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A note on the second order of accuracy difference scheme for
elliptic-parabolic equations in Holder spaces

The present paper is devoted to the study of a second order of accuracy difference scheme for a solution of
the elliptic-parabolic equation with nonlocal boundary condition. The well-posedness of the second order
of accuracy difference scheme in Holder spaces is established. Coercivity estimates in Hélder norms for an
approximate solution of a nonlocal boundary value problem for elliptic-parabolic differential equation are
obtained. Results of numerical experiments are presented in order to support the aforementioned theoretical
statements.
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Introduction

In the last decades, boundary value problems with nonlocal boundary conditions have been an important
research topic in many natural phenomena. Methods and theories of solutions of the nonlocal boundary value
problems for elliptic, parabolic, and mixed type differential equations have been studied extensively in a large
cycle of papers (see, for example, [1-20] and the references given therein).

In paper [1], the well-posedness of the nonlocal boundary value problem

Lt | Au(t) = g(t),0 <t < 1,

d:l(tt) B Au(t) = f(t)a —-1<t<0, (1)

u(0+) = u(0-),u' (0+) = u'(0-), u(1) = u(~1) +p

in Holder spaces was determined. Furthermore, the coercivity inequalities for solutions of the nonlocal boundary
value problem for elliptic-parabolic equations were obtained.
In article [2], the first order of accuracy difference scheme

MR RO 4 Ay = gg, g = g(tk) tr = kT, 1 <k < N — 1,

T2

WUkt Ayg g = froo fo = fth_1) te = (k= 1)1, —(N = 1) < k < —1,

-
Uy —Up =U) — U1, UN = U_N + [
for an approximate solution of problem (1) was constructed. Also the well-posedness of the difference scheme in

Holder spaces was proven. Moreover, coercivity estimates in Hélder norms for the solutions of difference scheme
for elliptic-parabolic equations were derived.
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In this study, the well-posedness of the following second order of accuracy difference scheme

_Mw“ + Auk = 9Gk,9k = g(tk)v

T

tr=k1,1<kE<N-—-1,Nt =1,
st — S (Aug + Aug—r) = fi, fr = () (2)

t_1=(k—-H7, —~(N-1) <k <0;

1
b 2

uo —4ug + 3ug = —3ug +4u_1 —U_9, UN =U_N + [

for the approximate solution of nonlocal boundary value problem (1) in Hélder spaces is presented. In addition
coercivity inequalities for solutions of difference schemes are obtained.

The rest of this paper is organized as follows. In section 2, the main theorem on well-posedness of the
difference scheme (2) will be presented. In section 3, an application of the main theorem will be given. In section
4, the numerical results are presented. Finally, in section 5, the conclusion will be given.

Well-posedness of the difference scheme (2)

Throughout this paper, we have adopted the following symbols. H denotes a Hilbert space and A = 41,
where 6 > g > 0, is a self-adjoint positive definite operator. I is an identity operator, B = %(TA—F VA4 4+ T2A)
is a given self-adjoint positive definite operator and B > 62 I. In addition, R = (I+7B)~! is a bounded operator
defined on the whole space H. The following operators

TA TA

P=(1-15),G=(+%

5 ) LK = (I+2¢A+Z(TA)2)*1

exist and are bounded for the self-adjoint positive operator A.
Lemma 1. The following necessary estimates for P*, R¥ and T, are satisfied in [3] and [4]:

1P| r—m <1, ||Gllaom <1, k7||[AP*G?||gom < M, k> 1, 6 > 0; (3)

|R¥ || < M(1+7B)™%, kr||BR®||gomg <M, k>1, § >0; (4)
where A is a self-adjoint positive operator and M is independent of 7.
From these estimates it follows that

T2A

(I + B_lA(I+TA+ %G_2)K(I _ R2N—1) + K(I- T)G—2RQN—1_ (5)

2
~K(I - %)G‘Q(ﬂ +7mB)RYN PNy )| gy < M.

Here, we will study well-posedness of (2) in Holder space. Consider F,(H) = F([a,b],, H) as the linear space
of mesh functions ¢ = {@k}%i defined on [a,b], = {tx = kh, N, < k < Ny, N, = a, Ny7 = b} with values in
Hilbert space H.

