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Multiperiodic solution of linear hyperbolic in the narrow
sense system with constant coefficients

There is researched existential problem of a unique multiperiodic in all independent variables solution
of a linear hyperbolic in the narrow sense system of differential equations with constant coefficients and
its integral representation in vector-matrix form. To solve this problem, based on Cauchy’s method of
characteristics, a constructing methodology for solutions of initial problem system under consideration with
various differentiation operators in vector fields directions of independent variables space has been developed
based on projectors. Using this method, Cauchy problems for linear system with integral representation
are solved. The introduced projectors by definition characteristic had significant value. By solving the main
problem necessary and sufficient conditions for existence of multiperiodic solutions linear homogeneous
systems other than trivial are established. The conditions are obtained for absence of nonzero multiperiodic
solutions of these systems. In absence of nonzero multiperiodic solutions linear homogeneous systems,
the main theorem on existence and uniqueness of multiperiodic solution linear nonhomogeneous system
with derivation of its integral representation depending on projection operators is proved. The developed
method has prospect of extending the results to quasilinear system under consideration, as well as to
multidimensional vector t = (¢1, ..., t ) and multiperiodic matrices at partial derivatives of unknown vector-
function.

Keywords: hyperbolic system in the narrow sense, multiperiodic solution, method of characteristics, projection
operators, differentiation operators by vector fields, integral representation.

Introduction

Solving many problems of modern science and technology, one often has to deal with oscillatory
processes, which are described by partial differential equations. In this regard, the study of oscillatory
processes described by single and multifrequency periodic solutions of differential equations systems
has important theoretical and applied value. It is known that the basis of theory oscillatory solutions of
differential equations originates from the classical works of A.M. Lyapunov, A. Poincare, N.M. Krylov,
N.N. Bogolyubov, Yu.A. Mitropolsky, A.M. Samoilenko, A.N. Kolmogorov, V.I. Arnold, Yu. Moser et
al.

Methods for integrating systems of quasilinear differential equations with the same main part
regarding this note are described in [1-6]. Note that the integration of quasilinear differential equations
systems with different principal parts refers to little-studied problems in the sections of the theory
partial differential equations. Therefore, the development of methods for solving problems of multi-
period solutions of such systems is at the initial stage of its development. It is known that the basis of
theory multiperiodic solutions of partial differential equations systems with one differentiation operator
was laid in [4-10]. Some ideas of the methods of these works, based on research [11-14]|, were extended
in [15-17] to the study of problems on multiperiodic solutions of quasilinear equations systems with
various differentiation operators along their characteristics.

In [15], the question of almost multiperiodic solutions of systems with small nonlinearity is studied,
when the matrix of coefficients of the linear part has a triangular form, and the differentiation operators
are row-wise different.

In the study [16], a quasilinear system with two differentiation operators is considered and the
conditions for the existence of unique multiperiodic solution this system are established in the noncriti-
cal case.
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In a note [17], multiperiodical in wide extent solutions of the periodic boundary value problem for
linear systems that decompose into linear subsystems with various differentiation operators along the
directions of vector fields of spatial variables are studied.

The issues of solutions of quasilinear equations systems that are almost periodic in time variable,
the linear parts of which decompose into independent subsystems with its differentiation operators,
were researched in the monograph [6] in terms of the matricant.

Splitting the linear part into independent subsystems is a very special case in which the problems
under consideration are solved. Consequently, these tasks remain open to the general case.

In [18-20], the problems on multiperiodic solutions are investigated by introducing a projection
operator. The aim of this paper is to substantiate the method of the projection operator for studying
an initial and a multiperiodic problems the linear hyperbolic in the narrow sense systems with constant
coefficients.

It is known that the basis of the general theory of partial differential equations systems are methods
for studying linear systems. Moreover, in the oscillations theory of continuous medium of noninteracting
particles, problems associated with the study of its vibrations mainly lead to the study of multiperiodic
solutions of linear equations systems. In most cases, linear equations, in comparison with nonlinear
ones, are considered to be studied quite widely and deeply. But these linear problems are so diverse
that among them there are either poorly studied or generally unstudied until today. The latter also
includes the problem that was posed above for linear systems.

Let the oscillatory process in the continuous medium be described by system of equations
%—FA% = By + ¢(1,1), (1)
where y = (y1,...,¥n) is unknown vector-function; 7 € (—oo,+00) = R and t € R; A and B are
constant n-matrices; ¢(7,t) is n-vector function.

The initial-boundary value problems for system in the form (1) have been studied in various
literature, in particular, in monographic works [1-3|, with constant and variable coefficients in terms of
solutions in the wide extent, and a detailed study has been carried out for systems in the scalar form.

