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Unconditional basicity of eigenfunctions’ system of Sturm-Liouville
operator with an involutional perturbation

In this paper the question on unconditional basicity of the system of eigenfunctions of the involutive
perturbed Sturm-Liouville operator is investigated. The Green’s function of the operator under consideration
in the case of constant coefficients is constructed. The estimates of the Green’s functions are obtained. The
existence of the Green’s function is shown in the case when the operator under consideration has a variable
coefficient. The theorem on the equiconvergence of expansions with respect to the eigenfunctions of the
indicated operators is proved with the help of the Green’s function. The basicity of the eigenfunctions of
the operator under consideration in the class L2 (—1,1) is proved. It is established that the basis from the
eigenfunctions of the involutive perturbed Sturm-Liouville operator is the unconditional basis.
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Introduction
In the present paper we study a spectral problem of the form
Lu=—u"(z) + au"(—z) + q(x)u(z) = Mu(z), —1<x<1, u(-1)=0, u(l)=0, (1)

where ¢(z) € C[—1, 1] — is complex-valued function. The parameter « belongs to the interval (—1,1). If ¢(z) = 0,
then the spectral problem (1)

—u"(z) + au’ (—z) = Mu(z), u(-1)=0, u(l)=0 (2)

is well-known [1], it has eigenvalues

2
1
M1 = (1—a) <k + 2) 72, A2 = (1 4+ )k*7?, k=0,+1,42, ... (3)
and eigenfunctions
1 .
{u;ﬂ(:n) = cos <l + 2) mx, k1 =0,1,2,..; uge(x) =sinkrz, ky=1,2, } , (4)

which form a Riesz basis in Lo(—1,1).

We show that the eigenfunctions’ systems of the spectral problem (1) forms a basis in La(—1,1).

Results on the spectral properties of one-dimensional differential operators with involution (we use the
simplest one, that is, with reflection v(x) = —x on [—1,1]) are actively applied in research of PDE. The recent
papers by Aleorov, Kirane, and Malik [2], Kirane and Al-Sati [3] give natural examples. Various applications of
differential operators with involutions can be found in [4].

Spectral theory of differential operators with involution forms a specific niche in the study of ODE.
Eigenfunction expansions for the first-order differential operators with involution are considered in [5-7]. An
example of second-order differential operators with involution are discussed in [8-10]. A specific example of
a boundary-value problem for the second-order differential operator with involution that produces an infinite
number of associated functions is given in [11, 12]. We also note valuable results on the Green’s function for
the boundary value problems related to functional-differential operators with involution (see Cabada and Tojo
[13, 14]) and new types of non-classical Sturm-Liouville problems (see Aidemir, Mukhtarov et al. [15, 16]).
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Green’s function of the boundary value problem with involution

Along with the boundary value problem (2), we consider the non-homogeneous boundary value problem
—u" () + o (—x) = du(z) + f(z), —-l<z<lI;

u(=1)=0, wu(l)=0, (5)

where —1 < « < 1, with the arbitrary continuous function f (). We note that equation in (5) contains an
involution and corresponds to the homogeneous boundary value problem (2). It is clear that the functions

uy (z) = cos (appz), us(z) =sin(apzr), p=VA;

1 1
Qg = 1*6%7 a1 = ]_+Oé,

give linearly independent solutions to the homogeneous equation (2).
As usual, the Green’s function G (z,t, A) of the boundary value problem (2) is the kernel of the integral

1

M@:/Gume@ﬁ

-1

that provides a solution to the problem (5).
Theorem 1. If X is not an eigenvalue of the problem (2), then the non-homogeneous boundary value problem
(5) is solvable for any continuous function f (z) and its solution can be represented in the form

1 ag sinagp

1
u(x) cos (appzx) | cos(appt) f (t) dt—
/

2 p cosagp

1 oy cosayp

1
3 smorp sin (aq px) /sin(alpt) f (@) dt+
21

—x

1
+to / [cg cos (appz) sin (cppt) — aq sin (o px) cos (a1 pt)] f (¢) dt—
N
- / [ cos (appt) sin (agpx) — aq sin (ay pt) cos (aqpx)] f (t) dt—
1
- / [ cos (appx) sin (opt) — aq sin (o px) cos (g pt)] f (t) dt
Proof. Since the functions cos (agpz), sin (agpx) are solutions to the homogeneous equation in (2), it is
sufficient to show that the function

