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On boundary value problems for essentially loaded
parabolic equations in bounded domains

In the paper we study issues of a strong solution for "essentially" loaded differential equations of the
parabolic type in bounded domains. Features of the problems under consideration: for example, in the
L2(Q) space the corresponding differential operators are not closure operators, since firstly, the load does
not obey the corresponding differential part of the considered operator, that is, for its differential part the
load is not a weak perturbation. Secondly, it is obvious that load operators in the spaces L2(0,1) and L2(Q)
are not closure operators. This indicates that it is impossible to directly investigate the issues of the strong
solution to boundary value problems for non-closed loaded differential equations. However, the study of
equations [1-4] give theoretical character, but also a clear applied [5-7] character.

Keywords: "essentially" loaded parabolic equations, Volterra integral equation, boundary value problem,
strong solution, load operator.

1 Statement of boundary value problems

Statement of the first boundary value problem. Consider the following boundary value problem in the
domain @ = {z, {0 <z < 1,0 <t < 27}

0 0? 0u(z,t
L= 0 PO e, ey € @ (1)
u(0,t) = u(1,t) = 0,u(z,0) = u(z, 27), (2)

where T € (0,1) is a given point; « € C' is a given number;

fe L (o, 2m; W (0, 1)) (3)

is a given function.
Statement of the second boundary value problem. Consider the following boundary value problem in the
domain @ ={z,t{0 <z < 1,0 <t <27}

ou  9%*u OFu(z
L=t 9% v a@)- 08|~ ), ety @ (@)
u(0,t) = u(1,t) = 0,u(z,0) = u(z, 2m), (5)
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where
7 € (0,1) is a fixed point;a € WE™(0, 1),
feLls (0, 2m; W2™(0,1) N W3 (0, 1)) are the given functions, (©)

k—

k . .
=, if k is an even number
E>2m=1< 2’ ’
-7 {21 if k is an odd number.

Remark 1. The loaded differential operator Ly defined by problem (1) - (3) is not closed in the Ly(Q) space,
so for considering problem (1)-(3) we introduce the following an auxiliary problem:

9% [ou  P*u 0% f
L?’“:ax?(at_ax?) = gpr nth €@ 0
u(0,t) = u(1,t) = 0,u(z,0) = u(z, 27); (8)
O*u(0,1) 0%u(l,t) O*u(z,t)
or2 0, e R e R 0- )

Note that in the operator Lz boundary value problem (7)-(9) (except the L; operator) is closed in the
L2(Q) space. It is also obvious that boundary value problems (1)-(3) and (7)-(9) are connected. In fact, a
regular solution to problem (7)-(9) is also a solution to problem (1)-(2). And visa versa, if the regular solution
to problem (1)-(2) contains a derivative of the required order, then it is a regular solution to problem (7)-(9) [8].

Remark 2. For considering problem (4)-(6), in the domain Q we introduce a non-contiguous auxiliary problem

w(0,1) = u(1,1) = 0, u(x, 0) = u(x, 27); (11)
aj;;zj;(;, H a]‘;zg, H, amm)% — o, (13)
ajg;z;gt, t) 8@:;9; t) Om)% =0 (14)

j=1,....m—1.

Note that boundary problem (4)-(5) and (10)-(14) are connected. In fact, a regular solution of problem
(10)-(14) is a solution to problem (4)-(5). And visa versa if a regular solution to problem (4)-(5) contains a
derivative of the required order, then it is a regular solution to problem (10)-(14).

There are some necessary definitions [9].

Supposing that C' = {u | u € C;lt(@), Ut, Uggy € Cf:?(Q),} and conditions (8)-(9) are implemented [9].

Definition 1. If there exists a sequence of functions {u,(z, t)}?fl:g) C C such that the following conditions
1% and 29 are implemented:

19, In Lo(Q) limy, o0 tn (2, 1) = u(x, t);

20, In Ly(Q) limy, 00 Lyt (z,t) = 24

then the function wu(z,t) is called a strong solution to boundary value problem (7)-(9).

Definition 2. A strong solution to boundary value problem (7)-(9) are called a strong solution to boundary
value problem (1)-(2).
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2 Theorems on uniqueness and existence of a strong solution

First we consider the first boundary value problem, and show that the following statements are valid.