In this paper, we consider the problem of existence and integral representation in the vector-matrix
form of a unique (€, w)-periodic solution of system (1) with the following assumptions:

19, The matrix A has various real eigenvalues \; = \;(A), j = 1,n:

)\j * e, J,k=1,n, )\j € R. (2)

System (1) under condition (2) is called hyperbolic in the narrow sense [2].
20, Matrix B satisfies the relation

det[Y (0) — E] # 0. (3)

Here Y (7) = exp[Br7], E is identity matrix.
Under condition (3), homogeneous system corresponding to system (1) has no (6,w)-periodic
solutions, except for the trivial one.
30. The vector-function o(7,t) has properties of (6, w)-periodicity and smoothness with respect to
(1,t) order (0,1):
o(t+0,t+ qw) = p(7,t) € C(%’l)(R xR), q€Z, (4)

T,

where 6 and w are rationally independent periods; Z is the set of integers; C’g)t’l)(R X R) is the class of
functions possessing the indicated smoothness properties in order (0, 1).
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Main Results

By linear replacement
y=_Czx (5)

with nondegenerate constant n-matrix C' the system (1) is reduced to form

Ox ox
5 +J§ Kz + f(7,t), (6)

where z = (21,...,4,); C YAC = J = diag[\1,...,\s]; C7'BC = K is constant n-matrix and
C~lp(r,t) = = f(r,t) is vector-function.
Matrix X (7) in the form of
X(7) = exp|K7] = exp|C ' BC1] = C~texp|Br|C = C7Y (7)C

is matricant of system

Ox Ox
—+J—=K 7
or Tar TR @)
and X(0) = E.
Denote vector-function f(7,t) = C~1¢(r,t), the same like o(7,t), has properties (#,w)-periodicity

and smoothness of order (0, 1):
Fr+0,t+qw) = f(r.t) € OV (R x R).

This can easily be verified on the basis of condition (4).
To study the main question, it is necessary to solve the problem for system (7) with the initial
condition

2lr—r, = u(t) € O}V (R). (7°)

Obviously, by virtue of the statement of problem (7)-(7"), we are dealing with differentiation
operators D = (D, ..., Dy), that coordinate-wise act on vector-function z(7,t) = (z1(7,t), ..., x, (7, 1))
with the property of smoothness (1, 1)) with respect to (7,¢) in the form

Dzx(1,t) = (Diz1(7, 1), ..., Dpzp(7,1)). (8)

As can be seen from system (7), on the left side these differentiation operators D;x;, j = 1,n are
defined as

ox; ox; .
Dja:jza—;—i— ja—tjzo, j=1,n, (9)
which in the directions of corresponding vector fields
dt .
i Aj, j=1n (10)

act like a normal differentiation operator with respect to 7.
Each of the equations (10), which determines the direction of differentiation, can be called the

characteristic equation of operator D; = + Aj—;. Then the general solution

ar Vot

t=0+X\(1—35)=hj(r,s,0), j=1n (11)

defines the characteristic h;(7, s, o) of operator D; coming from initial point (s,o) € R x R.
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Thus, for characteristics, we have a common notation h(r,s,o), which as values can take one of
the known characteristics h;(7,s,0), j = 1,n. Therefore, we have

h(r,s,0) € {hi(7,8,0), ..., hn(T,5,0)}, (12)

where hj(7,8,0)|;=s = 0.
d
Obviously, the operators D; move on to the total derivative operator e with respect to 7, along
T

the characteristics ¢t = h;(7, s, 0) defined by relation (11) and we have

Dl“t:h('r,s,a) = (D1m1|t:h1(’r,s,a)v SR Dnl‘n|t:hn(7',s,o)) =

d d d
= (—xl(T, hi(7,8,0)), ..., —p (T, hn(T,S,O'))) = —ux(7,h(1,8,0)). (13)
dr dr dr
Thus, a relationship is established that expressed by relation (13) between the differentiation

d
operator D acting by formula (8) and the total derivative . of the vector-function z(7,t) along
T

characteristics (11)—(12).
Next, to ensure output of function defined on characteristics h(7, s,0) € {h1(7,5,0), ..., hn(7,5,0)}
in the space of variables (7,t), from the characteristics (11) we determine the first integrals

hj(s,7,t) =0, j=1n (14)
of characteristic systems (10) and we have
h(s,7,t) € {hi(s,T,t), ..., hn(s,7,1)}.