1
1
go(z) =5 [ g(@,t,\) f(t)dt =
2/1\

—x

= 2ip / [arg cos (op) sin (appt) — aq sin (a1px) cos (apt)] f(t) di+
1

L
2p

—T

[—ap cos (agpt) sin (appx) + a1 sin (aq pt) cos (aqpx)] f () dt+
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1
1
2—/ —a cos (appr) sin (appt) + a1 sin (aq pz) cos (agpt)] f (t) dt

satisfies the equation in (1). The direct calculation of its first derivative

—X

Jo(x) = % / [ (cos (appz)) sin (appt) — a1 (sin (a1 px))’ cos (aipt)] f (t) dt+
1 [ [—ag cos (appt) (sin (aopz))’ + aq sin (aq pt) (cos (a1 pz))'] f (t) dt+
+ )

1
%/ —ayg(cos (appz)) sin (aopt) + a1 (sin (a1 px))’ cos (crpt)] f (t)dt.

and its second derivative F s
() = BT D)

1 " . . 1"
—l—% / [ao(cos (appz))” sin (appt) — ay(sin (a1 pz))” cos (o pt)] f (t) dit+

x

% [—ag cos (aopt) (sin (appz))” + aq sin (e pt) (cos (arpz))”] £ (t) dt+

-l-% / [—ao(cos (anpz))” sin (appt) + a (sin (a1 pz))” cos (arpt)] f (t) dt

verify the equality in (5). The boundary conditions in (5) can be checked directly. The theorem is proved.
The theorem implies the following corollary.
Corollary 1. The Green’s function of the boundary value problem (2) has the form

1 ag sinagp

G(z,t,\) = (cos agpx) (cos agpt) —

2 2p cosagp

1 oy cosayp

(sin o px) (sinaq pt) +

22psinayp
ag (cos appx) (sinagpt) — aq (sin g pz) (cos agpt) , t < —x;
1
ooy (cos appt) (sin agpx) + ay (sinaypt) (cosapx), —x <t < x;
p

—ap (cos agpr) (sin agpt) + oy (sin oy px) (cosaqpt), t > .

Using the explicit form of the Green function one can write down the expansion of an arbitrary function
f(z) from L;(—1,1) in the eigenfunctions of the spectral problem (2). The poles of the Green’s function are
the zeros of the functions cos agp, sinajp:

1
pklzy/)\klzyl(l—a)<k+2>’ﬂ" k:0,172,-..;

P2 = \/ A2 = \/ (1+Oz)k’ﬂ', k=1,2,...

If the number is not even, then all eigenvalues are single. On the complex p-plane we consider the

1+
circles Py, k=0,1,2,...; Py, k=1,2, ..., with a common center at the origin and respective radius:
1 1 1
1:|p|:\/1—a<k‘+2)ﬂ'+8; 2:|p|:\/1—|—o¢k7r+§.
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These circles do not overlap and do not pass through the points py; and pgo. When A = p? the circles P,
Pio turn into the circles

1 1\ = 1\?
k1:|)\|(\/1a<k+2>7r+8>; Pk22|)\|<\/1+0£k7r+8>

in the A-plane, respectively. For any function f(z) € L;(—1.1), the partial sums of the eigenfunctions’s
expansions for the spectral problem (2) can be written as [17]

om ( /( G (z,t,\) f(t)dt d/\——— /G a:tp f @) dt | 2pdp,
2 2772

where P,, — is the circle with the radius p,, = max {pm + %, Pr2 + %}
Further, changing the order of integration and using the residue theorem, we calculate the integral over the
circle Py,

1
1

27ri

o (f) = — /Gxt)\)2pdp F(t)dt =

—1 -

1 m
:/ZCOS <k+ >WICOS(k+;>7th()dt+
7 k=0

1 m
+ / Zsm krx sinknt f (t) dt = (/ ft cos k: + ) wtdt | co <k + ) T+
-1

k=1

—|—Z /f (t) sin kmtdt | sin km.
k=1 \7;

Thus, the partial sums of the eigenfunction expansions for the spectral problem (2) of the arbitrary integrable
function f(z) has the form

" 1 L
= I;)ak cos <k:+ 2) T + Zbk sin km, (6)

k=1

where
1 1

ay :[ f(t)cos (k + ;) wtdt, by :/1 f (t) sin krtdt.