Theorem 1. Let hxT)
o - sh{i\x
1 1
Os ShiAT #0,V, € v, (15)

in the case, v = {s|s = 0;+1;42;...},\2 = is, i = 1/(—1). Than for any function
f € Ly (0.2m WE(0,1) N 1W3(0,1))

boundary value problem (1) - (2) has a strong solution u(x,t).
Corollary 1. Let o € R'. The statement in this case is true for Theorem 1, iff the following condition is valid

1—aZ#0 (16)

The statement is a simple consequence of following fact: in (15) the imaginary part of the expression s;;l{{/\)i}

is not equal to zero at any point s € v\{0}, since the real and imaginary parts of this expression have a value
that is always different from zero.

Corollary 2. Let (16) be not satisfied, i.e. 1 — o = 0. Then the operator of boundary value problem (1)-(2)
is equal to zero, and according to this, the function is equal to

wo(x) = 2(1 — z?) (17)

Proof of the first theorem. In proving this theorem, we refer to the proving by A.A. Desin [8]. We are looking
for a solution to problem (7) - (9) based on the following series:

= Y u@)e* fat) = 3 ful)el™ (18)
s€v EISY

Then from boundary value problems (1) - (2) taking into account the Fourier coefficients defined from (18),
we obtain boundary problems for an ordinary differential equation

{(isus(aj) —ul(z) + azul(T) = fs(x),z € (0,1), Y, € v. (19)

us(0) = ug(1) =0,
A unique solution to (19) can be represented as follows:
us(w) = b, 1 |y Go(@, ) 1,(€)d€ — 35 £,(®)]

x | - }Ho (2, ) ()€, ¥, € 0\ [0}; (20)
uo(2) = 6715, " — 1) fol®) + fi ol &) fol€} e

where h(A&)sh{(1-=)}
AP A8 < €< g <1,
(2,6) = Xsh(A) =5="= Ve € (21)
Wogxgggl,
and h{\T
ash{\x
5 =1 v, 22
oy 20 e (22)

Expressions for Go(z, ) and &y can be obtained directly at s = 0 or passing to the limit from formulas (21)
and (22) as A = 0(s — 0)
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Formula (20) can define a regular solution to boundary value problem (7)-(9) for the Fourier coefficients with
sufficient smoothness of the function fs(z). Therefore, for the correctness of the function fs(x) according to the
functions us(z) found on the basis of the formula (20), any combinations in the form

s=N

uN (z,t) = Z ug(2)e®

s=—N

defines a regular solution to boundary value problem (7)-(9).
Based on formula (20) we obtain the following a’priori estimates

lus(@)lz0,) < K- 1FS (@) La0,1): 8 € 0, (23)
where k is a constant that independent of s, so estimates (23) are constant relative to the s [10-12].
Furthermore, proving estimate (23),we establish that the following estimate for the Green function G(z,¢)
is fair
/ / |Gs(x, &) P dade < W < K = const, ¥, € v\{0},(\? = is).

Really, taking into account that A = A\ 4+ iA1, we get

1 2 2 2 2
/ |Gs(x §)| d¢ < W {|sh)\ x)| / |shA§|=d€ + |shAx| / [shA(1 — &)] dé}

1 z 1
= AP {|3hA(1 - x)|2/ |ch2A1€ — cos2X1€)dE + |sh)\x|2/ |ch2A1 (1 — &) — cos2X; (1 — 5))d£} -
0 xX
1
= SWICEEA {[ch2X\1 (1 — z) — cos2A1 (1 — 2)](sh2 12 — sin2\z)+
(ch2X 1z — cos2A1x) X [sh2A1(1 — x) — sin2X\1 (1 — 2)]} =
= W [sh2 i@ + sin2 12 — ch2A1 (1 — x)sin2 2 —
1 S

—sh2X1xc0s2X\1 (1 — x) — ch2 1 xsin2A1 (1 — x) — sh2A1 (1 — z)cos2A ;1 x].

As a result, we get the following estimate

Lot 1 ch2)\ CcOS2\ C
. 2 . S X)) n2\x — ! L)< =
/0 /0 |Gs(x, &)|*dadE W (sh Mz + sin2)\z N + N SN

/\1 Re) = Im)\ 2‘)\1|2 |)\|2

To receive estimate (23) for s # 0 (20) we obtain the following equalities

dPuy
dx?