Let C([a,bl,, H),C*([-1,1],, H),C*([-1,1],,H),C% ([-1,1],, H),C*([0,1],, H) be Banach spaces with
the norms

e le(ab, o) = N pax llox|lm,
e oo (=1,11,,m) = €7 leq-1,11,,m) + I T loktr — @rlla(rr) "2+
+ sup | ortr — erllE(rm) ™%,
1<k<k+r<N-1
o™ gy, = 97 oo, + e loks2r — erlla(2rr) %+
+ sup lok+r — @rlla(rm)™,

1<k<k4+r<N-1
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|\¢T|\@%([_170]T7H) = le"lleq-1,0,.0) + _Ngksil]gméo llokrar — prlla(2rT)” 2,
||50T||éu([o,1]T,H) = l¢"lleqo,.m) + sup lon+r — rllm (rm) ™.

1<k<k4+r<N-1
Recall that the Banach space E, = E, (B, H), where 0 < a < 1 counsists of v € H, for which the following norm
is finite [5]
lolle., = Sulgzo‘llB(z +B) ||,
z>

The following holds for all 5 < « :
D(B) C E,(B,H) C Esg(B,H) C H.

Theorem 1. Assume that (I +7B)(f-n+1+9N-1) € Ea, (I +7B)(fo+g1) € Fg, and Au € E,. Then, the
solution of difference problem (2) obeys the coercivity inequalities

{772 (1 — 2up + uk—l)}iv_lnca([o,l] m T (RO “k—l)}gNHHé%([q,o],,H) +

T

0
<

+[|fAm |
C% ([~1,0],,H)

{;(Auk +Auk_1)}

_|_
C«([0,1],H) | _N+1

< My {|4ul

Ea HIT+7B)(fo+9)lleg +II(T+7B)(f-nt1 +9v-1)llE. +

1 T T
tam—ay et gorol,m * 1l llew ot m]

and
H{T_z(ukﬂ — 2uy + “kfl)}ivilHoa([o,u H) + H{T_l(“k - “kfl)}OfNJrlHc%([_Lo]T,H) +

T

0
<

[T
€% ([~1,0],,H)

{;(Auk + Au“)}

_|_
ce([0,1],,H) ‘ N41

< M {IIAMHEQ +III+7B)(fo+ 9)lleg + (I +7B)(f-ns1+9n-1)lg, +

TAN . 0
H <] 4 2) f . +llg ca([o,l]T,H)] } )
C2 ([-1,0],,H)

Here M; and M, do not depend on f7, g7, u, 7, and a.
Proof. By [6], we obtain

+

o
a(l —a)

0
~1 _ 0 H lA A < 6
H{T o Ukil)}fNH @{5([—1,0]77H)+H{2( k- Aui) —N+1&3 (-1, H)_ )
< M- L T A
>~ 1 M”f ||C%([—1,0]7—,H)+|| U/OHE%
and
H{Tﬂ(u —up-1)} H 1L Ay + Auge ) ’ < o
v mlet o 2 o “N+1{| % < (21,0, H) -
1 A
SM“HO+T>W + Il Auol |y
Oé(l - 5) 2 C%([fl,O]T,H) a

for the solution of an inverse Cauchy difference problem
TNk — uk—1) — 5 (uk + up—1) = f,

—(N —-1) <k <0, upis given.
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By [3] and [7], we get

- N-1 B
H{T S = 2w}y ’ca([o oy T IHAw  llen o) <
< M|—|lg" a A A
< [a(l—a)”g llco o], 1) + [[Auo|| £, + |[Aun|| £, (8)

for the solution of boundary value problem
772 (up 1 — 2ug + up—1) + Aug = gi,
1<k<N-—1, ug, un are given.