Note that the system {sin kmx, cos (n + %) mc}, k=1,2,...,n=0,1,2..., is a complete orthogonal system in
L2(—1,1). Therefore, for all f (x) € Ly (—1,1) the partial sums o,, (f) of the form (6) converge to the function
f(x) with respect to the norm of the space Lo (—1,1).

Further we need an estimate of the Green’s function.

Let p = Rp + i Sp and denote py = Sp.

Let Oc (pr) = {p: |p— pri| < e,i=1,2} be a circle of sufficiently small radius e.

Lemma 2. If p ¢ O (pr), then the Green’s function G (x,t,\) of the boundary value problem (2) satisfies
the following uniform estimate

G (2,8, 0)] < Clo| s (,1,p)

with —1 <z, t <1, where

r (2.t p) = (efazmo\(zfmfm) Jre*az\Po\(HI|*|t||)>’ a2 = min {a1, ap} -
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Proof. In the case when t > x the Green’s function can be rewritten in the form

ag e~ top iaop(z4t) i p(t—)
G(xvt’”—zlip{_eiaoueiw [0 4 teant=2]

elaop [eiaop@*t) Jreiaop(fzft)} } +

eiaof) + e—iaop

—taip ) .
~o ) e 7 {emlpwm _ ewzlp(t—af)} _
4ip etorp — g—ianp

elaip

_ [_eialp(w—t) + eialp(—a:—t)] } )

etaip _ pg—ia1p
For sufficiently large |p| the Green’s function satisfies the following inequality

o —e@opo

|G (x,t,\)] < {

|p| {e—aopo(ﬂf-ﬁ-t) 4 e—aopo(t—ﬂf)} +

‘e*aopo — e®0pPo |

e @0po

|€_040P0 — eOtOPO‘ |:e_a0p0($_t) * e_aDPO(_w_t):| } -

Q1p0
_A'_& e |:e—0‘190(1+t) _|_e—a1po(t—m):| +
4 |p| I@*QIPO — ealp0|
e Q1po

[emmmta=n) | gmeum(-s=0] } ,

‘e—onpo — e@1p0 |

Since t >z > 0,one hast+xz >t —x, xt —t > —x — t. Therefore,

|G(m7t’)\)| < %o [efaopo(Qfa:ft) + efaopo(tfz)} + o1 |i670¢1p0(27x7t) + efalpo(tfaj):|
41p| 41p|
if po > 0 and
G (2,1, )] < -2 [eaopom—w—t) + eaopou—w)] L™ [ealpom—w—t) + emm(t—w)]
41p| 41p|

Thus, for ¢t > x > 0 the Green’s function satisfies the following estimate

|G(Z‘,t,)\)| < % (efa2\Po|(2fmft) 4 efa2|P0‘(t7I)> , Qg = min{a()’al}.
p

In the case of —x <t < x the proof of lemma is similar to the previous case while the estimate of the Green’s
functions takes the form
G (z,t,\)] < ‘32‘ {e*a2|P0|(2*1*|t\) +e,a2|po\<x,m)} ,
p

In the case of t < —z the estimate transforms into the following inequality

G (.8, \)] < “/;3‘ {e—azw(z—m—r) +e—a2|Po\(\t|—f)} .
p

The last three inequalities provide the desired estimate

G (2,8, A)] < |C| {e*azlpo\@*lw\*\t\) +e—a2\po\\\z|—|t||] ,
P

Lemma is proved.

Cepust «Maremarukas. Ne 3(91)/2018 121



A.A. Sarsenbi

Theorems on the basis property of the eigenfunctions of the spectral problem (1)

We are interested in the possibility of expanding the arbitrary function f(x) € Ls(—1,1) in converging
series related to the spectral problem (1) in the case when the complex-valued coefficient ¢ () is continuous
over the interval (—1,1).

We assume that there exists the Green’s function G, (z,t,\) of the boundary value problem (1). Let
G (z,t,\) be the Green’s function of the problem (2). Since almost everywhere on the interval (—1,1) we
have the relations:

LG (n,t,)) | 9C(~a,t,))
0x? @ 0x?