It’s obvious that

Djhj(s,’l',t) = 0, j = 1,n. (15)

Moreover, if H;(t) an arbitrary differentiable function, then

DjHj(hj(S,T,t)):O, (S,T,t)ERXRXR, j=1n. (16)
Thus, if the function x(7,t) = (x1(7,t), ..., z,(7,t)) is defined along the characteristics (11)—(12):
(.%'1(7’, h1(8,7‘, U)),...,l’n(T, hn(87770)))1 (17)

then in respect that (14) from function (17) we obtain the function z(7,t) defined as (7,t) € R x R,
by virtue of the relations

h;(1,s,hj(s,7,t)) = hj(t,7,t) =t, j=1,n. (18)

The rightness of relations (18) is easily verified on the basis of (11) and (14).
We begin the integration of system (7) from the system

ox Ox

—+J—==0 19

or * ot (19)
with unknown vector-function = = (z1, ..., ).

By virtue of (8)—(9) and (13) system (19) can be represented as

or in scalar form

Djxj = 0, j = l,n. (21)
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Then, by virtue of identities (15)-16), we have the basic solution
:LI(S7 7—7 t) = (hl (S? T’ t)? M) hn(s7 T’ t))

with coordinates

xj = hj(s,7,t), j=1,n,

satisfying the initial conditions
hj(s, T, t)|;r=s =1t

and general solution
x(s,7,t) = H(h(s,7,t)) = (H1(h1(s,7,t)), ..., Hy(hn(s,7,1))) (22)

with arbitrary differentiable n-vector-function H(t) = (Hi(t), ..., Hy(t)).
Then the solution z of system (19) with the initial condition

‘T|T:TO = u(t) (190)
and the vector-function w(t) = (uy(t), ..., un(t)) € Ct(l)(R) is determined by relation (22) by choosing
an arbitrary vector-function H(t) = u(t )

Consequently,
(70,7, t) = w(h(7°, 7, 1)) = (u1 (R (7%, 7,1)), ooy tn (A (70, 7, 1)) (23)

represents a solution of the initial problem (19)-(19%), otherwise, relation (23) can be called the zero
of the operator D with initial condition (19°).

Thus, we have the following statement.

Theorem 1. A solution of the initial problem (19)—(19°) is determined by the relation (23).

Hence we have an obvious consequence.

Corollary. In the case of narrow hyperbolicity of system (1), the vector-function y = Cx(7%, 7,t) is
a solution of equation

or ot

satisfying the initial condition y|,—,0 = Cu(t),
where C' is the transformation matrix (5); (7%, 7,t) is the solution to problem (19)—(19).

Now we consider the system of homogeneous equation (7) with the initial condition (7°).

Let the matrix be represented in the form X (7) = [acjk(T)]?, k = 1,n. Then, using the n-vector-
functions X;(7) = (x1(7), ..., xjn(7)), j = 1,n, composed from rows of matrix X (7), we have its vector
representation

:()7

X1(71)
X(n=1 .. |. (24)
Xn(7)

Next, based on the initial vector-function u(t) = (ui(t), ..., un(t)) € Ct(l)(R), we compose a matrix
U(h) defined along the first vector-integrals (12) with a representation of the form

ul'(h1(79,7,1))
Uh(7%7,t) = =
ul (R (70, 7, 1))
(ur (h1(7°,7,1)), oo un (h1 (70, 7, 1)) Ui (hy (79, 7,1))
(1 (70,7, 0))s oes tn (70,7, 8))) ) \ U (B (70, 7, 8))

where u” is transposed vector w.
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Now we construct the vector-function (7%, 7,t) using the scalar product of vector components of
matrices (24) and (25), in the form

(X1(1 —79), Ur(h1 (70, 7,1)))
z(70,7,t) = . (26)
<Xn(T - TO)? Un(hn(Tov T, t>)>

By a direct check, we verify that the vector-function (26) is a solution to the initial problem (7)—(7°).

Now, to represent the solution (26) of system (7) as the product of matrix and initial vector-function
(79), we introduce the operator P = diag[P}, ..., P,], where P; acts on the vector-function u(t) defined
along the first integrals in the form

Pjug(h(7%,7,t)) = up(h; (1%, 7,1)), 4,k =T1,n.
Therefore, solution (26) can be represented as
(70, 7,t) = PX (1 — 0 u(h(1%, 7, 1)), (27)

where the matrices on the right are determined by the relations
i,J=n

PX(t—7% = [xij (r— TO)BLJ:1

and
PX(tT— To)u(h(TO, T,t)) =
2,J=n

= {xij(r — 70 u;(hi(r°, 7, t))] :

Q=1

L,j=n

= [xij (1 — 7°) Py (h(7°, 7, t))}

Indeed, the equivalence of relations (26) and (27) is visible from the following chains of transformations

3,j=1

PX (1 — mu(h(°,7,t)) = diag[Py, ..., Py ([xz‘j(T _ TO)]?U(h(TO,T, t)))i’j:” _

ij=1
= diag[Py, ..., P, (Z zi (1 — 0 ug (h(7°, 7, t))) =
i=1
(P szk (1 — N (h(r°, 7 t))) (Z zi (1 — 7°) Py (h(7°, T, t))) =
i=1 =1

i=n

(lek 7 — 1y (hi(7°, 7, t))) =

=1

iz (X0 =70, Ui (70 7,1))
= (XKilr =), U7, 0))) =
B (Xn(1 =79, Upn(hy (72,7, 1))

Thus, based on the projector P, the solution of problem (7)—(7°) is determined by relation (27).