2.

:—A2fs<w)+A4/01Gs<x,f>fs<f)ds+a g U G (. f (e — LT >]; (24)

dtug(z) d2f5

+A4/ G, €)£5(6)de — N2f(x)+

det dz?
1 A hA
+a- 5t UO Gs(T, ) fs(§)ds — b )] '>\4ssh;'

For some terms of solution (20) and their derivatives (24)—(25) we get the following inequality

(25)

H)‘Qfs HL2 0,1) — HW fs HL2 0,1) — HW fs )HL 0,1)

We take into account A2 = is,s = +1,+2,...

A o [ e
2(0,1)
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= 2|t

L2(0,1)

_ e ) L 2
W/o |shAz|“dx (/0 Gs(x,g)fs(g)wg) <

/0
2
< K MA@ 0 = K [P E@F, o)

there, we are used the following

4shAx

/ Go(@,6)1,(6)

! 1 ! sh2A1 — sin2A c

20p = —— Nz — cos2 =2 o o

/0 |shA|“dx 2|sh>\2\/0 (ch2Mix — cos2 i x)dx Das? S
’)\

We get estimate

sshae f.@) |
sh A2

4
. = |2|A|2/ |shz|*da - (/ |fh (& |d§>

<c- I r >H <C- IR A )H

L»(0,1) wW2(0,1)

or

”'A|2~dQ“S L@

dz? )2

5 3
< K [INE£@) 0 + TN £ @20 -

L2(0~1)

Taking into account (24), and terms on the right side of equality (25) are covered by the right side of the
equality, the next assessment will not be difficult to obtain

Now, we can determine that the estimate is valid. Really,

d'us(z) fo(@) |
det A2

5 3
< B [N @I IV @ R + 1@ o]
2(0,1)

) o) 15 f(@) 1> NGO
s (2)1170,1) < [ A M 153 Mo IR e | <
fs(z) ?
K1 || =5 < @00 < KsllFL @120,
Lz(owl)

for s = 0. Based on formula (20), this calculation is taken in a simple form.

Taking into account estimate (23), on the basis of the results [8] (p. 118-119) we proved uniqueness of strong
solution to boundary value problem (7)-(9). The theorem is proved.

In addition, from the above estimates, the following uniform estimate for s € v is derived by the formula

9 dQuS( ) 2 d*us() 2
A7 <
S da? I dzt ||,
2(0,1) 2(0,1)
K [[INE @) A @] 1fs(@)]I} (26)
’ Lz(o,l) ° W;(o,m ’ v, 2(0.1)
in addition, For derivative the next estimate is valid
H = <K || f(z, 0 + || fz (2, )1 + |f (@, 1)
a. 99 —_ x? 3 x? 3 x?
Ox*0e L2(Q) W22(0-2W;L2(011)) ’ 24(0.27r;L2(0,1)) L2<0'2";W22<0’1mw21<0’1))

Estimate (26) presents that the strong solution to the boundary value problem has the differential property
that is given by estimate (23).
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Thus, in condition (3), the requirement for the function f(x,t) can be replaced by the following:
—f € Ly(0,2m;W2(0,1)). In this case (23), the estimate has the following form

(@) s0 < K- 1@l s €.

Definition 3. Let u,(z,t),>, C C be a sequence of functions and

1Y.Ly(Q)in hm Up(z,t) = u(z,t);

82mf
Ox2m :

Then the function u(z,t) is-(14) are called a strong solution to boundary value problem (10)-(14).
If

20.L2(Q)m hm Lyup(z,t) =

ou(zx,t)

ue C(Q),u e C(0,2r;C*™+2(0,1) N C™ 10, 1)), o

€ C(0,2m;,C*™(0,1) N C™[0,1]),

we assume that the conditions u € C' and (11)-(14) are satisfied.

Definition 4. The strong solution to boundary value problem (10)-(14) is called a strong solution to boundary
value problem (4)-(5).

From these definitions it follows that the domains of the closed operators Lo and L, are equal.

