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The energy method for solving a nonlinear
problem of thermoelasticity for arod
of variable cross section

A horizontal rod of limited length is considered. Radius of the rod varies linearly along its length. The cross-
sectional area of the left end is larger than the cross-sectional area of the right end. The lateral surface of
the test rod is completely insulated. The heat flow is fed to the cross-sectional area of the left end. Through
the cross-sectional area of the right end of the rod, heat exchange takes place with the surrounding medium.
The field of distribution of temperature, displacement, three components of deformation and stresses are
determined in the work, provided that both ends of the rod are rigidly fixed. And also, the magnitude of
the elongation of the rod is determined when one end of the rod is fixed and when the other is free.In
the case of fixing the two ends of the rod, the magnitude of the resulting axial compressive force is also
calculated. When studying the rod, the fundamental laws of conservation of energy were used.

Keywords: elongation, axial force, cross-section, temperature, displacement, deformation, stress.

Introduction

Many load-bearing elements of gas-generator, nuclear and thermal power stations, jet engines and the
processing industry are rods of variable cross-section. To ensure reliable operation of these equipments, it is
necessary to provide the thermal strength of load-bearing elements in the form of variable-section rods that
operate with the simultaneous action of dissimilar kinds of heat sources. Because of the variability of the cross
section, nonlinear thermomechanical processes appear in such rods.

To study the nature of such processes, consider a horizontal rod of limited length, of variable cross-section.
In this case, the radius of the section varies linearly along the length of the investigated rod, i.e. r = ax + b,
0 < x <), where is the [-length of the rod, a,b — const. The cross-sectional area of the rod varies nonlinearly
along the length of the rod in the following manner F(x) = 7(ax + b)?[m?]. The lateral surface of the test rod
along the entire length is heat-insulated. On the cross-sectional area of the left end of the rod F(z = 0) = 7b?,
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C’ffz} . The scheme of the investigated rod is shown in Figure 1.
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Figure 1. Scheme of the investigated rod
Overviev

In the presence of heat flow, heat insulation and heat transfer, the functional of the total thermal energy
for the investigated rod has the form [1]:

J= / qTds + / (=—)%dv + / —(T —T,.)%ds, (1)
F(2=0) v 2 0z F(a=l) 2

where T'= T'(z) the field of distribution of temperatures along the length of the rod, which is approximated by
a complete polynomial of the fourth order

T(x) = ap + a1z + asx® + azz® + agx* = i (x)T; + 0 (2)Tj + @r(x)Ti + @m ()T + @n(2)Th, (2)
where ¢(x) — are spline functions:

(31* — 25032 + 70%2* — 80lz> + 322%)

pi(x) =

314 ’

(4803 — 2081722 + 288z — 128z*)
Py (‘T> = 374 ’
—3603x + 2281222 — 384123 + 19224

pnlw) = Z3LT 56314 - o, (3)
(z) = (161°z — 1121%2? + 224la® — 1282*)
Spm - 314 )

on(z) = =313z + 221222 — 4813 + 322

304 ’

0 < x < I, where the nodal temperature values are determined by the formulas

T; = T(x = 0); TizT(:c:D; Tk:T(x:;>; Tm:T(a::il>; T,=T(x=1). (4)

Taking into account (2)-(4), minimizing (1) with Tj, T3, Tk, T, and T,, we obtain a resolving system of
algebraic equations taking into account existing natural boundary conditions.Solving the system we determine
the nodal values of temperature (4), and by (2) we construct the field of temperature distribution along the
length of the rod. If one end of the rod is fixed and the other end is free, then the length of the rod Aly[cm] is
determined according to the general law of thermophysics [1]

1
AlT:/ oT (x)dx.
0

If both ends of the rod are rigidly fixed, then an axial compressive force R[kG| arises in the rod, which is
determined from the compatibility condition of the deformation [1]

_ Alp- Ef(f F(z)dz

= Z .
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k
In this case, a distribution field of the thermo-elastic component of the voltage o(x) [92} arises in the rod:
cm

R
a(x):m,()gxgl.

Then, according to Hooke’s law, we can determine the distribution field of the thermoelastic deformation
component e(z) [dimensionless|:

The temperature component of deformations ep(,) [dimensionless| is determined according to the general law
of thermophysics [1]:
ET(z) = —OéT(Q;‘).
Then, according to Hooke’s law, the field of distribution of the temperature component of the stress
kg
or(z)=F -ep(x) = —aF - T(x).
According to the theory of thermoelasticity, the laws of distribution of elastic components of deformations e, (,)
kg

[dimensionless| and stresses op () {2]:
cm

ex(7) = e(z) —er(z);

0:(z) = E-ex(x) = 0(x) —op(z).

The potential energy of elastic deformations is used to determine the displacement field [2]:

_ [ o=@ — | aFE - -T(x) ey(x)dv
H—/V 5 eg(z)dv /v E-T(x)-ez(x)dv.

