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On the spectral properties of a class of high-order
differential operators with operator coefficients

In this paper, we study one class of high-order differential operators. The main feature of these operators
is their nonsemi-boundedness. The dependence of operator coefficients on variables creates additional
difficulties in the study. In the course of the study, the conditions for the existence of a solution and
separability were first found. Also studied are the questions of the smoothness of solutions and on the
spectrum of boundary value problems for unbounded differential equations with variable operator coefficients
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1 Introduction. Formulation of the problem. Statement of the main results

Boundary value problems for differential equations with operator coefficients are studied in the
papers of B.M. Levitan [1|, M. Otelbaev [2], B.A. Suvorchenkov [3], V.I. Gorbachuk, M.L. Gorbachuk
[4], .M. Gehtman [5], V.A. Mikhlets [6], P.A. Mishnevsky [7], K.N. Ospanov [8] and others. Note that
in all these papers are studied differential operators with operator coefficients of even, first, and third
order, i.e. the so-called semi-bounded differential operators and operators with a coercive estimate

Y laa(@)s?| < clp(x, )],

jal<2m

where p(x,s) = Z\a|§2m aq(x)s* x € R", and s € R™ and p is a polynomial differential operator
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However, in applications often appear differential equations with operator coefficients that do not
satisfy the above conditions. For example, in particular, unbounded differential equations with operator
coefficients that arise in the theory of differential equations of hyperbolic and mixed types. This case
was first studied systematically in the paper of M.B. Muratbekov [9]. In this paper of the author, the
case was studied when the operator potential is independent of variables. It is known that a completely
different situation arises in the study of differential equations with variable operator coefficients, i.e.
when operator coefficients depend on variables. In this case, the main difficulty lies in the fact that
the spectrum of the operator coefficient depends on variables, and therefore, the expansion of an
arbitrary function in a series of eigenfunctions becomes impossible. Therefore, the well-known methods
used in the works of the above authors turn out to be little adapted when studying the questions of
separability, smoothness of solutions, and the spectrum of boundary value problems for unbounded
differential equations with variable operator coefficients. this paper is devoted to these pressing issues.

We believe that our results are of theoretical interest and can find application in the spectral theory
of differential operators, in quantum mechanics and gas dynamics.
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Let H is the Hilbert abstract separable space. Denote by H; = La(R, H) the Hilbert space obtained
by the completion of the set of compactly supported infinitely smooth vector functions CS°(R, H)
defined on R = (—o00, +00) with value in H by norm

1
5
) o, = / )l

which corresponds to the scalar product

+o0,
<u(y),v(y) >m,= / < u(y),v(y) >g dy.

—00

In a given space the following differential equation is considered
Lu= —u"(y) + k(y) A(y)u +ia(y) A% (y) + cly)u = f € H, (1)

Here A is a positive definite self-adjoint variable-dependent operator with completely continuous inverse
operator, y € H, o € [%, 1], k(y) is a piecewise continuous and bounded function in R, k(0) = 0 and
yk(y) > 0 at y # 0.

By L we denote the closed operator corresponding to equation (1) in H;. By the solution of equation
(1) we mean the function u € Hj if there exists a sequence {u,},2; € C5°(R, H) such that

lun = ullg, =0, | Lun = fllz, — 0

as
n — oQ.

Hence it is easy to verify that finding a unique solution to equation (1) means proving the
invertibility of the operator L for all f € H;.

Further statements of the results are given in the language of operators and we will use the results
of [9].

Theorem 1. Let the following conditions are fulfilled:

a) |a(y)| > dp > 0 is a continuous functions in R;

b) sup %Sco<oo; sup C((Z;)) < < o0
ly—t|<1 ly—t|<1

c) ‘ SU|p 1(A%(y) — A*(0) A ||m < o(1),« € [5,1];
y—t|<1

d) c(y) < coa®(y), for all y € R, cg is any constant. Then for the operator L + AE for sufficiently
large A > 0 there exists a bounded inverse operator (L + A\E)~!
Theorem 2. Let conditions a)-c) are fulfilled. Then the estimate

o' W)y + llia(y) A% (W)ulla, + lle@)ulla, < ol Lulla,,

holds for all uw € D(L), where ¢ > 0 is a constant independent of u(y).