We get the following

D(Ls) = D(Ly) =

Ju
ot
For the second boundary value problem, the following statement is valid [13-15].
Theorem 2. Let

{u|u € Ly (0,2m W3™%%(0,1)) , = € Lo (0,2m; W3™(0,1)) } x boundary conditions(11) — (14)  (27)

(5_1+—/fo &)dE #£ 0,V € v, (28)

where v = {s|s = 0;£1;£2;...},72 = is,i = /—1,G4(7,€) is the function defined by the formula from
conditions (21), then for any f € Lo (0,27T;W22m(0, 1) N Wy (o, 1)) ,a € W2™(0,1) the function u(x,t) is a
strong solution to boundary value problem (4)-(5). The proof of the second theorem is similar to the proof of
the first theorem.
The validity of the statements follows from (27) and (28).
8 Conjugated problem

Consider conjugate problem (1)-(2),

=20 %Y e ®/ o€ U(E0dE = gl 1), {1} € Q. (29)
$(0,1) = (1,t) = 0;9(x,0) = ¢(x, 27), T € (0, 1), (30)

here it is taken into account that the value supp{¢)(x,1)} C Q. A weak solution ¢ € Ly(Q) of this problem we
define the following integral equality: for any w € C (from the first definition) (w, L) = (L1, w, 9) = (w, g).

First, we show that the operator L} is conjugate with the operator L;. To do this, it is enough to make sure
that the following relation is valid

/27r/ 8283:2 t)dxdt:/o%/oléu(x_x) (/Olggb(f,t)%) u(z, t)dzdt.
/2”/ 82 ¥(x, t)dadt = /zﬂ/ w“{/é aét)df]dxdt:
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/ZW/ -z (/ fwﬁtd€>82( ule ))d dt = :Tréx—l‘ (/ fwﬁtdg) (( ))odt—
/2”/ 5z —7) (/ f¢§td§>au( D dudt — /M:—x (/ w&tds) (e, 1) Ldt+
/%/ §'(x —7) </ §Y(&,t df) (z,t)dzdt = /%/ 8" (x — ) (/ (&t d{) u(z, t)dwdt.

Using the method of separation of variables from (29) - (30), we get the corresponding system of problems for
the Fourier coefficient ¢4(x), s € v\{0}

—isths(x) — Y () + 0z —T) [} - € y(x)de = gy(),x € (0,1),
15(0) = (1) = 0,Vs € \{0}.

The solutions to these problems have the form: {the Fourier coefficient of the function g(x,t) according to

gs(x)} L )
- / Gis (o, €)g (€)de + / € (€)de - [\ - G, 7))
0 0
where in{ A} sin{A(1—)}
_ sin sin —x 70§§§x§17
(ZL’ f) sin ASSQE(A) — VS cv (31)
Defornfd0-9} 0<2 <<,
iff )
gszl—l—o@—oz%#O Vs € v(A\? = is). (32)

The expressions for Go(x,€) and §p can be obtained directly or passing to the limit as s — 0(A — 0) in
formulas (31) and (32):

Remark 3. Let o € RY. If the function wy(z) (17) given by (1)-(2) is orthogonal to all functions g(x,t) from
conjugate problem (29)-(30) (by Corollary 2) then wo(z) (17) is a univocal weak solution. In this case, condition
(32) is valid for all s € v.

Remark 4. If g(x,t) = 0 then (29)-(30) has a unique solution ¢ (z,t) = §(x — T).

Note that to study the integral equation to which the problem for a parabolic equation has been reduced,
we can use the Laplace transform by applying the model solution method [16].
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JI.M. Axmanosa, H.K. [ITlamaraesa, JI.2K. Kacbimona

IllekTenren aiiMakKTapaarbl ejieyJl >KYKTeJreH IapadosiajbIK,
TeHJleyJiepre apHAJIFaH MIEKaPAaJIbIK ecelTep TYypPaJibl