Lemma 1. The initial problem (7)—(7") has a unique solution x(7°,7,t), which with the help of
matricant X (7) and projector P is represented in the form of relation (27).

The existence of solution in the form (27) is justified above. Uniqueness follows from the existence
of the matricant X (7) of system (7).
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Theorem 2. Let system (1) satisfies condition (2). Then the system

% + A% = By, (28)
has a solution y = Cx(7°, 7,t), where is the transformation matrix (5), z(7°, 7,t) is the solution (27)
of problem (7)—(7°).
The proof of Theorem 2 follows from the reducibility of system (28) to system (7) based on
transformation (5).
Now we consider the initial problem for the nonhomogeneous system (6).
It is easy to verify that the vector-function

:U(TO, T, t) = PX(T)u(h(TO, T,t)) + /PX(T)Xl(S)f(S, h(s,T,t))ds (29)

70

is a solution of system (6) with the initial condition z|,—, = u(t) € Ct(l)(R).
Based on the transformation (5) from the representation (29), we have a solution of system (1) in
the shape of

y(19,7,t) = PCX(7)C Yo(h(r%,7,1)) + /PCX(T)Xl(s)Clgo(s, h(s,T,t))ds, (30)

70

where v(t) = Cu(t).

Obviously, CX(7)C~! = Y(7) is a matricant of the homogeneous system (28) corresponding to
system (1).

Then we obtain a representation of solution (30) using the matricant Y'(7) in the form

y(r°, 7,t) = PY (7)v(h(7°, 1,1)) +/PY(T)Y1(5)cp(s,h(s,T, t))ds, (31)

satisfying the initial condition
1
Ylr—ro = v(t) € CV(R). (1)

When deriving formula (31), all its constituent parameters are uniquely determined.

Therefore, the solution (31) of system (1) with the initial condition y|,—, = v(¢) = Cu(t) is unique,
where u(t) € C’t(l)(R).

Thus, the following Theorem 3 is proved.

Theorem 3. Let conditions (2) and (4) be satisfied. Then the initial problem (1)-(1°) is uniquely
solvable in the form of relation (31).

Note that the representation of solutions (31) implies the representations of solutions (23) and (27)
of systems (19) and (7), respectively.

The essence of Theorem 3 is that the general solution of initial problem is defined as product of
matricant and initial vector-function with certain directions of differentiation with respect to vector

fields.
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Multiperiodic solutions

Lemma 2. Suppose all eigenvalues A\;j(A), j = 1,n of matrix A are real and non-zero, moreover w,
A0, j = 1,n, rationally incommensurable:

Aj(A) #0, ;;egzcz, i=Tn, (32)

where @ is the set of rational numbers. Then, the (6, w)-periodic solutions of system (19), and, therefore,
systems (20) and (21), are only constants.

Indeed, in order for the solution x(7°, 7, ) be (6, w)-periodic, according to the structure of solutions
(23) and the linearity characteristics h; (7%, 7,¢) =t — X\j(7 — 7°), j = 1, n with respect to 7 and ¢ the
initial vector-function must be periodic with respect to ¢ both with the period pw and the period ¢;\ ;0
with integers p and g;. Then, by virtue of the incommensurability condition (32), u(t) should only be
constant.

Consider the set of solutions to system (7) with constant initial data u = ¢. Then we have solutions
of the form

z(t) = X(1)e, ¢ is constant. (33)

Theorem 4. Let condition (3) be satisfied. Then system (7) has only a zero (6, w)-periodic solution
of the form (33).
Indeed, since (6, w)-periodic solutions of the form (33) satisfy the condition

x(1+0)=X(1+60)c=X(1)X(0)c= X(1)c = z(1),
then the vector ¢ guaranteeing #-periodicity of solution (33) is determined by the relation
(X (0) — E]c=0. (34)

It follows from (34) that the (6, w)-periodic solution of the form (33) of system (7), under condition
(3), is only a trivial solution.
In fact, since Y (7) = CX(7)C~!, from condition (3) we have

det[Y(0) — E] = det[CX(9)C~! — E] = det C'det[X () — E] det C~" # 0.
Hence, det [X (0)— E] # 0. Consequently, system (34) has only a zero solution, and from representation
(33) we have z = 0.
Theorem 4 is proved.
Theorem 4 can be formulated differently in the form of the following theorem.
Theorem 4'. For the system (7) hasn’t a nonzero 6-periodic solution it is necessary and sufficient
that the following conditions are fulfilled

det[X(0) — E] # 0. (35)

Theorem 5. If the condition (3) is not satisfied; then for the solution (33) of system (7) with a
constant vector ¢ to be f-periodic with respect to 7 it is necessary and sufficient that the vector ¢ be
an eigenvector of the monodromy matrix X (6) corresponding to its eigenvalue p = 1.