The following new results were obtained in the work:

— conditions are found on the coefficients of high-order differential operators with operator coefficients
that provide the following properties: a) discreteness of the spectrum; b) spectrum continuity;

— a criterion is obtained for the discreteness of the spectrum of a high-order differential operator
with operator coefficients;

— the relation L~! € 0, is proved, where 1 < p < o0;
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— the class of high-order unbounded differential operators with operator coefficients whose resolvents
are Hilbert-Schmidt operators is indicated.

In qualitative spectral analysis, a special place is given to the study of the existence of the
spectrum. In the case of its existence, problems of discreteness and continuity of the spectrum are
considered. Among the papers that are similar in theme and influenced these studies, we note the
papers of B.M. Levitan, I.S. Sargsyan, A.G. Kostyuchenko, M. Otelbaev, T.Sh. Kalmenov, E.I. Moiseev,
C.M. Ponomarev, M.B. Muratbekov, A.S. Berdyshev, K.N. Ospanov, K.Kh. Boymatov, W.N. Everitt,
M. Girtz et al.

It is known that spectral analysis of differential operators studies the nature of the spectrum
depending on the behavior of the coefficients, boundary conditions, and region geometry. As an
example, the last case includes the following facts: in a bounded domain, the spectrum of an elliptic
operator with smooth coefficients is always discrete, and in an unbounded domain, the spectrum of
the same operator with a bounded coefficient is continuous.

The most significant issue of spectral theory in the study of the spectrum depending on the behavior
of the coefficients is a sign of discreteness of the spectrum. The first significant result in this direction is
the Molchanov criterion on compactness of the resolvent of the singular Sturm-Liouville equation. This
result was then disseminated to an operator of Schrodinger type by M.Sh. Birman and B.S. Pavlov,
V.G. Maz’ya, M. Otelbaev and R. Oinarov, M.G. Gasimov obtained a criterion for the compactness
of their embedding in Lebesgue space studying the topologies of energy spaces of elliptic operators.
Based on this approach, the result of A.M. Molchanov was extended to new classes of semi-bounded
differential operators whose energy spaces are embedded in some Sobolev weighted spaces.

Now questions arise about the discreteness and continuity of the spectrum of unbounded differential
operators. Here, a significant difficulty is the question of the smoothness of elements from the domain
of definition of the operator in order to extract the necessary information regarding the structure of
the spectrum. These questions have not been investigated for the operator below.

By L we denote the closure in the norm Hj = Ly(R, H) of the differential operator

Lu = (—=1)™u®™ (y) + k(y) Au + ia(y) A% + c(y)u, (2)

defined on the set C°(R, H), where m is a positive integer, k(y) is a piecewise continuous and bounded
function in R, A is a some non-negative self-adjoint operator in the Hilbert space H with a completely
continuous resolvent.

We shall assume that the coefficients a(y), c¢(y) satisfy:

i) la(y)| > do > 0,¢(y) > § > 0 are continuous functions in R.

Theorem 3. Let the condition i) is fulfilled and ¢(y) is a bounded function and let A = 0 be an
eigenvalue of the operator A with finite multiplicity. Then the continuous spectrum of L is not empty.

Theorem 4. Let the condition i) is fulfilled. Then the discrete spectrum of L is not empty if the
equality

ytw

lim c(t)dt = oc. (3)
lyl—o0
Y

holds.
Theorem 5. Let the condition i) is fulfilled and let A be a positive definite operator with completely
continuous inverse. Then the spectrum of L is discrete iff
Ytw
lim c(t)dt = oo,

ly|—o0
)

or
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y+w

lim / la(t)|dt = oo
y

ly|—o0

for all w > 0. To prove the above theorems, we will use the following auxiliary statements and estimates.
2 On a one-dimensional high-order differential operator

Consider the differential operator
lu = (=1)"u®™ (y) + e(y)u,

initially defined on CS°(R), with further closure of this operator in La(R).

The following lemmas hold.

Lemma 1. Let the condition i) is fulfilled and let ¢(y) be a limited function. Then the spectrum of
the operator [ is purely continuous.

Proof. Denote by [; the operator defined by

I = (—1)™u®™ 4 tu

on CS°(R), where b = sup ¢(t). The operator [, admits closure in La(R). Introduce new metrics in
teR
the domains D(1), D(I;) of the operators 1,1, believing

lul; =< lu,u >, u € D(); |ul;, =< liu,u >,u € D(l);

and close the domains D(1), D(l;) in these metrics.

