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The Cauchy problem for the Navier-Stokes equations!

Ch. Fefferman in his works two problems for Navier-Stokes equations are set out: one of them is the
Cauchy problem and he considers «only those solutions that are infinitely smooth functions are physically
meaningful». In this article, the author received positive answers for the above problem of Ch. Fefferman.
He proved the uniqueness and existence of smooth solutions of the Cauchy problem for the Navier-Stokes
equations. The ratio between the pressure P and the kinetic energy density F, previously established by the
author. is taken as the basis. As a result of in-depth studies of the Cauchy problem for the Navier-Stokes
equations, it is shown that E is a bounded, continuous function that satisfies the Laplace equation and has
continuous first-order derivatives with respect to ¢t and all kinds of second derivatives with respect to the
spatial variables x and is a regular harmonic function in the space Rs. An explicit form of E' is found with
the help of which the Navier-Stokes equations are reduced to a system of linear parabolic equations and
the solutions are written out by the Fourier transform that are infinitely differentiable with respect to ¢
and x. The systems of equations for the curl-vector are found. Proven uniqueness, the existence of infinite
smoothness. An estimate is obtained linking the curl-vectors with the Reynolds number.

Keywords: The Cauchy problem for the Navier-Stokes equations, the uniqueness and existence of smooth
solutions of the Navier-Stokes equations, the harmonicity of the kinetic energy density, the equations for the
vortex vector, the Cauchy problem for the curl-vector equations, the uniqueness and existence of smooth
solutions of the equations curl-vectors

0.1 Some introductory information

Unsolved problems in the theory of Navier-Stokes equations homogeneous liquids are given in [1-2], [3] and
others.

In a number of works [4]-[6] of the author, the results of some explored. The substantiation of the simplest
principle is given in [4] maximum for three-dimensional Navier-Stokes equations, which allows get a positive
answer to an unresolved problem O.A. Ladyzhenskaya in [1, 2].

In [5], based on the properties of solutions of the Navier-Stokes equations, the relation between the pressure
and squared modulus of the velocity vector. Based on what the uniqueness of the weak and the existence of
strong solutions to a problem from a class of functions

C((0, T} W5 (G) U CH((0, T]; W5 (G))

for the Navier-Stokes equations in bounded domain of G in whole time t € [0,T],VT < oc.

The justification of the method was given in [6] splitting for solving the Navier-Stokes equations. Shown
the compactness of the solution sequence, thereby the existence of strong solutions to the three-dimensional
Navier-Stokes equations in whole time.

The original Navier-Stokes equations are not equations of type Cauchy-Kovalevskaya. Using ratio
(P = —|U?) V(P = 0) from [5] the system of equations (1a) can be reduced to the Cauchy-Kovalevskaya type.
We will study the Navier-Stokes equations (1a) taking into account the relation P = —|U|?, preserving the
condition of incompressibility of the fluid.

The Cauchy problem for the Navier-Stokes equations with respect to the velocity vector U = (Uy, Us, Us)
in the domain @ = (0,00) x Rg it will be written in the form [5]:

ou

E—,uAU—l—(U,V)U—ZVE:f(t,X), V-U=0, (1a)

!The work was done on the personal initiative of the author.
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U(0,x) = ®(x), (1b)
where x € R3; E = 1|U|?; t € (0,00).

Known [1] orthogonal decomposition Lo (Q) = G(Q) @ J(Q), moreover, the elements J(Q) at Vtbelong to
J(R3), and the elements G(Q) belong to the subspace G(R3); J(R3) — the space of solenoidal vectors, and
G(Rs3) consists of V), where 7 is a unique function in Rs. Ly (Q)— subspace C(Q). W} (Bg) is the Sobolev
space.

In the plane ¢t = 0, we introduce the ball B ( imaginary, of course, since in the case of the Cauchy problem
a homogeneous incompressible fluid fills all spaces R3) of radius R > 1 with center at origin of coordinates.