Indeed, along with the nonzero solution (33), we consider the solution

z(t+0)=X(1+0)c (33")

of system (7). From the theory of periodic solutions it is known that in order for the two solutions (33)
and (33’) to coincide everywhere, it is necessary and sufficient that feasibility of condition

132 Bectnuk Kaparanmurckoro yHuBepcurera



Multiperiodic solution of linear...

Since z(f) = X(f)c and x(0) = ¢, from this we have condition (34), which takes place in the
presence of an eigenvalue p = 1 of the monodromy matrix X ().

Theorem 5 is completely proved.

Theorem 6. For system (7) to has (6,w)-periodic with respect to 7 solutions it is necessary and
sufficient that the system of functional-difference equations

PX(0)u(h(0,0,t)) = u(t) (36)
to be solvable in the space of continuously differentiable w-periodic n-vector-functions
u(t +w) = u(t) € CV(R) (37)

with the norm ||u|| = sup |u(t)|, where |u(t)| is the Euclidean metric of vector w.
teR

Indeed, at the same time with solution (27), we consider the solution
(T +0,t+qw) = PX(T+ 0)u(h(0, 7+ 0,t + qw)) =

=PX(1)X(0)u(h(0,7 +0,t) + qw), g€ Z.

From the definition of the (0, w)-periodic solutions (27) of system (7) with respect to (7, ), we have
PX(1)X(0)u(h(0,7 +0,t) + qw) = PX(7)u(h(0,7,t)), q€ Z. (38)

Supposing 7 = 0, taking into account equality Pu(h(0,0,t)) = Pu(t) = u(t), from relation (38) we
have PX (68)u(h(0,6,t) + qw) = u(t). By virtue of property (37), we have PX (0)u(h(0,6,t)) = u(t),
that is, condition (36) is established. Thus, the necessity of Theorem 6 is proved. Conversely, along
with the solution

xz(r,t) = PX(7)u(h(0,7,t)), (39)

consider a solution of system (7) in the form
2(1,t) = PX(7)X(0)u(h(0,0, (h(0,7,1))), (40)

where the initial conditions of these solutions are identical as 7 = 0 by virtue of condition (36).
Therefore, these solutions (39) and (40) coincide Z(7,t) = z(7,t), and

z(r,t) = PX(1)X(0)u(h(0,6,(h(0,7,t)))) = PX (1 + 0)u(h(0,6, (h(8,7 + 0,t)))) =

= PX (74 0)u(h(0,7+0,t)) = x(r + 0,1).

It follows from (36) that the solution (39) is #-periodic.

Theorem 6 is completely proved.

Now we have the opportunity to generalize the Theorem 4’ to the general case.

Theorem 7. Under condition (35), system (7) has no (#,w)-periodic solutions except zero.

We prove Theorem 7 by contradiction method, assuming existence of a nonzero (6,w)-periodic
solution z*(7,t) with initial function x*(0,t) = w*(¢), and v*(t + w) = u*(¢t) € C't(l)(R), |u*| = A* > 0.

Obviously, for t = t' and t = t” we have

ou*(t)
(Y — ur (¢! e /_”<* T
[ () = u*(t")] ‘ 5 '\t el < -1,
where T =t/ + (' =), 0 < a < 1, I* = a“@;”‘.
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Then, given that this solution is p;0-periodic with respect to 7 and g;w-periodic with respect to ¢,
on the basis of inequality (41) we have the estimate

| Pju”(h(0,p;0, 1)) — u” (1) = [u"(t = Ajp;0) — u” (1) =

= |u*(t + q;jw — )\jpjg) — u*(t)| S l* |qu — )\jpje‘ s q;5,Pj € Z. (41/)

Further, by virtue of rational incommensurable A;p;0 and w, can choose p; and g; so that the
estimate
|gjw — Ajp;f] <0

is satisfied for any constant § > 0.
Now, (0, w)-periodicity condition (36) for the solution x*(7,t) is written in the form

uw*(t) — PX(0)u*(h(0,0,t)) = wa —\ib) =
1=1
= [u; ()], = Dz O+ | D @ (0)u;(t) Z zi(O)uj(t —No) | =
j=1 i=1 J=1 i=1 i=1
> {615 — @i (0)yus(¢) me Huj(t = Aif) —uj(t)}|  =0.
Jj=1 i=1 =1

Therefore, from the last part of this identity we have

[E— X(0 Zx” {ui(t — \b) —ul(t)}

=1

By condition (35), we obtain

u(t) = [E wa Huj(t = Xif) —uj(t)}

Based on inequality (41’), we have

n

()] = (B = X | o @)l it = 26) - w0)] | <

j=1 i=1

< ‘[E . X(Q)]_l‘ ImodX (6)]§ < e.