The resulting new Hilbert space we denoted by H;, Hj, .

It is easy to see that H;, C H; u |ul;, > |u|;. Therefore, we assume that I, > [. Where [ and [; are
positive operators.

From general compactness theorems it follows: if the spectrum of the operator [ is discrete, then
the spectrum of the operator [; is also discrete; if the spectrum of the operator I; is continuous, then
the spectrum of the operator [ is also continuous.

It is known from the spectral theory of differential operators that the spectrum of I; is continuous,
then the spectrum of [ is also continuous. The lemma is proved.

Consider the operator

= (—1)™uC™ 4 (th(y) + it®a(y) + c(y))u,

where u € D(ly).
Lemma 2. Let the condition i) is fulfilled. Then the estimate
+o0,
clllul3 = /[Iu(m)|2+6((y) +[t*ay) ) |ul*)dy,
holds for all u € D(l), where ¢ > 0 is a constant independent of ¢, u.

Proof. Here and below, without loss of generality, we assume |a(y)| > 1,¢(y) > 1. Consider the

scalar product
00,

Stiwus= [ [P+ (th(y) + ita0) + ) uPldy, (4)

—0o0

where u € C5°(R).
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Further, since a(y) does not change sign, we have:

“+00,
|<hu>|zww/'mwmfw. (5)

sing the Cauchy inequality with € > 0 from inequality (5) we obtain
1 € 1 ’ 1
el + Sl = 51 [ latw)Plufdy + a0l

From this inequality, by virtue of the condition i) and d < ¢t < co we obtain the following estimate

*”ltUHQ |t|°‘ / |a(y)*lul*dy. (6)

Further, it follows from equality (4) that

~+o0,
< luyu> | = /waﬁ+uuw+w%mn+dwwwuyz

—00
“+o00,

> | [ ™R+ (thty) + o)) fuPlay | >

+o0,
>\/|u Iy~ 11| [ (kwlhuPy].

Here, according to the Cauchy condition with € > 0, it is easy to verify that

+o00, +o00,
1 1 m
sl = 5 [ (P Py~ 1] [ bw)lluPdy. (7)

Using the Cauchy inequality and condition i), from inequality (5) we obtain

leewl3 > J¢*05 13 (8)
Combining (7) and (8), we find
+o0,
leull = 5 [ (™ + )l Q
oo
From inequalities (6) and (9), we have
+00,
c(e, do) [llrull3 > /Hu(m)!QJr(C(y)Hﬂ“\a(y)\)\u\z]dy,

where ¢(e, §g) > 0.
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Lemma 3. Let the condition i) is fulfilled. Then the estimate

C

s <

holds, where 0 < d < t,¢ > 0 are independent of ¢, € [%, 1).

The proof of Lemma 3 follows from Lemma 1.2.2. of paper [9].

Lemma 4. Let the condition i) is fulfilled. Then the operator [, Uis completely continuous iff the
equality (3) holds.

Proof. We will use the method proposed in the paper of M.B. Muratbekov [10] for mixed type
operators.

Necessity. Suppose that the condition of Lemma 4 is not satisfied. Then there exists a sequence of
intervals Q4(y;) C R such that

sup / c(t)dt < c,
Qal(yi)

where d > 0, i.e. when the interval Qq(y;), goes to infinity with keeping length.
Let w(y) € C§°(Q(0)). consider set of functions such that

uj(y) = w(y — vi)-
For these functions, it is easy to establish the following inequality
[0 ™ () + (th(y) + it aly) + c))ujl2 < ¢ < oc, (10)

holds as 0 < t < N, where N is a finite number, ¢ is independent of j.
It is not difficult to verify it follows from Lemma 3 that

i — 0

as t — oo.
The last property was taken into account in the proof of inequality (10).
It follows from inequality (10) that

Fj(y) € La(R), suppF;(y) C Qalyi),

where Fj = (—1)mu§-2m) + (tk(y) + it“a(y) + c(y))u.
Now it is easy to show that the sequence Fj(y) converges weakly to zero. Indeed

+o0,
| < Fiy),o> | = / Fy(y)o(y)dy| = / Fy(y)u(y)dy| <
—o0 a(y;)

<| [ Bwa| | [ Fona| el [ Pw ()
Qaly;) Qaly;) Qaly;)
for any v € Lo(R). Obviously [ v?(y)dy — 0 as j — oo, since v € Lo(R). Hence and (11) it follows

Qaly;)
that the sequence {F;(y)} — 0 converges weakly at j — oo.