Input f and ® problems (1) satisfy the requirements:

. 0o 07 (t,x) e f(t,x) e
i) £(t,x) € C*(Q) N J(Q), 7&7 <+ A ’—a s | S dan(1+ x)
. o o 0%®P(x e
ii) ®(x) € C*(R3) NJ(R3), | 5-ar7ash s o§2 ) o | S dan(l+ X)) 0= a1 + a2 + a3,
10x5? 0xg®
where o; € {0,1, ..., a}, 7, k— positive integers. gy, dax, gar -positive constants. O

0.2 On the harmonically of the kinetic energy density E

Theorem 1. If the input data of the problem (1) satisfies the requirements i), ii), then for the solutions of the
problem (1) the estimate

10l c(0,00:Lu0 (Rs)) < q0al| Pl (Rs) + d2,allfllc(0,00:L0 (R5)) = Aty (2)

HEHC(O 0oL (Ry)) = A, E= §\U|2» da,4 = 802904- (3)

Proof. We write a formula from vector algebra
(U,V)U - VE = [rotU, U]
using this formula of the equation (la) we rewrite

ou
ot

We multiply the equation (4) by the vector function U # 0, then, taking into account the property [rotU, U] L U
we get

pAU — 7V|U|2 —[rotU, U] + £(t, x). (4)

U
a@t uAU — VE = f(t,x). (5)
Acting by the operator div on (5), we have
AE = 0. (6)
Lemma 1. There is a relation
—-(AU,U) > 0. (7)

Proof. By painting AE and doing a little counting, we find
3
1
AE = divV (5|Uf) = (AU, U) + 3 (VUL)* =0
a=1

Whence the inequality (7) follows.
Multiply the equation (4) by a vector function p|U[?®~DU and taking into account the property
[rotU, U] L U integrate over domain of Br

2dt / |U|2pdx—p,u/ (AU, U)|U|2p Ddx—
Br

—f/UV|U|2de —p/(|U|2p DUfdx. (8)

Br
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Each term (8) is simplified accordingly. When evaluating the second term in the left-hand side, we take into

account (7). Third [ UV|U[?’dx = 0, due to the orthogonality [1] of the spaces J(Bg) and G(Bg). The
Br
right-hand side, estimated by Holder inequality, we get:

2p—1 1
2dt/’U|2de<p /|U|2pd 2p (/ |f|2pdx) 213. (9)
Br

2p—1
Both parts (9), dividing by a positive value p( S/ |U|2pdx) B , we have
Br
d 2p ﬁ 2p ﬁ
([ ofax)™ < (] [g7ax) ™.
dt

BR BR
Choosing an arbitrary ¢ € (0,00) and integrating the last time inequality ranging from 0 to ¢, find

1

</|U(t,x)|qu ) /\@ )|"ax) " / /|f7x | dx) dr,¥g = 2p,p € N.
Br

10O 0y < 120+ [ N 5,7
0

since it is inequality valid for any ¢, we put ¢ = oo and take into account the property i) of the well-known
vector function

If] < gox(1+1t)7", k=2

then

ot ||Lm Br) = ||<I)HLO°(BR) +§§g|lf(t)||Lm<BRy t € (0,00),

as you can see, the right-hand side is independent of the time ¢ and the inequality holds for all ¢ € (0, 00),
thereby the left side continuous in t, i.e.

OO 0,001z By < 1Bl 50y + 1Ell 0 00120 (B0

From where, using the input properties i),ii) we have

8T R?
HU Hc 0,00;L o (BR)) < 3 5 (1= (1 + R)3 (H(I)HLOO(BR) + ||f||C(O,oo;Loo(BR))>'
Hence, for R — oo we arrive at the proof inequalities (2), (3) of the theorem 1. O

Next, we differentiate the equations (5) with respect to time ¢, and initial conditions for it are found from
the systems of equations themselves (5), T. e.