Then, the proof of Theorem 1 is based on coercivity inequalities (6)—(8) and estimates

1 T T
sollz, <0 { s (157 1y + 197 o n] + o)
Al + 1+ 7B)(o + g)lls + 110+ 7B)f 1lls.)
and )
[[Aun|| g, < M{a(l—g) [||fTHCﬂ([—1,0]T,H) + |||9T||Ca([o,1]T,H)] + (10)

+HApl 2o + (T +7B)(fo + 91)lle. }
for the solution of the boundary value problem (2). Estimates (9) and (10) follow from the formulae

0

1
Augy = 5:rTKG—Q X {(21 —724) {(2 +7B)RN | =1 Y~ APTNTIG(f, — foni1) + Ap| —

s=—N+1
N—1 N-1
—RNTMABT' Y T RN (g —gn )T+ RNTTABTN Y D RV (g — g7+
o—1 s=1

N-1
+(I - R*M)AB™! Z R (g, — 91)7}} +

s=1
+(I — R*N)(I +71B)(tB 'Agy — 4GB 'Afy + PGB 'Afy + GB™*Af_1)+
+2I = 2A) 2+ 7B) RN (PN —I)f N1+
+A32(RN—1 — 1) [RN—lgNil + (R2N _ R2N-1 1)91]}
and
0

-7 Z APNTIG(fy = fonga) + Ap
s=—N+1

1
Auy = §PNT7'KG_2 X {(2]— T2 A) {(2 +7B)RY

N—1 N-1
—RNTABTN Y RN (g, —gn )T+ RYTTABTE Y T RN (g, — gl)T} +

s=1 s=1
N—1
+(I = R*™)AB™" Y BR'(gs — g1)T}+

s=1

+(I = R*™)(I +7B)(tB 'Agy — 4GB~ 'Afy + PGB ' Afy+ GB ' Af_ 1)+
+2I =72 A) 2+ 7B) RN (PN — ) f-nia+
_|_AB2(RN71 _I){RNilgN—l 4 (RQN _ R2N71 _I)gl}} _
0
-7 Z APS+N71G(fS_f—N+1)+A:u+(PN_I)f7N+1a

s=—N+1
for the solution of problem (2) and estimates (3)—(5). The proof of Theorem 1 is complete.
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An application of main theorem

In this section, an application of Theorem 1 is presented. Let €2 be a unit cube in the n-dimensional Euclidean
space R" (0 < z < 1,1 < k < n) with boundary S, & = QU S, in [-1,1] x Q. A nonlocal boundary value

problem
n

—ug — Y (ap(X)Ug, )z, = g(t,2),0 <t < 1,2 € Q,

r=1
w4+ Y. (ar(®)ug, )z, = f(t,2), -1 <t <0,z €Q,
= (11)

U(O—i—,ﬂ?) = u(0_7$)aut(0+ax) = ut(O—,a:),x € Q:

u(t,zr) =0,x €S, -1 <t<1lu(l,z) =u(-1,2),r € Q

is considered, where a,.(z) (z € Q), g(t,z) (t € (0,1),z € Q), f(t,z) (t € (=1,0),x € Q) are given smooth
functions and a,(z) > a > 0 is a sufficiently large number.
The discretization of problem (11) is carried out in two steps. In the first step, the grid sets

QO ={x =2, = (himi, ... hymy), m = (M1, ma, ..., my),

0<m, §N7hTNT:1,T:17...,7’L},Qh:QhﬁQ,Sh:QhﬂS

are defined. )
We introduce the Hilbert space Laj = Lop(€2) of the grid functions oM (x) = {p(himy, hama, - - -, hymy,)}
defined on 2, equipped with the norm

e lan = | D " @Ry b |
xGQh

and the Hilbert spaces W, = W3 (Qy,), W3, = W2(,) defined on Q, equipped with the norms

2

hy b |

e lws, = | D D 1",

zeQy, r=1

2

n

h h h

19" llwz, = 1" zan + | D2 D N@"arzem, PRy - b
ZEEQh r=1

It is known that the differential expression

n

Aju = =Y (ar(@)uf s, (12)

r=1

defines a positive operator A acting in the space of grid functions u”(z), satisfying the condition u"(z) = 0,
for all x € Sj. With the help of A7, we arrive at the nonlocal boundary value problem

h
dzudt(;’m) + AFul(t,z) = g"(t,2),0 <t < 1,2 € Qp,

% — Aful(t,x) = fM(t,x), -1 <t <0,z € Qp,

u (04, 2) = ul(0—, ), d“h(doj’“") = d"(?l;’z),m € Oy,

uh(1,2) = uh(~1,2),2 € Q4
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for an infinite system of ordinary differential equations. In the second step problem (13) is replaced by the
difference scheme (2) (see [7]).