%Gy (z,t, A 9%G, (—x,t, \
_ qa(;;a ) )_|_a qéxfa ) )+q(.’lﬁ)Gq(LL‘7t7)\):)\Gq(x,t7)\)

= MG (z,t,\);

then
O (Gy (2, t,\) — G (x,1,)) PGy (2, t,0) =G (x,t, ) ,__,
— + « —
Ox? 0x?
“AGy (2,6, A) = G (2,1, 0) = —q () Gg (2,1, 7).

The difference G, (z,t,\) — G (x,t, A) clearly satisfies the boundary condition (1). Therefore outside the poles
of the function G (z,t, ) the Green’s function G, (z,t, \) satisfies the equality

Gy (N = G (a8, \) = — /G(m,s,)\) 0 (s) Gy (5,1, \) ds. (7)

-1

Existence of the Green’s function for the boundary value problem (1) is equivalent to the existence of a solution
to the integral equation (7). We come to the following theorem.
l1—a

Theorem 3. If the number /175 is not even, then for all sufficiently large p, p ¢ O (pr), then there exists

a solution to the integral equation (7).
Proof. Let Gy (z,t,A) =0 and

Gyp+1 (x, t,N) =G (z,t, ) — /G (x,8,X)q(s)Gq(s,t,\)ds (8)

for all sufficiently large |p|.
For the Green’s function G (x,t, \) of the problem (2) the estimate holds

|G (z,t,\)| < |C|7" (x,t),
p

where
r(z,t) = e—azlpolllzl=t]l 4 o—azlpol(2=Ilz|=[t]])

Relation (8) with p = 0 yields the estimate

G (2,1 0)] = |G (.1, )] < fp]r(x,t).

For brevity, we introduce the notation
max [Gy1 (2,8, )] o] 7" (2, £) = Coy
(9)
max ‘quﬂrl (I,t, )‘> - Gq,’D (l‘,t, )‘)| ‘,0‘ rt (.’L‘,t) = C:m

where the maximum is taken with respect to xz € [—1, 1], for fixed ¢ and sufficiently large |p| laying outside the
poles of the function G (z,t, \).
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Let us show that o
C; < % j=0,1,2,...p. (10)

For j = 0 estimate (10) follows from the first estimate (9). Let us assume that estimate (10) holds in the
case j = 1,2, ...p and prove it for j = p + 1. Taking into account the notation in (9), we get the inequality

1
Cpt1 £C- C’p|p|_1 max/r (z,5)r (s,t)r ™1 (x,t) |q (s)| ds. (11)

21
Here we have the relation

r(x,s) - r(s,1) = (e,a0|p0|(2,‘z|,|s\) n ewolpoHIrHsH) »

% (e—ao\po|<2—|s\—\t|> +e—ao\poms|—m|) —

= e—aolpol(d=lz[=2ls|=It]) | o—aolpol(2—lz|=Is|+Is|=[tll)

e aolpol@=Is[=t|+le|=[s|l) 4 g—aolpol(lzl=Isll+IIs[=¢[])

The triangle inequality yields
| = [¢]] < || = Isl] + lIs] =[] -

The inequality
[t = [t] + [s] = [s| = |s| = [[t] = |s]]

implies
|z + [t = || + [s] — [[t] = [s]|;

and the inequality
|| = [s] = [|=] = [s]];

implies
|z 4 [t] = [t] + |s| = [lz| = |s]]-

Therefore
[lz| = |t]| =z =1+ 1=Jt|]| < 1—|z|+1—|t| <1—l|z|+1—|t| +2—2]|s| =4 — |z| — |t| — 2]s].

Hence
r(z,s)-r(s,t) <2r(z,t).

This inequality and the inequality (11) imply

1
Cyor 226G, 1pl ™" [ la)lds.
—1

For sufficiently large |p|, the inequality

N |

1
2Cp ! / g (s)|ds <
21

holds true.
Consequently, Cpi1 < % for any p and hence the desired inequality (10) is verified.
It follows from the inequality (10) that the series

Z (Gq7p+1 (.13, i, /\) - G(JP (.13, L, /\))
1
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uniformly converges and hence its partial sum
Sy (2) = Gy ptn (2, t,N) — G (x,t,X)

converges also.
Therefore the sequence Ggp (x,t, A) uniformly converges to its limit G, (z,t,A) which satisfies the equa-
tion (2). The theorem is proved.