It is easy to verify that
HUjHQ =c>0. (12)
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Since, if the operator [ !'is compact, then the sequence {u;} should converge to zero by norm
Ls(R). And this is impossible due to (12). The necessity is proved.
Sufficiency. Repeating the calculations and arguments used in the first part, we have

R(ly) € L (R, c(y)),
where L3 (R, c(y)) is a replenishment C§°(R) by norm

1
2

[ull Ly (rc() = (/(u(m)2+6(y)u2)dy

By the results of |9, 10|, any bounded set in L5*(R,c(y)) is a compact in Lg(R) if and only if the
condition of [9, 10] are satisfied, i.e.
C*(y) — oo, (13)
y+4
as |y| — oo, where C*(y) = inf{d~' : d'72™} > [ c(t)dt.
d
L)
It follows that it is sufficient to prove the equivalence of conditions (13) and (3).
Suppose that (13) is not satisfied. Then there exists a sequence of points y,,n = 0,1,2,... and
constants ¢ such that ¢*(y,) < c.
By virtue of equality

di=2m — c(t)dt,

it follows from the definition of ¢*(y), we obtain that there exist intervals A,, which go to infinity,
keeping the length and

/c(t)dt < < 00.
An
The last inequality shows that condition (3) is not satisfied.
Conversely, let condition (3) not be satisfied. Then there exist some disjoint intervals A,, which go
to infinity with keeping length.
From the definition ¢*(y) we obtain ¢*(y,) < ¢, where y,, is a centre of A,. This means that (13)
is not satisfied, therefore (3) and (13) are equivalent. The sufficiency of Lemma 4 is proved.
Lemma 5. Let the condition 1) is fulfilled and d < t < oo, d > 0. Then the operator I;” Lis completely
continuous iff for any w > 0:

ytw
lim c(t)dt = oo, (14)
ly|—o00
Y
or
ytw
lim a(t)dt = oo, (15)
ly|—o0
Y
Proof. Note that the coefficient of i(2 = —1) under any t does not vanish, since ¢ varies on the

interval (d, oo).

This means that when studying the spectral properties of the operator [, ! we must take into
account the behavior of both coefficients a(y) and ¢(y).

We consider first the case (14). In this case, repeating the arguments and calculations used in the
proof of Lemma 4, we obtain the proof of Lemma 5.
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Now we will consider the case (15).
Necessity. To prove this, suppose the contrary; let the conditions of the lemma not be satisfied.
Then there exists a sequence of intervals Q4(y;) C R such that

sup [ Jat)ldt <

Qa(yi)

where d > 0. The interval Q4(y;) goes to the infinity keeping length.
Let w(z) € C§°(Q(0)). Consider a set of functions such that u;(y) = w(y — ;). Then it is easy to
estimate
[0 + (th(y) + ita(y) + ()13 < e < oo,

where c¢ is independent of j.
Let

Fj = (—1)™d®™ + (th(y) + it*(a(y)) + c(y))u, suppF;(y) C Qa(y:).

Hence Fj(y) is converge weakly to zero.
The proof of necessity completes same as in Lemma 4.
Sufficiency. It follows from the results of Lemma 2 that

R(I;Y) € Wi o(R), (16)

where W3 _(R) is the function space with norm

N|=

[ W, (R = /[Iu(’")!2 + (la(y)| + c(y)) lul*)dy

It is easy to verify that
W3le(R) C W3, (R) (17)

Indeed, let u(z) € W3, .(R). Then the estimate

+00 too
/ [u™ ]2 + a(y)|[ul?)dy < / a2 + (Ja()] + e())|ulldy

holds. The last estimate proves inclusion (17). From here and (16) we have
R C WL (R). (18)

Further, from (18), using arguments similar to those of Lemma 4, we obtain a proof of sufficiency.
Proof of continuity and discreteness theorems.
Proof of Theorem 3. Denote by {e,,} complete orthonormal system of eigenvectors of the operator

A. Then the equality
= Z Un, (y)en,
n=1

()7, = leun )3

holds for all u(y) € H.

Cepust «Maremarnkas. Ne 2(98)/2020 117



M.B. Muratbekov, S.Zh. Igisinov, et al.