According to the Cauchy relation [2], we have:

_ou,
oz’

U= U(l‘) = ‘pi(m)Ui + ij(x)Uj + ng(QT)Uk + @m(‘T)Um + (Pn(x)Uny

whereU is the displacement field. Minimizing II from the nodal values of the displacement, a system of linear
algebraic equations is constructed. To solve this system, it is necessary to specify the conditions for securing
the two ends of the rod, i.e. U; = U(x = 0) = 0 and U,, = U(z =[) = 0. Further, defining U;, U;, Ug, Up,, Uy,
a displacement field is constructed. For practical application of the above method and algorithm, we take the
following initial data { = 20 cM, @ = 5, b = 4 em, @ = 0,0000125%, E = 210525 K, = 10024t
h = 100}7”12%(, T,. = 40°K, g = —5003‘::;.

Figure 2 shows that the temperature is higher near the left end of the rod, where the heat flow is supplied.
Due to the thermal insulation of the lateral surface, heat is lost minimally, so that the temperature at the right
end of the rod is maintained at 2400 K.

With these initial data, the obtained solutions are shown in Figures 2-5.

€x(x)
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Figure 2. Dependences of the temperature T along the length of the rod

Stress
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Figure 3. Stress Dependencies along the length of the rod

Decision

The stresses along the length of the rod are shown in Figure 3 (1 — o(z) is the thermoelastic, 2 — () is
the temperature, 3 — og(x) is the elastic component of the stress). It can be seen from the figure that the
thermoelastic —o(z) and temperature —o ;) are the components of the stress along the entire length of the rod
are of a compressive nature. While the elastic —og(z) component of the stress in the area 0 < E < é has a
tensile character, and in the area é < F < it is compressive.

Deformation
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Figure 4. Dependence of the deformation along the length of the rod
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Dependences of deformations along the length of the rod are shown in Figure 4 (1 — o(z)—thermoelastic,
2 — 0(y)— temperature, 3 — og(z)— elastic component deformation). The distribution field of the deformation
components is proportional to the corresponding stresses.

A Displacement
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Figure 5. Dependences of displacement along the length of the rod

Figure 5 shows the field of distribution of displacements of a rod fixed at two ends. From this it can be
seen that all sections (except for exceptions) move in the direction of the z axis. The greatest amplitude of
3l

displacement corresponds to the coordinate ofr ~ 2.

Conclution

A numerical model of nonlinear thermomechanical processes in a rod of variable cross-section is developed,
based on the fundamental law of conservation of energy. This allows to obtain reliable numerical results taking
into account all natural boundary conditions. The results obtained are consistent with the corresponding laws
of physics. This method can be used for the numerical solution of a class of problems determined by the steady-
state thermomechanical state of load-bearing structural elements operating under the influence of dissimilar
kinds of heat sources.
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K.B. Beranuesa, M.T. Apmuauraosa, E. Apunos,
A K. Kynaiikymnos, A.A. Tames, T.B. [yiimenanues

AjiiHbIMaJIbI KOJIeHeH, KIMAChl 0ap ChIPBIKTBIH, ChI3BIKThI €MeC
TEPMO3JIACTUKAJIBIK, eceOiH MIelnyae SHEePreTUKAJIbIK d/ICTI KOJIJaHYy

T'a3 remepaTopJ/iapbIHBIH, sIJIPOJIBIK, YKOHE KBIIY JEKTDP CTAHIUSIAPBIHBIH, PEAKTUBTI KO3FAJTKbBIIITAPbI-
HBIH, YKOHE OHJIEy OHEPKOCIOIHIH KeITereH 3J1eMeHTTEepl afHbIMAJIbI KOJIJIECHEH, KIMAChl 6ap CBIPBIK OOJIBII
TabbLTabl. OChl XKabIbIKTapAbIH, CEHIM/II *KYMBIC iCTeyiH KaMTaMachl3 €Ty YIIiH, *KbLIYy KO3JepiHiH opTyp-
JIi TYpJepiHiH 6ip yaKbITTa ocep eTyiMeH >KYMBIC ICTeHTIH affHbIMAJIbI KOJIIEHEH KAMAacChl 6ap ChIPBIKTHI
KapaCTBIPHIN, MOMBIHTIDEKTED 3JIEMEHTTEPIHIH KBTIy OeplIyiH KaMTaMachl3 eTy KaxkeT. Makaraaa aiHb-
MaJIbl KOJIJIeHEeH, KUMa/ Iarbl IIEKTEYJIi Y3bIHIBIKTAFbI ChIPBIK, KAPACTHIPbLIAbL. KesieHeH KuMachl OHreeK,
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OHBIH, PaINYChI Y3bIHIBIFBI OOMBIMEH CBHI3BIKTHI TYpe o3repei. Cost XKaKThIH KOIIeHEH, KUMACHI OH, YKAKTaH
VAKeH. 3ePTTENreH ChIPBIKTHIH OYiiip GeTi TOIBIFBIMEH T€pMAJIIbl TYpe OKIayiaanraH. 2KbLTy aFbIHBI COJI
JKAKTBIH KOJIJIeHeH, KUMAaChIHa KOJIAaHbLIa bl. ChIPBIKTHIH OH YKaK, IIETIHIH KOJIJIeHeH KIMAChI apKbLIbI KOP-
IaraH OpTaFa YKbBUTYy aJMacybl XKypriziiemi. 2KymbicTta TemmepaTypa, BIFBICY, CBIPBIKTBIH €Ki KaFbl KATAH
GekiTiireH Karaigarsl gedpopMalus *KoHe CTPECTiH, yII Kypamaac 6emikrepi anbikraaran. Conpaii-ak 6ip
merine Gekirim, ekiHmmici epkiH GosFaH Ke3Jle CBHIPBIKTHIH Yy3apTy IIaMachl aHbIKTaJIbl. CBHIPBIKTBIH €Ki
YIIbIH OEKiTy HOTHIKECIHe aJIbIHFaH OCHTIK KBICBIM/IBI KYIITIiH MoHI ecenTesiai. ChIPBIKTHI 3epTTEy Ke3iHe
SHEPIUsiHbl CAKTAY/IbIH 1presii 3aHbl Maia aHbLIIbL.

