wyZ;tyy + ('7 +4+ 1>xZ$:L‘ + (7 + 5/ + l)yZyy+
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+@y+5@zw+7&@+75@_azzgw%5+§?+%g

obtained by adding the two equations of the inhomogeneous system (2.18).

Theorem 2.8. The general solution of the inhomogeneous system (2.22) is a solution of a third-order
partial differential equation (2.23) obtained by adding two equations of the inhomogeneous system
(2.18).

Conclusions: Thus, in this paper we have been studied the possibility of constructing solutions
uncharted inhomogeneous system of differential equations in partial derivatives, consisting of two third-
order equations.

1. To solve the corresponding homogeneous system (2.3) was applied the Frobenius-Latyshev
method. Theorems 2.1 and 2.2 on the number of linearly independent solutions of the homogeneous
system (2.3) have been proved. The main stages of building solutions by the Frobenius-Latyshev method
are given. It was found that when the roots of the defining systems (2.6) and (2.7) with respect
to characteristics (0,0) and (oco,00) simple, the homogeneous system has nine linearly independent
particular solutions of species (2.4) or (2.5) near the singularities of (0,0) and (oo, c0).

2. A theorem on the construction a general solution of the inhomogeneous system (2.1) with
coefficients in type (2.2) is formulated. To this end, for such systems, for the first time the method
of uncertain coefficients is used. Yu.l. Sikorskiy extended method of Frobenius-Latysheva to linear
ordinary inhomogeneous differential equations [12, 13]. It has been shown that for solving various
problems of thermoelasticity, the method of undetermined coefficients has an advantage over the
method of arbitrary constant [14]. For example, when solving the inhomogeneous Bessel equation,
particular solution is a linear combination of Lommel functions [15]. It should be noted that in this
monograph thoroughly studied the possibility of constructing the solutions known classical ordinary
differential equations with the right-hand side, the decisions of which are special functions and ortho-
gonal polynomials in one variable. In the case of the studied systems, the research has not reached
such a level.

3. A specific example is considered, where a homogeneous system is constructed by the method
of J. Kampe de Feriet [2; 155-169]. Nine linearly independent solutions (2.16) obtained by the Frobenius-
Latysheva. To build a general solution of system (2.18) with the right-hand side (2.19), the undetermined
coefficients method is applied.

4. It is also shown that application of uncertain coefficients method allows to obtain solutions of
one inhomogeneous partial differential equation of the third order (2.23) associated with the studied
specific system (2.18).

5. The first particular solution of homogeneous system (2.15) relates to degenerate generalized
hypergeometric series of two variables Clausen type

(2.23)

Ty 1 22

5 v+ 1) T E D) 2 T
2

/ 1 1
(7 ) ,’Y,l’,y) +6’)/x+5'}/y+
1
, v
(0" +1)y(y+1) 2!
The properties of this series remain understood. Consider the differential properties of the series (2.24).
Theorem 2.9. First m and n the of the series (2.24) are represented as:

2.24
+3 (2.24)

9 , | ,
L2 P(56,6 vy y) = —F(564+ 1,8 7 + 1
837 (, ) 7%95,?/) (5’}/ (a + y a’}/—i_ 7x7y)7
0. 0 B(5.0 v y) = ——F(56,8 41,7+ 1:2,9)
‘ay ) ) 7,‘)/7 7y _5/7 ) ) 7’.}/ ) 7y7
3 O*F (56,8, vim,y) _ F(50+42,0,7+2,y)

Oa? 86+ y(y+1))
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LOPF (36,0 yiayy) _ F(50.8 +2,7+%a,y)

dy? G TGRS )
5 O*F (56,0, viwy)  F(;0+ 1,6 +1,v+2m,y)
' dxdy N 80" y(y+1) ’
6 8m1F(';5,5/,’7;$,y) _ F(-;5—|—m1,5/,7—|—m1;x,y)
' ox™ 6+ (SFm)y(y+ 1)y +2)]
7 amQF(’5’6/+17'y+m2’;p,y) _ F(';575/+m257+m2;x7y)
' oy 8 (6 +1)...(6" +ma)y(y + 1)...(y + m2)’
. oMM (56,8 iz, y)
' Ox™1Qym2 N

F(56+m1, 6 4 ma,y + mi + ma;z,y)
80 +1)c(64m1)d" (8" +1).(6" + ma)y(y + 1).cc(y + my + ma)

Confine ourselves with building a single solution corresponding to the indicator (p; = 0,01 = 0).
Similarly, the differential properties of the remaining series in (2.16) can be derived. The output of
these differential properties further facilitates the proof of theorem addition and multiplication, while
others recurrence relations associated with degenerate generalized hypergeometric series.
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Jlepbec TybIHABLIBI YINIHIN PEeTTi
audpdepeHIuaaabIK, OipTekTieMmec XKyiiesjep Iertimi