Therefore, u* = 0 which contradicts |u*| = A* > 0.

The obtained contradiction proves the rightness of Theorem 7.

Theorem 8. If system (6) under condition (35) has a (6, w)-periodic solution, then it is unique.

Indeed, if the system under condition (35) has two different (¢,w)-periodic solutions z(7,t) and
z(7,t), then their difference z(7,t) — Z(7,t) = z(7,t) is a (0, w)-periodic solution of the corresponding
homogeneous system (7). Under condition (35), it is trivial: z(7,¢) = 0. Consequently, z(7,t) = §(7,t).
The resulting contradiction proves Theorem 8.
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Theorem 9. Under the conditions 1°-3°, system (6) admits a unique (6, w)-periodic solution z*(r, ),
which is integrally represented by the formula

T+6
(7, t) = [X_I(T +60)— X_I(T)]_IP / X_l(s)fg(s, h(s,T,t))ds, (42)

where vector-function fy(s, h(s,7,t)) is determined by the relation

f(s,h(s, 7,1)), T<s<0,

42!
Fsh(s, 7+ 0,1), 0<s<740 (42)

f@(Sa h(57 T, t)) = {

Indeed, suppose that (6,w)-periodic solution z*(7,t) has an initial function z*(0,¢) = ¢*, where ¢*
is constant vector. Then, according to Theorem 3, it can be represented as

z*(1,t) = X(7)c" + PX(7) /Xl(s)f(s, h(s,T,t))ds. (43)
-0
Along with this solution, we consider a solution
46
27 +0,1) = X(r +0)c* + PX(r +0) / XY(s) f(s, hls, ™+ 0,1))ds. (44)
-0

We write the system of representations (44) and (43) in the form

740
X_I(T +0)z*(t+0,t)=c"+ P / X_l(s)f(s, h(s, 74 0,t))ds, (44"

X Yr)z*(r,t) = + P/X_l(s)f(s, h(s,T,t))ds.

Further, by replacing s with s+ 6 under the integral (44’), we obtain the system

X7+ 0)a(r +0,8) = " + P / XY(s)f (s, h(s, 7+ 0,1))ds,

70-0
X Yr)z*(r,t) = ¢ + P/Xl(s)f(s, h(s,,t))ds.

Hence, taking into account that z*(7,t) = x*(7 + 0,t), excluding the constant vector ¢*, we have

[X\(r +0) - X \(1)] *(r8) = P / X~Y(s) f(s, h(s, 7. ))ds.
70-0

Consequently,

w(rt) = [X(r+0) - X ()] ' P / X1(s)f (s, h(s, 7 1))ds. (45)

706
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Since representation (45) is valid for all 79, it remains valid when replaced 7° with 7 + 6, and the
vector-function f(s,h(s,7,t)) is replaced by a vector function fy(s,h(s,7,t)), which is determined by
the relation (42').

Therefore, we have the final representation of the (6, w)-periodic solution (42).

From the conditions 1°-3° follows the fulfillment of all the requirements of Theorems 6-8. Therefore,
system (6) has no other (#,w)-periodic solutions except (42).

Thus, when replacement (5), we obtain a solution of the main problem about the existence of a
unique (0, w)-periodic solution y*(7,t) of system (1) in the form

T+60
yr(r,t) = [Y_l(T +60) — Y_l(T)]_l P / Y ~L(s)pg(s, h(s, T, t))ds. (46)

where Y (1) = CX(7), vector-function @g(s, h(s,7,t)) is determined by the relation

(s,h(s,7,t)), T<s<0,

(46)
(s;h(s,7+0,1)), 0<s<T+0.