MakaJjtazia meKkTe/IreH aiiMakTarbl eJIeysl »KYKTeJreH mapadboJialiblK, 1uddepeHIualablK TeHIeyIepre ap-
HAJIFAH 9/l IIENTM CypaKTaphl 3ePTTENTreH. KapacThIpblIFaH eCenTep/IiH, epeKIeikrepi: Mbicasst, La(Q)
KeHicTirie coiikec auddepeHuaablK ornepaTopJap TYWbIKTAYIIbl O0JIMaiIbl, cebebi, 6ipiHmTiTeH, KyKTe-
Me KapacTbIPBLIBIIT OTBIPFAH OIEPaTOPAbIH colikec auddepeHna bk 0eririne 6arbIHOANIbI, AFHU OHbBIH
nuddepennmmannbik 6iri yImn o/1ci3 aybITKy 606 TabbLMaii el Eximmminen L2 (0, 1) xone Lo (Q) KeHicTIK-
TepiH/e XKYKTEME OIepPaTOPJIAPBIHBIH, 63/1epi TYABIKTAYIILI OllepaTopsaap OOJbIT TabbLIMANRTBIHBI OEIriJIi.
OCBIHBIH 6aPJIBIFBI TYHBIKTAIMANTHIH XKYKTeJINeH JuddepeHnaabK TeHIeyIepre apHaJIFaH oI/ IIeriM Il
IIEKapaJIbIK eCelTep CYpPaKTapbIH TiKesIell 3epTTey MyMKIH eMec eKeHiH kepcerei. Amnaiina [1-4] rerneymnepin
3epTTEy TEOPUSIIBIK KAHA €MeC, aHBIK, KOJIanbassl [5-7| cunar Gepe.

Kiam cesdep: eneyni Kykrearen nudepeHnnaiablK, TeHaeyiep, Boabrepp HHTErpaIblK, TEHIEY1, IeKa-
PaJIBIK €cell, 9JIi IIeMIiM, OIepaTop.

Cepust «Maremarukas. Ne 2(98)/2020 13



D.M. Akhmanova, N.K. Shamatayeva, L..Zh. Kasymova

JI.M. Axmanosa, H.K. [TTamaraesa, JI.2K. Kacbimora

O rpaHnMYHBIX 33JladaX AJd CyIeCTBEHHO HATpPy KEHHBIX
napadoInvYecKnx ypaBHEHNII B OrpaHNYEHHbBIX 00JIaCTIX

B craTbe m3ydueHBI BONPOCHI CUJIBHOTO PENIEHHs I CYIIECTBEHHO HArPy’KeHHBIX auddepeHnmaabHbIx
yPaBHEHMIT TTapaboJIMYeCcKOro THUIa B OIPAHUYEHHDbIX 00jacTsaX. OCOGEHHOCTH pacCMaTPUBAEMbBIX 3aJlad:
nanpumep, B L2 (Q) mpocrpancTse coorBercTByomue auddepeHuaabable OMepaTopbl HE ABJISIOTCS OIe-
paTopaMy 3aMbIKaHUs, MOCKOJbKY, BO-TIEPBBIX, HATPY3Ka HE MOMYUHAETCS COOTBEeTCTBYyIomIel auddepen-
IUAJIbHON Y9aCTH PACCMAaTPUBAEMOTO OIepaTopa, TO €CTh /i ero AudepeHIuaIbHol 9acTH He ABJISIeTCs
c1abbiM Bo3MyIeHneM. Bo-BTOpbIX, 09eBnaHO, 9T0 B ipocTpancTBax L2 (0, 1) n L2(Q) onepaTopsr HArpY3KH
caM# He SBJIAIOTCS OlepaTopaMy 3aMbIKaHusA. Bce 3To yKa3bIBaeT Ha TO, YTO HEBO3MOXKHO HENOCPEeCTBEH-
HO MCCJIEIOBATh BOIIPOCHI CHJILHOTO PENIeHHUs] FPAHUYIHBIX 3319 JjIs HE3aMKHYTBIX HATDYYKEeHHBIX audde-
peHImasbHbIX ypaBHeHunit. OfHAKO nccienoBanne ypasHeHuil [1-4] jaer He TOJIBKO TeopeTHUECKHil, HO U
BBIPaXKEHHBIN MpUKIaaHol [5-7] xapakTep.

Karouesvie carosa: CyIecTBEHHO HArpysKeHHbIe nuddepeHnaibHble yPpaBHEHNs, HHTErPaIbHOE YPaBHEHHE
Bonpreppa, rpannynas 3a7a4a, CUIBHOE pelleHUe, OIIEPATOP HAIPDY3KH.
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