Let
1

om (f) = —L. /G(;mt,)\)dep f(t)dt

2mi
1 -
be the partial sum of eigenfunction expansions related to the spectral problem (2), where f(z) € Li(—1,1).

Denote by
1
1
S () =55 | | [ Guler-t.N20do | 10 a1
i
-1 m
the partial sum of the eigenfunction expansion related to the spectral problem (1).
The sequence Sy, (f) is said to be equiconvergent with the sequence o, (f) on an interval —1 < 2z < 1 if the

difference S,,, — 0,, vanishes uniformly on the interval as m — oo.

Theorem 4. If the number ,/%;—g is not even, then for any function f(x) € Li(—1,1) sequence Sy, (f)

equiconverges with the sequence o, (f) on the interval —1 < x < 1.
Proof. Consider the relation

1

/ Gy (2,4, 0) — G (2, £, N)] £ () dt b 2pdp. (12)

P -1

1
211

Sm(f)_o'm(f):_

It follows from the proof of Theorem 2 that

Gy (2.t 0)] < er(m).

This estimate and the equality (7) yield that

1
G (0t.0) = G (@t V)] £ 2211 (2.) [ la(o)lds:

-1

Then the equality (12) gives the estimate

1 1
S () = (Nl < 2= [ | [r@ols @) Qp'i'dp~/|q<s>|ds=
1

m
P, -1

402/|q |ds/ jr(x,t>f<t>|dt 2.

_4ce
/Iq )| ds,

S () = om (D=0 [ /17’<$vt>f<“'dt &

Py,

If we use the notation

then
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Let us divide the interval (0,1) = A; + A, into two parts:

Al=(-146-2—-0)U(—z+dxz—-5U(x+61—10);

Ay=(-1,-14+0HU(—xz—0,—z+)U(x—dz+d)U(l-41)

with a sufficiently small positive value of § > 0. Then

1S (F) = o ()] Scl//(e—ao\pomm—ltu +e—ao|po|(2—uw|—|tu>) y

P,, A1
dp
><|f(t)|dt‘ ; +2017TA/|f(t)|dt. (13)
Since
—1+68 —z+6 z+0 1
Jlrola= [ iraias [ o [iroas [
As -1 —z—6 z—6 1-6

the choice of § can make the second term in (13) less than §.
If p,,, is the radius of the circle P,,, then the partition of the integral

/ e—aolpold

m

1
dp‘ — /efaoépm\sint\dt+ 6*a05ﬂm\COSt|dt+
p

0

ISEl \.A‘if

5 @ 27
+/e—a06pm\sint\dt+/e—aoépm\cosﬂdt_’_/e—aoépm\sint\dt
3x 5m Tn
4 4 4
provides the estimate
/e*a(ﬂpo\‘; df" < &
Pl lpmld

Pm

With sufficiently large value of m, the first term in (13) can be made less than §.
The theorem is proved.
Remark. In [18, 19] the boundary value problem

—u" (—2) +q(2) u(z) = Mu(2);
u(=1)=u(l), o (-1)=4

is considered and the theorems similar to Theorems 2 and 3 are obtained.

Theorem 5. If the number /122 is not even, then the system of eigenfunctions of the spectral problem (1)

14+«
forms the basis in La(—1,1).
Proof. Let ||-||, denote the norm in Ly (—1,1). Then for any function f(x) € Ly (—1,1), one obtains the
estimate
1f = Smlly < f —omlly + llom — Smlly <€

as the first term is less than § by virtue of the basis property of the eigenfunctions of the spectral problem (2),
and the second term is less than § by virtue of the equiconvergence Theorem 3. Theorem 4 is proved.

Unconditional basicity of the system of eigenfunctions of the spectral problem (1) does not follow from
Theorem 4. By Theorem 4 the system of eigenfunctions of the spectral problem (1) forms a basis in La(—1,1).
It is well-known that for any basis wuy in a Hilbert space La(—1, 1) the estimate

lukllo-1,0) 1okl Ly—1,) £ C
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holds [20], where vy, is biortogonally adjoint system to wy. Since the system of eigenfunctions of the spectral
problem (1) forms a basis in La(—1,1), then by Theorems of L.V. Kritskov and A.M. Sarsenbi [21] this basis is
an unconditional basis in the same space. Thus, we get the following result

Theorem 6. Let all the conditions of Theorem 4 be satisfied. Then the system of eigenfunctions of the spectral
problem (1) forms an unconditional basis in La(—1,1).