2o(s,h(s, 7)) = {9”
¥
Note that, based on Theorem 9, we have a theorem on solving the main problem.
Theorem 10. Under the conditions 1°-3°, system (1) admits a unique (6, w)-periodic solution y*(7, ),
which is integrally represented by the formula (46)—(46").
In conclusion, we also note that the idea of work can be realized in the quasilinear case using the
principle of compressed mappings.
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2K A. Caprabanos, O.X. 2Kymarazues, [.A. A6aukanukoBa

TypakTbl K03 PUIIUEHTT] ChI3BIKTHI Tap MAaFbIHAJIAFbBI
rurepoO0J1aJIbIK, 2KYlieHIH, KONIepuoAThI IITentimi

Tap marbiHaIBI TUIEPOOIABIK, CHI3BIKTHI TYPAKTHI KO3MUImeHTTi nuddepeHInasiIbK TeHIeyaep Kyiteci-
HiH 0apJIbIK TOYeJICi3 aflHbIMAJIBLIAPHI OONBIHITA KOIIIEPUOATHI IIEIIMIHIH 6apbl MEH YKAJIFBI3/bIFbl YKOHE
OHBIH, MaTPHUIA-MHTErPAJIIBIK, GeliHere opHeKTey Macesesepi 3eprrenred. OcblHIail MaKCaTIIEH KAPaCThIPhI-
JIBITT OTBIPFaH, TOYEJICI3 affHbIMAJIBIIAD KEHICTITIHIEeT! BEKTOPJIBIK ©PiCTEePIiH OarbITTapbl OOMBIHITIA SPTYPJI
nuddepeHnraIay ornepaTopbl XKyitesep yiriH auddepenimaniay *KoHe HHTerpajIay KYpPeTiH XapaKTe-
PpUCTUKaJIAPBIH aHBIKTANTHIH TPOEKTOPJIapFa cyiiernren, Kommuain cunarraybimnrap o/ici Heriziuae 6acTankbl
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ecenrrepi mrenry Tociii Tysinren. Ochbl gaicreme GOMBIHINA GIPTEKTI KoHE OIPTEKTI eMeC ChI3BIKTHI JKyHenep
ymin Komu ecenrepi mremnrisngi »xone muTerpasiiblk Oeitneci xesrripinai. Ocbl TycTa €HrisijireH xapakre-
pUCTHUKAJIAPAbl aHBIKTAYIIBI TPOEKTOPJIAPIAbIH, MaHbI3bI Trentyini 6osabl. Herisri ecernri mrerry 6apbichbin-
na nuddepeHInaIIbIK, OIIePATOPJIAPIbIH KOIIIEPUOATHI HOJIAepiMeH KaTap 6ipTeKTi ChI3BIKTHI KY€ Iep/IiH,
HOJIJIEH ©3re KOIIIEePHOATHI IIeriMIAepinin 6ap GOIybIHbIH KaXKeTT] »KoHe *KeTKITIKTI mapTrrapbl TarailblH-
nasael. OJrapasiH, Herisinme, ochl »KyHeaepais HOIIIK eMec KOIIIePUOATHI MemiMaepi 60IMaiThIH mapTTap
asbiaAbl. Horuzkecinge, 6ipTeKTi ChI3BIKTHI >KYHeIepIiH HOJIAIK eMec KOIIEPHOTHI MIelTiMaepi 60IMaiThIH
Karmaiiaa 6GipTEeKTi eMec ChI3BIKTHI XKYeIep/IiH, KOTIEPUOIThI MENTiMiHIH 6ap *KoHe YKaJIFbI3 60TYbI TYPaJIbl
Heri3ri TeopeMa [pJIeNIeHIeYIMEH KaTap, OHBIH MPOEKIINIAY OMePATOPIAPbIMEH OAMIAHBICTHI MHTEIDAJI-
JIBIK, ©DHET1 KOPBITBLIBII HIBIFapbLIAbl. Ko TaHbIIFaH 9/1icTeMEMEH aJIbIHFAH HOTUKEJIEP/l KapaCThIPbLIFaH
JKYeHIH, KaJIbIAHFAH KBa3UCBHI3bIKTHI YKAFIANbIHIA 114, COHaN-aK, keneameMil t = (1, ...tm,) BEKTOPHI
yiIiH xKoHe 6esrici3 BeKTOp-OYHKITUSHBIH 1epOeC TyBIHbLIAPBIHBIH, KAHBIHIAFbl KOIMMOUIINEHTTED] KOTIIe-
PHOATHI MaTpUnaIap OOJIFaH Ke3J€e /e OChI dJIiCTi KOIJAHBII aJIyFa 0OJIabl.

Kiam ce3dep: Tap MarbIHAIAFBl THIEPOOIANBIK 2KYiie, KOMIEPUOATHI IIMEIIiM, XapaKTePUCTUKATIAD 9JicCi,
MIPOEKITUSIIAY OIIEPATOPJIaPhI, BEKTOPJIBIK, ©picTep OoiibIHINa nuddepeHualiay onepaTopIapbl, THTEIPAJI-
IBIK OeiiHe.