Kiam cesdep: y3apy, OCbTIK KYIII, KIMa, TEMIIEPATYPA, XKbLIKY, AedOpMaIysi, CTPECC, SHEPIETHKAJIBIK, d/IIC,
CBIPBIK.

K.B. Beranmesa, M.T. Apmuaunosa, E. Apunos,
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DHepreTuvecKuii MeTo JJid pelleHns HeJIMHEeHOM 3a1a49m
TEPMO3JIACTUYHOCTHU JJI CTEPKHHA II€EPEMEHHOIO IMOIIEPEYHOro CeYeHusI

MsHuorne HecyIne 3/1eMEHTHI PEAKTUBHBIX IBUraTe e, 000PYJ0BaHUs & TAKKE ra30reHEePATOPHBIX, ATOMHBIX
1 TEIIOBBIX JIEKTPOCTAHIHI U TepepabaThIBAIOIIEN IPOMBIIIJIEHHOCTH SBJIAIOTCS CTEPXKHAMU [T€PEMEHHOIO
cevyenns. Jlns obecrieveHust HaIe2KHON pabOTHI STUX 00OPY/IOBAHUN HEOOXOJUMO OOECHETUTH TEPMOIIPOU-
HOCTB HECYIIUX JIEMEHTOB B BHJIe CTEDPrKHEl IEPEMEHHOI0 CedeHusI, KOTOpble pabOTalOT IIPU OJHOBPEMEH-
HOM BO3JIEHCTBUHU PA3HOPOJIHBIX BHJIOB MCTOYHHKOB TeIsIa. B crarbe pacCMOTPEH IOPH30HTAJIBHBII CTep-
JKEHb OTPAHMYIEHHON JUIMHBI IIEPEMEHHOIO IIOEPEYHOro cedenns. Paamyc creprkHsI MEHsIeTCs JIMHEHHO II0
ero juuHe. I110manb MONEPEYHOrO CeYeHus JIEBOr0 KOHIA GOJIbIIE IJIOMIAIN IIOIEPEYHOr0 CeUeHUsI Mpa-
BOT'O KOHIIA. BOKOBasi IMOBEPXHOCTH HCCJIE/LyeMOrO CTEPXKHSI IIOJTHOCTBIO Teruion3osmposana. Ha momass
[IOIIEPETHOr0 CEYEHUS JIEBOI'O KOHI[A ITOBOJUTCS TEIJIOBON MOTOK. Uepe3 IJIOIa b [MOIEPETHOrO CeICHUS
IIPABOT'O KOHI[A CTEPKHS IIPOMCXOUT TEIIOOOMEH ¢ OKPYy2Karolei cpenoit. B pabore onpe/iesieHs! moJie pac-
IIpeJie/IeHns] TEMIIEPATYPbI, IIEPEMEIIEHNUs, TPU COCTABJIAOIINE 1ehOPMAIINN U HAIPSXKEHHUs IIPU yCJIOBUH,
4T0 062 KOHIIA CTEPIKHSI KECTKO 3aKPeIlJIeHbl. A Tak:Ke OIpe/Ie/IeHa BeJIMYMHA YIJIMHEHHs] CTEPXKHS, KOTJa
OJIMH KOHEIl CTEPXKHs 3aKpeIUIeH, a Ipyroi — cBoboJeH. B ciydae 3akpellieHHs! IBYX KOHIIOB CTEDXKHSI
BBIYNCJ/IEHA BEJIMYNHA BO3HUKAIOIIEIO OCEBOIO C2KUMAIONIEro ycuiust. IIpu nccirejoBannu cTep:KHS UCIIOJIb-
30BaJIC PYHIAMEHTAJIBHBIA 3aKOH COXPAHEHUS SHEPIHH.

Kmouesvie crosa: yoauHeHne, oceBasi CUIa, CEIeHNEe, TEMIIEPATYPA, TepeMeleHre, 1epopMaris, HapsizKe-
HUe.
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