1
U:(0,x) = pAP(x) + §V|<I’|2 +£(0,x) = ®1(x),

then we have the extended Cauchy problem for Uy,

ou,

8t /j/AUt VEt = ft (t7 X), (103)

U, (0,x) = &, (x). (10b)

Problem (10) is no different from problems (5), (1b), only in place of the vector functions U and the functions
FE stand for them corresponding derivatives U; u ;.
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Multiply the equation (10a) by the vector function p|U,|?*~1DU, and integrate over the ball Bg, then

2dt/|Ut\ P dx — p,LL/(AUt,Ut)|Uf|2p Ddx—
Br

—f/UtV|Ut\2”dx —p/|U |2e-DyU,fdx. (11)
Br

Proof. We denote v = Uy.
Lemma 2. There is an inequality (see [1])

—(Av,v) = Ai(v,v), (12)

since the operator —A in the finite domain By positive definite, i.e. —(Av,v) = A?(v,v), where A; = min A\?.
Each term (11) simplify accordingly. The second term in the left-hand side is estimated taking into
account (12) using the following inequality chains:

—pu/ (AU, U)|U, PP Ddx > —pusgg|||Ut|2(”*1)||Loo(BR) / (AU, Up)dx >
t
BR N BR

> puAi Sup I[UL2P D By / (U, Up)dx > 0.
> 2

Third term [ U, V|U;|?dx = 0 due to the orthogonality of spaces J(Bg) and G(Bg). The right side
B

R
is estimated by inequality Holder:

2p—1 1
th/\Ut 2pdx<p /\Ut 2pd & (/‘ft‘dex)Qp
Br

From where, arguing as well as in the previous case, we come to the statement:
Theorem 2. If the input data to the original problem (1) satisfies the requirements i), ii), then for the
solutions of the problem (10) the following estimates are valid:

H U HCl(O,oo;Loo(RS))S q2,4 H P, HLOO(R3) +d274 ” f ”Cl(O,oo;Loo(R;;))E Ao,

HEHcl(OW;Lw(R@) < Ay, d24 = g2,2q04-
Next, we introduce the differential operator

o~ -
DY = ——— —  — a=q« le} as, a=1,3; a; €{0,1,2,3},
0z{' 0x5?0xs® 1ot as i€d }
For example, when o« = 1, D- = 8:1:1 Vv am V ar . Acting by the operator D on the problem (10) we
obtain the extended Cauchy problem with respect to vector functions Uy, :

0DUy
ot

— uADU; — VDE; = Dfy(t,x), (13a)

DUL(0,x) = D®1(x), (13b)

Theorem 3. 1If the input of the problem (1) satisfies the requirements i), ii), then for solutions to
the problem (13) the following estimates are valid:

Ul 0.00wi (B)) < [ ®1llwi (Br) + [IEllet 000w (B) = As-
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1Bl 1 0 00w, By < A3 (14)

Proof. We denote v = DU;. Multiply the equation (13a) by a vector function p|DU;|>®=YDU; and

integrate domains Bpr and simplify each term of the result, as in the proof of theorem 2, the second

term from the left side taking into account (12), and the third term [ DU,V|DU;|?’dx = 0, due to
Br

the orthogonality of spaces J(Bg) and G(Bg). We estimate the right-hand side by Holder’s inequality

and in the end we get the estimate:

2p—1 1
;CZ/\DUt\dex<p(/|DUt\2pdx) » </|th|2de) & (15)
Br Br Br

The inequality (15) is no different from (9), only in the places of the function under the integrals, in
this case there are their derivatives, that is, DU;. Therefore, arguing literally, as after the inequality
(9) of the theorem 1, we find the estimates (14). The theorem 3 is proved.

Corollary 1.

||U(t’ X)Hcl(O,oo;C(Rg)) < @21, G2k — const, (16&)
1|10 ocicms) S g2 (16b)
Proof. From the estimate (14), using embedding theorems Sobolev [7; 64|, we find
1Ulc10,00:¢(Br)) < d1ll®lley) + d2llfllct0,00:c(Br)) (17)
M||® M|
where dy = M, 9 = H HCI(O’OO;W}’C’(BR), M- constant of the embedding theorem. From the
H‘PHC(BR) ”f”Cl(O,oo;C(BR))

inequality (17), taking into account the requirement i), ii) for input data, we find

s R?

U, x)lcr(0,000(Br)) < @264 (1 —

3 m) =di4, (18)

HEHC’l(O,OO;C(BR)) < d1,4, Kk =4.