_ u£’+1(m)72u2(m)+u271(:v)
)

+ Afup(z) = gp (@),
gh(@) = g"(te, ), ty = kT, 1 <k <N —1,N7r =1,z € Q,

up(z)—uf_ (z) A7
S = e (up (@) +uf_ (2) = fl(2),
f,’;(a:) = fh(tk_%,zn),tk_% = (k- %)T,—NJr 1<k<0,2€Qp,

—ul(z) + 4uf (z) — 3ul(z) = 3ul(x) — 4ul, (z) + uly(x), 2 € Qp,

uly(z) = ul y(2),2 € Q.

Theorem 2. Let 7 and |h| be sufficiently small numbers. Then, the solution of difference scheme (11) obeys
the coercivity stability estimates

72 (uftr — 20 + w3 Hloa (o1, 2oy + {7 (uft = UZA)}QNH||(j~%([_1,o]T,L2,L)+

0
_ 1
+||{UZ}{V 1‘|C(’<([0,1]1—,W22h)+|| {Z(UZ + u21)} HC"%([*LO]T,WQ%L) <
—N+1
< M {Ilf(? +0tllwy, + 7l + aMllwz, + 2N + gh—allwy, + 7l v + N llwz, +
1 h h1N-1
ey M2 alles oo, + MO leoqoar, zan]
{2 (s = 20 + )R Mlew o1, 2o + {7 (il = 0¥ niallo oz T
_ 1
I om0, wz,) + K5k + wbo Y sl oo way <

<M, {IlféL +0tllwy, + 7l + gt llwz, + 12N + gh—allwy, + Tl N + R llwz, +

2h
1 R0 h10 h\N—1
+a(1 —O[) |:H{fk) }_N+1||C%([—170]1—,L2h) +T||{fk}—N+1‘|C%([_110]77W22h) + H{gk}l ||CG([O)1]T,L2h):| ?
where M3 and My do not depend on 7, h, «, f,?, —N+1<k<0,and gﬁ(;zc)7 1<k<N-1.
Applying the symmetry properties of the difference operator A% acting in the space of grid functions u" (),
Theorem 1, and the theorem on coercivity of elliptic difference problem [8] conclude the proof of Theorem 2.

Numerical results

We have not been able to obtain a sharp estimate for the constants figuring in the inequalities in order to
support theoretical statements. So, we will give the following results of numerical experiments of the following
nonlocal boundary value problem

2 2 2
?,t;‘ + ‘37? + gy”j = (1 -2rH)elsinmwsinmy,0 <t <1, 0 <mx,y<1;

ou 8%u 9?2
5 T

5o 557 = (1 -2n)etsinmrsinTy, —1<t<0, 0<z,y<1; (14)

u(l,z,y) —u(=1,2,y) = (e — e ) sinmwsinmy, z,y € [0,1]
for a two dimensional elliptic-parabolic equation with the following Dirichlet conditions

u (0—,x,y) =u (0+,x,y) , Ut (0—,2771/) = Ut (O+7xuy);
u(t,0,y) =u(t,l,y) =0, ye[0,1], t€[0,1];

u(t,z,0) = u(t,z,1) =0, z €[0,1], ¢t € [0,1].
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The exact solution of problem (14) is u(t, z,y) = e’ sin wx sin 7y.

Now, we give the results of the numerical analysis in order to compare and conclude the accuracy of solutions
for the first and second order of accuracy difference schemes. The numerical solutions are recorded for different
values of N and M and Uﬁ,m represents the numerical solutions of these difference schemes at w(tx, T, Ym)-

Table is constructed for N = M = 10, 20, 30, respectively and the error is computed by the following formula

= _ .k
b= N<k<NAZmm<M-1 [t Ty Ym) =t -

The results of the exact and numerical solutions are given in the following Table.

Table
Error analysis
Method N=M=10 | N=M=20 | N=M=30
1%t order of accuracy d. s. 0.0938 0.0459 0.0237
27? order of accuracy d. s. 0.0122 0.0031 0.0014

Therefore, the results confirm that the second order of accuracy difference scheme is more accurate comparing
with the first order of accuracy difference scheme.