Immediately following equality is easily verified

Au = i Antn (Y)en;

n=1

A% = Z At (Y)en.
n=1

This shows that the separation of the variables of the spectral problem

Lu = \u
reduces to the following spectral problems
—uZ™ (y) + (k(y) A + ia(y) Ny + e(y))un = Mun(y), (19)
n=123,..

If A is a spectrum point of L, then A is the spectrum point of one of the operators (19). And vice
versa, if A is a spectrum point of one of the operators (19), then A is the spectrum point of L.

Now, if we use the assumption of Theorem 1, that A = 0 is an eigenvalue of finite multiplicity, then
Theorem 3 follows easily from Lemma 1.

Proof of Theorem 4. Similarly reasoning and using Lemma 2 we obtain the proof of Theorem 4.

Proof of Theorem 5. In Theorem 5, we assumed that the operator A is the positive definite self-
adjoint with a completely continuous inverse, and this is due to the fact that the smallest eigenvalue
of this operator is nonzero. Now the theorem being proved follows from Lemma 4.

8 On the properties of a resolvent of a single unbounded high-order
differential operator with an operator coefficient

Let H is the separable Hilbert space. Denote by C§°(R, H) is the set of infinitely smooth compactly
supported functions defined on R(—o00,+00) with value in H.
Consider the differential operator

Lu = (=1)"u®™ (y) + k(y) Au + ia(y) A%u + c(y)u,

wherem = 1,2, ...,u(y) € C3°(R, H), A is the positive definite self-adjoint operator in the Hilbert space
H with a completely continuous resolvent, @ € [$,1),k(y) is the piecewise continuous and bounded
function in R, k(0) = 0 and yk(y) > 0 at y # 0.

Let the conditions

1) la(y)| > do > 0,¢(y) > 6 > 0 is continuous functions in R,

2) sup Z(—i)§6<oo, sup %§60<oo;

lz—t|<1 lz—t|<1
3) 0< 6 <2 at y € R hold.
The following theorems hold.
Theorem 6. Let conditions 1) -3) are fulfilled. Then the resolvent of the operator L belong to oy, if

p>1and

> b m(—p+1) .
Z/Q 2 (j,y)dy < oo,

=10

o0
where oy, is the set of all completely continuous operators such that ||All5, = > Sh(A4) < 0o, Sp(A) is
n=1

an eigenvalues of VA*A, Q(t,y) = |a(y)it™ + c(y)|?.
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Theorem 7. Let conditions 1) -3) are fulfilled and

[e.e]
Z n'A, 1t < oo,
n=1

forall 0 <1< 14 s,s >0, where A\, is an eigenvalues of A. Then the resolvent of the operator L is a
Hilbert-Schmidt operator if a="(y) € Li(R).

To prove the above theorems, we use the following auxiliary statements and estimates.

Consider the operator defined by the equality

o= (=1)"u®™ 1 (th(y) + it"aly) + c(y))u

in LQ(R),d <t <oo.
It is known from the results of the first part that, under conditions 1)-3), there exists a resolvent
l; and the estimate

(m) 2 Qo 2 2 2 9
|+ e atyyull + lletwyully < e (el + ul3) (20)

holds for all u € D(l;), where ¢ > 0 is independent of v and t.

Let A be a completely continuous operator. It is known that the eigenvalues of the operator (A*A)%
are called s—numbers of A. Nonzero s—numbers will be numbered in decreasing order, taking into
account their multiplicity, so

si(A) = A\((A*A4)2),5=1,2, ...

We introduce the following function N(X) = ) 1 is the number s; greater than A > 0. Let
Sj >A

M = {u € Ly(R) : |lleu]]3 + |[ul3 < 1.

Denote by dj, is the Kolmogorov k-width of the set M in La(R).
By definition

dr, = inf sup inf ||u— o],
{er} ue M VEPK

where "infimum"takes over all subspaces ¢ dimensionality < k.
Lemma 6. Suppose that the conditions of Theorem 4 are satisfied. Then the estimate

dy, < cAdy,
holds, where dj, is the Kolmogorov k-width of the set
M = {u € Ly(R) : [u®™ |3 + [le(y)ull3 + [[t*a(y)ull5 < 13,

where ¢ > 0 is any constant.
Proof. It follows from the hypothesis of the lemma that the estimate (20) holds for all u € D(l;).
Hence
™3 + llt*a(y)ull3 + le@)ulld < A(lleull3 + [lul3) < ¢,

for all w € M, where ¢ > 0 is a constant independent of ¢ and wu.
Therefore M C M_2.
Now, using the property of the widths, we have

di < 02d~k.