From here, passing to the limit at R — oo we come to inequalities (16). The corollary 1 is proved.
Further, acting by the operator D on the problem (10) sequentially for o = 2,3 we get extended
Cauchy problems with respect to a vector function Uyg,e;, Utszjz,:

0D*U,
ot
DYU4(0,x) = D*®4(x), «a=2,3. (19b)

- MADaUt - VDaEt == Daft(t, X)7 (19&)

Theorem 4. If the input to the problem (1) satisfies the requirements i), ii), then for the solutions of
the extended problems (19), the estimates:

<Ay =23,
(20)

From estimates (20), using embedding theorems and the requirement i), ii) for the input, we obtain

the inequalities are similar (17), (18), then moving from there to the limit as R — oo we find the

estimates (21), (22) in Corollary 2:

Corollary 2.

1Ullen 000w, (8a)) < 1@1llwa, (3r) + IEllcr0.00wa (B = Aas [ Ell 010 00w (51)

(HU(tvx)HCl(Q) < CI3n) A (HEHcl(Q) < q:m), =2, qmx — const. (21)

(HU(tvX)HCl(O,oo;CQ(Rg)) < Q4m) A (HEHCKO,OO;CQ(RQ) < Q4N)7 a=3. (22)
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Note that the number of all possible derivatives of the third the order of the vector function D3Uy in
spatial x is equal to ten.
As a result, the following main

Theorem 5. From the theorems 1-4 and Corollaries 1, 2 followed by boundedness, continuity and
continuity of the first time derivative ¢ vector functions U and kinetic energy density F, as well as the
continuity of various derivatives of the first and second orders in the spatial variables x and satisfies
the Laplace equation (6) for all ¢ € (0,00), thus the function E is regular harmonic function in the
finite domain Bg. From the general theory harmonic functions (h.f.) [8], [9] it follows that h.f. It has
derivatives of any order and according to the statements proved to The function E also belongs to this
class. Then in the domain Bp for each ¢t € (0,00) based on the corollary of the Poisson formula and
Harnack inequalities positive harmonic function F is constant over the spatial variables x for every
t € (0,00).

0.3 On the ezistence and uniqueness of smooth solutions of the Navier-Stokes equations

From the theorem 5 it follows that the harmonic function E(t,x) is constant inside the ball Br
right up to spherical ball surface dBg, i.e.

B(t,3)| sy = 51+ 1 IR, (23)

where k—positive integer. Then the harmonic function F can be determined from the Dirichlet problem
for the Laplace equation in the exterior of the sphere dBp of radius R with constant boundary condition
(23):

1
AE(t,x) =0, E(t,x)|yp = (1 +1)7F|®(R)|?, Vt e (0,00).

It is known [8; 231] that the solution to this problem can be written with using the Poisson formula:

[®(R)? p— R

E(t,x) = 108 . o
() 8m(1+t)~ [ R), R<p<oo (24)
Hence, since p > R we find the function £
®(R)* R
Et,x)= 2B R

which is a continuous harmonic function of the form:

|®(R)[?
2(1+t)"

X € BR,
E(t,x) =

2
IMEP R xeR3\Br, Vi € (0,00),

which has continuous derivatives of all orders outside the sphere Bp.

Where from B
0, x € Bp,
VE(t,x) = (25)
(t)V(5), x€R3\Br, ¥t € (0,00),
®(R)|?R
where ¢(t) = |2((1+)t|),€ .
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Now from a non-linear system of Navier-Stokes equations (5), taking into account (25), we arrive
at a linear system equations of parabolic type, i. e., to a system of disengaged heat equations with
known right-hand sides

f, xe¢ BR,
£ (£ %) —
f+ CV(%), x€R3\Bg, Vt € (0, 00),

then the Cauchy problem for the obtained systems of equations taking into account initial conditions

(1b) can be written as:

%[tj — nAU = f8(t, x), (26a)

U(0,x) = ®(x). (26b)

Where do we get the uniqueness solution to the problem (26), using Poisson formula obtained and
justified by the Fourier transform for the heat equation, for example, in [8]:

2

Ua(t.x) = (2ym)° / / (t_lT)gexp (= o=y aCryydrs
0 R3

1
MCNEDE

For t > 0 the function U, (t, x) is infinite differentiable with respect to ¢ and spatial variables x and that
all derivatives can be obtained using differentiation, the Poisson formula (27) under the sign integral.
O