Conclusion

In the present work, the second order of accuracy difference scheme for the approximate solution of problem
(1) has been presented. Also, the theorem on well-posedness of this problem in Holder spaces has been established
and the coercivity estimates for the solution of the second order difference schemes for the approximate solution
of the nonlocal boundary value elliptic-parabolic problem have been constructed. Furthermore, the numerical
experiments have been given. Some of results of the present article were presented in the conference proceedings
[20] and [29] as extended abstracts without proofs and without numerical results of error analysis, respectively.
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A. Ammbipassies, O. I'epcek, E. 3yc

I'ébaep KeHicTiKTepiHgeri 3J/JIMIICTiK-TIapadoJIaJIbIK TYPAeri
TeHJaeyJep VIIiH I9JIAIrl eKiHIII peTTi albIPbIMIbBIK cXeMaJiap
2KOHIH/Ie ecKepTIiie

Makauta meTTiK mapTTapbl JJOKAIIBIK eMeC SJIIUIICTIK-1apa0doJIasIbIK, TYP/Eri TeHIeyIep/i ety YIIiH 1971
Oiri exiHni perTi afBIPBIMIBIK cxeMaJjapabl 3epTTeyre apHasraH. lpsairi ekinmi peTTi albIDBIMIBIK, CXe-
MaHbIH [eJibjiep KeHiCTiKTepiHie OPHBIKTEI 60JIaTBIHALIFBI KopceTiired. [IleTTik mapTrapbl JOKAJIIBIK, €MEC
JLTUIICTIK-TIapabosIabIK TYPAEri TeH ey il »KYbIK, IerniMi yiria [eabaep HopMachIHa KOIPIUTUBTI Oara-
Jlaynap aJblHFaH. TeopussbIK TYKBIPBIMIAP YKYMBICTA KeJITIPIIreH CAaHIBIK, eCeNTeyIepMeH PacTaIIbl.

Kiam cesdep: aflbIDBIMIBIK CXeMa, JIIUICTIK-TIapaboJIaIblK, Typ/eri TeHey, [eabnep KeHicTikTepi, KOdp-
IIUTUBTI TEHCI3IIKTED.

A. Ammrpaseies, O. I'epcek, E. 3yc

3amMedaHne 0 pa3HOCTHOII cxeMe BTOPOro IOPsSAKa TOYHOCTH JIJIsI
JIJTAIITUKO-IIapado/IndecKNX ypaBHEeHN B mpocTpaHcTBax [éabaepa

CraTbsl TMOCBSIIEHA U3YUYEHUIO PA3HOCTHOUW CXEMBI BTOPOTO MOPSIIKA TOYHOCTH JIJIsI PEIIeHUsT SJIIAMTHKO-
MapaboIMIeCKOTO YPABHEHUs] C HEJIOKAJBHBIM T'DAHUIHBIM YCJIOBHEM. YCTAHOBJIEHa KOPPEKTHOCTH Pa3-
HOCTHOIN CXeMBbI BTOPOIO HOpsIIKa TOYHOCTH B mpocrpaHcrBax lésbaepa. [losydeHbl OleHKM KOSPIUTHB-
HOCTH B HOpMax [énbaepa /st TpuOIMKEHHOTO PEINTeHUs] HEeJIOKAJIBHOW KPaeBOil 3a/a4u JIJTsT SJLIUIITHKO-
mapabomaeckoro auddepeHnnaabHOr0 ypaBHeHns. Pe3yIbTaThl YNCIEHHBIX SKCIIEPUMEHTOB MIPEICTaBIIe-
HBI JIJIsI TOAJEP?KKHU YIIOMSIHYTBIX BBIIIE TEOPETUIECKUX YTBEPXKIEHUIA.

Karouesvie crosa: pasHOCTHAsI CXeMa, IJIJIMNITHUKO-IIApabOIMdecKoe YpaBHEHHE, IIPOCTPAHCTBa l€sbaepa,
KOIPIHUTUBHbIE HEPABEHCTBA.

116 Bectnuk Kaparanmgurckoro yHuBepcurera