2K A. Caprabanos, A.X. ?Kymarasues, ['A. A6 ukaankoBa

MHuoronepumoanvyeckKoe peleHne JUHENHOW rurepooamvIecKoil
B Y3KOM CMbICJIE CUCTEMBI C ITOCTOAHHBIMHU KO3 PUmeHTamu

WccnenoBana 3amada 0 CyIEeCTBOBAHUY W WHTETPAJIBHOM IMPEICTABICHUN B BEKTOPHO-MATPUIHON (opme
€/INHCTBEHHOI'0 MHOT'OIIEPHO/INYECKOrO 110 BCEM HE3aBHUCUMBIM II€PDEMEHHBIM DPeIeHHs JUHEWHON rumepoo-
JIMYECKON B Y3KOM CMBIC/IE CUCTEMBI AudDEepeHIINaIbHBIX YPABHEHUN C TOCTOSTHHBIMU KO3 MUIMEeHTAMY.
C 1esIbIo perneHnst MOCTABICHHOM 3319, Ha OCHOBE MeTo/ia Xapakrepuctuk Kormm, pa3zpaborana MeToau-
Ka IIOCTPOEHUs PelleHni HadaIbHOI 3a/lavu JIJId PacCMaTPUBAEMON CUCTEMBI C PA3JIMYHBIMU OllepaTOpaMu
nudHepEeHITITPOBAHIST TI0 HATIPABJIEHUSIM BEKTOPHBIX IMOJIEN TPOCTPAHCTBA HE3aBUCUMBIX ITEPEMEHHBIX, OC-
HOBaHHAsI HA IMIPOEKTOPAX, OMPEIEISIIONINX XapAKTEPUCTUKN, IO KOTOPBIM BeLyTCst AudHEepeHITMPOBAHIE U
nHTerpupoBanue. 11o sToit MeTromauke pertens! 3aga4n Kommu fjis guHeHON 0HOPOIHON U HEOTHOPOIHOMN
CHCTEM C MHTErpaJibHbIM IpeJcTaBjieHreM. [Ipu 3ToM cylecTBeHHOe 3HAUYEHUE UMEJH BBEJEHHBIE ITPOEK-
TOPBI IO OMPEJIEIEHUI0 XapaKTepucTuk. [1o permennio oCHOBHOM 3aa1un, HAPSAY ¢ MHOTOIIEPUOIIMIECKIMU
HYJISIMH OIIepaTopoB AuddepeHIInpoBaHusl, yCTAHOBIEHBI HEOOXOIUMbBIE U JIOCTATOYHBIE YCJIOBHUS CYIIECTBO-
BaHUsI MHOT'OIIEPUO/IMYECKUX PEIIeHUl JIMHEHHBIX OTHOPOIHBIX CUCTEM, OTJIMIHBIX OT TPUBHAJILHBIX. TaKuM
00pa30M, TOJIYIeHBl YCIOBUsI OTCYTCTBUAS HEHYJIEBBIX MHOTOIEPHOINIECKUAX PEITeHn 3Tux cucrteMm. B 3a-
KJIIOYEHUU, IIPU OTCYTCTBUM HEHYJIEBBIX MHOTONEPUOAUYECKUX DElIeHUH JTUHEHHBIX OJHOPOJHBIX CHUCTEM,
IIOKa3aHa OCHOBHAasI TeOpeMa O CYIIeCTBOBAHUM U €JUHCTBEHHOCTH MHOT'OIIEPUOANYECKOrO pElIeHUd JIUHEeH-
HOII HEONHOPOJHON CHUCTEMBI C BBIBOJOM €0 MHTEIDAJIbHOrO IPEIACTaBJICHUA, 3aBUCAIIECTO OT OIIEPaTOPOB
IpOeKTUpOBaHusd. PaspaboTaHHas METOIUKA HMEET IEPCIEKTUBY PACIPOCTPAHEHUS IIOJIYUYEHHBIX PE3YJIb-
TaTOB Ha KBAa3UJIMHEHHBIN Ccaydail pacCMaTpPUBaEeMOIl CUCTEMBI, a TaKKe Ha CIydal MHOTOMEPHOT'O BEKTOPa
t = (t1,..., tm) ¥ MHOrOIIEPHOUHUECKUX MATPHUI] IPHU YACTHBIX MPOU3BOJHBIX UCKOMOI BEKTODP-(DYHKIIUH.

Karoueswie caosa: runepboIndecKasi CUCTEMa B Y3KOM CMBIC/IE, MHOTOIIEPUOINYIECKOE DEIeHNe, METOJ, Xa-
PaKTEPUCTHUK, OMEPATOPHI MPOEKTUPOBAHNUS, ONEPATOPHI MM DEPEHITUPOBAHNS 10 BEKTOPHBIM ITOJISIM, WH-
TerpaJjbHOe IIpeJiCTaBJIeHUe.
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