2
r
/exp ( - TM)CI)O&(Y)dy’ r= |X - Y|> & = 17273' (27)
R3

0.4 On the estimation of the curl vector of a problem (1)

Multiply the Navier-Stokes equations (1a) by 2U and integrate over the domain Bpr

d
dt/|U]2dx—2u/(AU,U)dx—/UVde:Z/dex. (28)
Bgr Br Br

Bgr

From where we transform the second term on the left with integration by parts

3 3
—2u /(AU, U)dx = 2,u/ Z(VUQ)de — / 5% Z UZdx =
Br a=1 OBr a=1

Br

3 3
QM/Z(VUQ)de—zu / gfdx—Qu/Z(VUa)de,
Br a=1 Br a=1

OBr

because [ g—ﬁdx = 0 by harmonic property functions E, where 0BpR is the spherical surface of the
OBRr
ball Bg (imaginary, of course). Third term [ UVEdx = 0 by virtue of orthogonality of spaces J(BR)
Br
and G(Bg). The right side (28) is estimated by Cauchy-Bunyakovsky inequality and as a result we

get:
d 5 :
dt/\U|2dx+2u/Z(VUa)2dx§2</\U\de)2</\f|2dx) .
Br Bp @1 Bgr Br

N

(29)
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From here

d 1 1
dt/U\?dxg2(/|U|2dx 2 /|f| dx 2.
Br Br

d
2 10 o <1 £0) o (8r) -

We integrate the last inequality ranging from 0 to ¢ and will find

Whence it follows that

sup | U®) 2.Bo) <l @ llro(r) +5up || £(2) [|1y(Br)= Aa- (30)
>0 >0

Now, integrating (29) over ¢t € (0, 00) and taking into account (30), we find

t 3
DA CACT M( 19 1, 50 +As 8D IF(E) o)) (31)
0 a=1
Lemma 3. Occurs 5
IrotUMI, 5 = 3 IVUalBI, (55, ¥t € (0,00). (32)
a=1
Proof. Follows from identity
3
2 2
Z a—%VUa = ;(VUQ) — (rotU)2.

It suffices to integrate this identity over the domain Bg with orthogonality of spaces J(Bg) and G(Bg).
From (31), using (32),we obtain an estimate for the curl vector

/ [rorU (), g < Re(( 1 15y 41500 IED) o) (33)

where Re— is the Reynolds number. Hence it is not difficult to notice that with the Re — oo curl
vector is destroyed. O
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O.III. Akprmn (Akpiies)

Haspe-Crtokc Tengeynepine Kommn ecebi

Ch. Feffermann xymbicrapeiaga Hasbe-Crokce rengeynepine (HCT) exi ecen kolibuiran, onbiy 6ipeyi Komn
eceli ykoHe 071 «(PUBNKAJBIK TYPFBIJIAH OMJIACTBIPBIIFAH TEK IIeKCi3 Teric pyHKIusaap OO TabblIaThIH
HIemiMAep» Jen TYKbIpbIMAai bl ABTOpabH ochkl Makaiackinga Ch. Feffermannbin xkorapbiiarst ataaran
ecebine om kayan asbiarai. Hasbe-Croke Tengieysiepi yinin Kormm ecebiniy, »Kajikpl meKci3 Teric mentyinin
OapJIbIFbL JpJtesiieHreH. Horukecinie aBTOPABIH epTepeKTe KOPCETKEH, KBICHIM MEeH KHHETUKAJIBIK SHEPTUs-
HBIH apacbIHIaFbl OaitytanbicKa Herizaenren. Hasre-Croke Tenmeynepi yimnia Ko ecebin TepeHipek 3eprrey
HoTHKeciHe F PyHKIUSICHIHBIH, TYHBIK y3iaiccizmiri Jlammac Tenieyin KanararTanabIpaibl KoHe ¢ OOWbIH-
mia GipiHIT, a KeHICTIK alHBIMAJIBLIAPEI X OOMBIHINA €KIHIII TYbBIH/IbIIAPBIHBIH 6aPJIBIFBIHBIH Y3laicci3mir
KepceTimin ykoHe R3 KeHICTIriHIe peryssp rapMOHUSIBIK, (DYHKIUS €KEHIIri KepceTiireH. F—HiH aflKblH
Typi TabbuIbIl, OHbIH KeMmeriMeH Habe-CTOKC TeHieyiepi KbLIJaM IbIK, BEKTOPBIHBIH, KYPayIIbLIapbl 60ii-
BIHINIA CBI3BIKTHI MMapaboJialbIK TeHJeysepre Kearipitin, Oypbe Typ/eHaipyiHiH 9JiciMeH ecenTiH, t KoHe
KEHICTIK aiffHbIMAJIBLIAPHI X OOMBIHIIA MIEeKCi3 Teric o mrernyi Tabburran. Kyiibin BekTOpbIHBIH Peitnonac
caHbIMEeH OaMJIaHBICTBLIPATHIH OaraJiay aJIbIHFaH.