Lemma 6 is proved.
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Lemma 7. Let the conditions of Theorem 4 is satisfied. Then the estimate
N(\) < N(c2)),

holds, where N(A\) = 3 1 is the number of width dj, greater than A > 0, N(A) = 3 1 is the number
d>A dp>A
of width dj, greater than A > 0.
Proof. By virtue of Lemma 6 we have

=) 1< ) 1= > A=N(.

di>A 02d~k>)\ Cl;€>c_2

Lemma 7 is proved.

Denote by N(A\) = 3. 1 number of singular numbers s;(j = 1,2,...) of [, ! greater than A > 0.
Aj>A
Lemma 8. Let the conditions of Lemma 7 be satisfied, then the estimate

N\ < c)f%mes(y €ER:Q7Z(ty) <A™,

holds, where c¢ is a constant independent of Q(¢,y).
Proof. It is known

3j+1(lt_1) = d]?] = 1727 ceey
where d;, j is the width of M.
Denote by L?Q( 1y) SPace obtained by replenishment Cy(R) relative to the norm

+oo 2

w Lguy| = | [ [+ Qe pluldy

It is clear that N C LT Oty)
Now the proof of the lemma follows from Lemmas 6 and 7 and the results of [10].
Proof of the main theorems.
Denote by sj; singular numbers of [;,j = 1,2, .... It is easy to verify the inequality

DD si<ey Y di

holds. Let
F() =N,
where N(-) is the function of the distribution widths dj;,7 = 0,1,2, ... greater than A > 0. Note that
—0; _ 1
F()\)—Olf)\chjo—dJ—_o.
Since F()\;) = j at \; = d;;', then

Ji

oo >\n &)
I SEUD IS ST BED S ErlVED o) Py
j =1 J 0 J 0

We transform the internal integral like follows.
Let a; = dﬂH, where {aljer1 i2o- Then integrating by parts, we have
/)\ PAF( /A PAF(Nj) = A PF() — /)\jplF()\j)d)\j =

0
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=X PF(q) — 0;0F(8;0) — / APTER(N)d),
0
where 5]'0 = d%o So F(éjo) =0.
Due to the last equality, this equality takes the following form

Qg [e73
/ A PAF (M) = P F(ayi) — / APTLR(A)dA; . (21)
0 0

Using the condition of Theorem 6 we obtain

+oo
m(=pt1) m(=pt1)
/ Q=2 (Jydy > / Q2 (Jydy >
oo mes(yERQ™ 2 (y)>c))
—m(=p+1)
> / Q2 (ydy=
mes(yeR:Q™ 7 (j,y)>eN)
- / Q 2P Vdy > W lmes(y € R: Q2 (j,y) > c)).
mes(yeR:Q™ 7 (jy)=eN)
Hence 4
mes(y € R: Q7 (j,y) <eA™h) < S AN~
TR m(—pt1) .
where A= [ Q™ 2 (j,y)dy.
From th_e last inequality and Lemma 8, we have
N < e oanrHik
AP=D+5;
Hence we obtain .
A—0—5))
dfy, <c —
(k+1) p—(1— )]

This inequality shows that outside the integral term of equality (21) is equal to zero as k — oc.
o0
Now it remains to calculate the integral [ )\;p “'F (Aj)dA;. Directly calculating, taking into account
0

Lemma 8, we have
/Aj‘p‘lF(Aj)dAj < c/)\j_p_l)\jmes(y €R:Q7%(t,y) < cNd); =
0 0

(e o] oo

= cl/)\jpmes(y €R:Q% (t,y) < e)j)d)j = ¢ /mes(y eER:Q%(t,y) < c)\j)al/\;p+1 =
0 0

= cl)\;pﬂmes(y ER:Q%(t,y) <c)\j) — cl/)\jp+1dmes(y €R:Q%(t,y) < c\j).
0
All outside integral terms disappear.
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It remains to verify that

//\j_pﬂdmes(y eR:Q=(ty) < cAj) /QZL Pt y)dy. (22)
0 0

Indeed, this follows from the fact that for any sequence of points

<< <EHEL <G <

correspond to Darboux sums

S = Z MpmesQ;
k=1
S = kamest,

B
Il

1

where Q= {z € R: &1 < Q2 (t,y) < &},

My = sup Q2 PHU(¢, ) my, = inf Q% P (t,y).