This work was supported by the Committee of Science of the Ministry of Education and Science of the
Republic Kazakhstan, project no. AP0531225.
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9.9. Copcendbi

NMuBomoruBTi TONKBITHLIFaH IIITypMm-JInyBuiiin ommepaTopbIHbIH,
MEHIIIKTi (pyHKIMAIapbIHBIH MIAPTCHI3 0a3uc 0Oy bI

MakaJtaza merTik maprrapbl Jupuxiie Typinge 6osarbin naBosonusicol oap HItypm-JIlunyBuin onepaTopbr
MeHIMKTI QYHKIUSIAp XKyieciHin 6as3uc 6oIybl TypaJsbl Macese 3epTrered. KoaddurmenTrepi TypakTh
naBostorusicel 6ap Ltypm-Jlnysumn oneparopsiubiy ['pun dyHKIHACH Kypbuibin, I'puH QyHKIMACH! VITiH
barasaynap ajbiarad. Koaddummenrrepi aftnbimastsbl naBostonusicol 6ap IItypm-JIuyBust ornepaTopbIiHbIH
na I'pun dyuKnuscbiHbIE 6ap 60Iybl Typasbl TeopeMma JosesaeHreH. OCbl HOTUZXKETEPIiH KOMeriMeH aii-
TBLJIBIIT OTBIPFAH €Ki OIepaTop/IblH, MEHITIKTI (DyHKIMIapbl OONBIHINA KIKTeyIepi 61pKAJIBIITE KabaTTaca
JKUHAKTAJATBIHIBIFEI KopceTinren. KoadduimenTi aitHbiMasibl nHBoOJOIUsICH 6ap LIITypm-JInysuit onepa-
TOPBI MEHMTIKTI (DyHKIUSIAPLIHGIH Kyiieci La(—1, 1) kenicriringe 6asuc 601aThHABIFB KOpceTinren. 2Kome
MyHJ1all 6a3uCTiH MapTCchi3 6a3uc 60JIATHIHIBIFBI JIJIEJIIEHIeH.

Kiam cosdep: nHBOJIIONMS, MEHINIKTI (pyHKIMAIAD, MEHIIIKTI MoHAED, 6asuc, ['pun pyHKIMACHL.

A.A. Capcenbn

BesycioBaass 6a3uCcHOCTH COOCTBEHHBIX (DYHKITNIT MHBOJIOTHBHO
Bo3MYyIlieHHOro oneparopa Illtypma-JInyBusis

B crarpe mccimemoBan Bompoc 0 6e3yC/IOBHON 0Oa3MCHOCTH CHCTEMBI COOCTBEHHBIX (DYHKIIMI WHBOJIIOTUB-
HO BO3MyIeHHOoro omneparopa lrypma-Jluysunns. Iloctpoena dyukmusa ['puna msydaemoro omeparopa B
cJIydae MOCTOAHHBIX Ko duimenTos. [lomydensr onenku dyuknuit ['puna. [Ipu Haaunaun nepeMeHHOr0O KO-
addunmenTa y u3yIaeMoro omeparopa mokasaHo cylnecrBoBanue dyuxkunn ['puna. /lokazanbl Teopema o
PaBHOCXOJIUMOCTH PA3JIOYKEHUH 110 COOCTBEHHBIM (DYHKITUAM YKA3AHHBIX OIIEPATOPOB € MOMOIIBLIO (DYHKIIUN
I'puna, a Takke 6a3UCHOCTL COOCTBEHHBIX (DYHKIuiT B Kiaacce Lo (—1, 1) m3ydaemoro oneparopa. YCTaHOB-
JIeHO, 9TO 6a3uc n3 cOOCTBEHHBIX (DYHKIMIT MHBOJIIOTUBHO BO3MYIeHHOTO omneparopa llItypwma-Jluysusmis
ABJIIETCSI OE3yCJTOBHBIM H6a3UCOM.

Kmouesvie crosa: MHBOJIONUs, cOOCTBeHHAs (DYHKIMs, COOCTBEHHbIE 3HAaYeHns, Oa3uc, dyukius ['puna.
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