Kiam ce3dep: Hape-Crokc rtenpeyiepi yirin Komm ecebi, KHHETUKAJBIK SHEPIUs THIFBI3IBIFBIHBIH R3
KEHICTIriHe perysisip rapMOHUSAJIBIFBL, KYWBIH BEKTOPBIH PeifHoIbIc caHbIMeH OaillaHbICTBIPATHIH Harasiay.

AIII. Akerr (Akwrmes)

3amaga Kommu ajis ypaBaeHmnit HaBpe-CTokca

B paborax Ch. Feffermana craBarca nse 3amaun nys ypasuenunit HaBbe-CTokca: OMHON W3 HUX SIBJISIETCST
3amada Ko, u oH canTaer «(pU3NIECKH OCMBICJIEHHBIMH TOJBKO T€ PEIIeHUs, KOTOPbIE SBJISIOTCS OECKO-
HEYHO IVIQIKUMU (PYHKIUSIMU». B MaHHO# cTaThe aBTOP MOJIYYUJI MOJIOXKUTEIbHBIE OTBETHI Ha, YIIOMSIHY TYIO
Boimre 3amaay Ch. Feffermana. Vim moka3aHbl e ITMHCTBEHHOCTD M CYIIECTBOBAHUE TJIQJIKUX PEITEHUN 330291
Komm g ypasuennit HaBbe-Crokca. 3a OCHOBY B3sTO COOTHOIIEHHE MEXKJY JaBJieHneM P U IJIOTHOCTHIO
KUHETUYIECKOW sHeprun F, paHee yCTAHOBJIEHHOE aBTOPOM. B pesysbrare yriiyOJIEHHBIX MCCJIEIOBAHUN 3a-
naun Komm st ypasuenuit Hasbe-Crokca mokasano, 9ro Ff — orpaHwdeHHasi, HEPEPbIBHAsT (DYHKIHS,
VIOBJIETBOPSIONIas ypaBHeHMIO Jlamiaca, nMeroniast HeIpePbIBHbIE IPOU3BOAHBIE IIEPBOIO MOPSIAKA 10 t U
BCEBO3MOYKHBIE BTOPBIE ITPOM3BO/IHBIE 110 IMPOCTPAHCTBEHHBIM IMEPEMEHHBIM X U SIBJISIFOINASICS PEryJISPHOMN
rapMOHUYECKO# yHKIme B mpoctpancTee R3. Haiinen sBublif Bug F, ¢ TOMOIIBI0 KOTOPOTO yPABHEHUST
Hagbe-Crokca cBemeHbl K cucTeMe JIMHEHHBIX Mapabo/IMuecKuX yPaBHEHWI W BBIUCAHBI PEIIeHUs [IPeod-
pazoBanuem Pypbe, 6eckoHeUHO auddepeHIUpyemble o t u X. [loydeHa oneHkKa, CBS3bIBAIOIIAas BEKTO-
pBuxps ¢ guciaom PeitHobaca.

Kmoueswie caosa: 3amaaa Komm nis ypasuennit HaBbe-CTokca, rapMOHUYHOCTH MJIOTHOCTA KUHETHIECKOH
SHEPI'UH, eJMHCTBEHHOCTb U CYIIECTBOBaHUE IVIaJKuX perrenuil ypasuennit Hasbe-CroKca, OlleHKA, CB3bI-
BaOIasi BEKTOPBUXPsI C YUCJIOM PeitHosbaca.
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