Yuriami perti mepbec TyBIHABLIBL OipTekTieMec muddepeHnnaiIbK TeHIEYIeD KYHeciHiy mermmaepin Ky-
py MywMmKingikTepi 3eprresiren. @pobennyc-JlarpimeBa omiciMer coiikec GIpTeKTi *KYHeHIH »KaJIbl YKOHE
nepbec menniMaepin Kypy *KaH->KaKThl KapacThIpbLIFaH. ChI3BIKTHI-TOYEJICI3 JIepOec MIenTiMaep CaHbl AaHbIK-
tasran. MyHzmail Kyitesepre aHbIKTaJMaraH KO(MMUIIMEHTTED OICIH KOJJAHY €pEeKelIeJTiKTepi alKbIH-
JAJIFAH 2KoHe OIpTEKTI eMeC »KYieHiH »KaJllbl MIEHIiMi TypaJibl TeopeMa JpJiesiieHreH. HakTel Mblcanina,
OCBIH/Iall YKOJIMEH KYPBLIFaH GIPTEKTI eMec XKYiieHiH 1epbec MelriMi, KapaCThIPBLIFaH MBICAIAFbl TEHJIEY-
Jiep KyheciHiH eki TeH/eyiH KOCBIHIbLIAYIAH aJbIHFaH YIMHIIN peTTi, 6ipTekTi emec Oip TeHAEYIH ae 1re-
miMi GoJstaThIHABIFBI KepceTiiren. Colikec GipTeKTi XKyiieHiH nepbec memtiMaepiniy 6ipi exi aiflHbIMAJIBIHBIH
Kitaysen TekTi TybIHIAIFaH KAJIBIJIAHFAH TMIEPreOMeTPUANIBIK KaTap TypiHe Karaibl. MyHtail »Kasirbl-
JIAHFAH THIEPTeOMETPUSIIBIK, KATaPJIapIbIH KACUETTEP] 93ipiine a3 3epTTe/reH.

Kiam ceadep: BIpTeKTI eMec XKyiie, Peryssipjbl IIEITM, epeKilie HyKTesep, bericis KoadduimenTrep o/1ici,
Kyle, Tegaeynep, TeopeMa.
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Pemenune neoHopogHbIX cucTteM JquddPepeHImaIbHbIX
YPaBHEHUIl B YaCTHBIX ITPOU3BOJHBIX TPETHETO IMOPAIKA

3ydenpl BO3MOKHOCTH IIOCTPOEHUS PENIEHNN HEOJHOPOIHON cHCTeMBbI nuddepeHITNaJIbHbIX yPaBHEHUI
B YACTHBIX MMPOU3BOIHBIX TpeThero mnopsaka. Meromom ®pobenmnyca-JlarnimneBoit BCECTOPOHHE HUCCIETOBA~
HO IIOCTPOEHWE OOIIEro W YaCTHBIX PENIeHUI COOTBETCTBYIOIIEH OJHOPOIHON CHCTEMBI. YCTAHOBJIEHBI BU-
Bl pernenus: B6uim3u 0coObix KpUBBIX. OIpeesieHo KOJIMIeCTBO JINHEHHO-HE3aBUCUMbBIX YaCTHBIX PEIeHHUIA.
JlokazaHna TeopemMa O MPeACTABJIEHUN OOINEro PelleHns HEOMHOPOIHON CHCTEMBI U PACKPBITHI OCOOEHHOCTH
MIPpUMEHEHUs] MEeTO/[a HEOIPEIETIEHHBIX KOIDMUIIMEHTOB 718 TaKuX cucteM. Ha KOHKpeTHOM mprMepe moKa-
3aHO, YTO IIOCTPOEHHBbIE TAKUM 00PAa30M YaCTHBIE PEIIeHUs] HEOTHOPOIHON CUCTEMBI SIBJISIOTCA PEIIEHUSIMU
¥ OJTHOTO HEOJHOPOIHOTO YPaBHEHHS TPETBHEro IOPsJIKA, MOJIYUYEHHOTO IIyTEeM CJIOYKEHUS IBYX ypPaBHEHUN
paccmoTpentaoro npumepa. OHO U3 YaCTHBIX PENIeHUil COOTBETCTBYIOINIEH OJJHOPOJIHOM CUCTEMBI OTHOCUT-
Csl K BUJYy BBIPOXKIEHHOIO ODOOIIEHHOIO TMIEPreOMEeTPUIECKOro psijia Tuna KiayseHa JABYyX MEepeMEHHBIX.
CaoiicTBa TaKUX 0OOOIEHHBIX THIIEPTEOMETPUIECKUX PSIIOB OCTAIOTCS MAJIO M3y IEeHHBIMH.

Karouesvie caosa: HEOTHOPOIHAS CHCTEMa, PEryJIIDHOE PeIleHne, OCOOEHHOCTH, METOJ, HEeOIpPeIeIeHHbBIX
K03 DUIMEHTOB, CUCTEMa, YPABHEHUs, TEOPEMA.
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