€y, €
The inequality
e} o
> G mesy, < S <5 <Y & mesy (23)
k=1 k=

1
holds. If the right integral exists in (22), then, by virtue of (23), there exists the left integral and they
are equal.

Theorem 6 is proved.
Proof of Theorem 7. We have

1 1
< )
iAaly) + c(y)[™ = Aplaly)[™

\3

Q2 (ny) =

n=123,..
This and Lemma 6 it follows that

z/Q nydy@ma/‘ /mwdiA

Now, using condition 2), from the last inequality we obtain the proof of Theorem 5.
This work was done on grant financing of the Ministry of Education and Science of the Republic
of Kazakhstan on project AP05131080.
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OmnepaTopiibl KO3 PUIUEHTTI 2KoFrapbl peTTi auddepeHnna abIK,
ornepaTopJap/biH 6ip KJIACHIHBIH, CIIEKTPAJIbJIi KACUETTEPI TypPaJibl

Makasaga »xorapbl peTTi JuddepeHInalIbK, oepaTopaapAbiy, 6ip Kiaacel 3eprresred. Mynait oneparop-
JIApIBIH, HET13T1 epeKIesTiri oJap/IblH KapThlaail meneMeren 6orybiaaa. OmnepaTopsibl KoddduimenTTep-
JIiH, affHBIMAJIbLIAPFa Toye Il 60JIybl 3epTTeyie KOChIMIIA KUbIHJIBIKTAD TYFbI3abl. 3epTTey OapPBbICHIHIA €H,
aJabpIMEH MIeNnMHIH 6ap 601y maprrapsl koHe 6esikTeHyi aHbIKTaFaH. COHBIMEH KaTap alHBIMAJIBI OIle-
paTopsibl KO3hMUIIMEHTTI KapThLIail meneMerern nudepeHuasiIblK TeHIeYIep YIMiH MeniMHAIH TericTiri
JK9HE IIEKAPAJIbIK, €CENITEP/IiH CIIEKTPiHe KATBICTHI MOCEJIESIED 3ePTTE/€eH.

Kiam cesdep: muddepeHnnanabik OnepaTop, >KapThLaai IeHeIMereHIiK, OIepaTOPIbl KO3(MMUIMEHT, CIIEKTP.

M.B. Mypar6ekos, C.2K. Urucunos, 5.M. Mycuimmos, P.P. Makyn6exkora

O cneKTpaJIbHBIX CBOICTBaX OJHOIO KJjacca auddepeHImaabHbIX
OIepaTOpPOB BBICOKOTO IIOPSIKA C ONepaTOPHBIMU KO3(dUuImeHTaMmn

B craTbe uccnemoBan omun kiacce auddepeHImaibHbIX OTEPATOPOB BBICOKOTO MOPsiAKA. [JtaBHOI 0cobeH-
HOCTBIO JIAHHBIX ONEPATOPOB SBJISIETCs] UX HEIOJIYOIPDAHUYEHHOCTb. 3aBUCUMOCTH OIEPATOPHBIX KO3 du-
[IMEHTOB OT IIEPEMEHHBIX CO3/aeT JOIOJHUTEIbHbIE TPYJLHOCTH B HCCIEJOBAHMH. B Xole mccienoBaHus
CHavaJIa HaMJEHbl YCJIOBUS CYIIIECTBOBAHUS PEIIEHUs] U Pa3/IeTMMOCTH. TakKe M3ydeHbl BOIIPOCHI IVIAIKO-
CTH PeIeHn#l U O CIIEKTPe KPAaeBbIX 3aJad JjIs HEIOJyOIDAHUYEHHBIX AuddepeHnaabHbIX YPAaBHEHH C
IepeMeHHBIMU OI€PATOPHBIMUA KO3 PUITUEHTAMMU.

Kmouesvie cnrosa: nuddepeHInaabHbIi OIIEpaTOp, HEMOJIYOIPAHUYEHHOCTD, OIEPaTOPHbIA Kodd dburment,
CITEKTP.
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