MSC 35J25, 66N12

A. Ashyralyev!?, A. Hamad?3

L Near East University, Nicosia, Turkey, Peoples’ Friendship University of Russia, Moscow, Russia;
2 Institute of Mathematics and Mathematical Modeling, Almaty, Kazakhstan;
3 Omar Al-Mukhtar University, El-Beida, Turkey
(E-mail: allaberen.ashyralyev@neu.edu.tr)

Numerical solution of the nonlocal boundary value problem
for elliptic equations

In the present paper a second order of accuracy two-step difference scheme for an approximate solution
of the nonlocal boundary value problem for the elliptic differential equation —v”(t) + Av(t) = f(t)

T
(0<t<T), v(0) =v(T)+¢, [v(s)ds =1 in an arbitrary Banach space E with the strongly positive

0

operator A is presented. The stability of this difference scheme is established. In application, the stability
estimates for the solution of the difference scheme for the elliptic differential problem with the Neumann
boundary condition are obtained. Additionally, the illustrative numerical result is provided.
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Introduction

The well-posedness in various Banach spaces of the local boundary value problem for the elliptic equation
—0"(t) + Av(t) = f(t) (0<t <T),v(0) = vg,v(T) = vr (1)

in an arbitrary Banach space F with the positive operator A and its related applications have been investigated
by many researchers (see, for example, [1-3] and the references given therein).

In mathematical modeling, elliptic equations are used together with local boundary conditions specifying
the solution on the boundary of the domain. In some cases, classical boundary conditions cannot describe
process or phenomenon precisely. Therefore, mathematical models of various physical, chemical, biological or
environmental processes often involve nonclassical conditions. The well-posedness of various nonlocal boundary
value problems for partial differential and difference equations has been studied extensively by many researchers
(see, e.g., [4-21] and the references given therein).

In the present paper the abstract nonlocal boundary value problem for differential equation of elliptic type

T
—0"(t) + Av(t) = f(t) (0 <t <T),0(0) = () + ¢, / o(s)ds = ¢ (2)
0

in the arbitrary Banach space E with the positive operator A is considered. The second order of approximation
two-step difference scheme

— U 2Bt o Aug = fi, fr = f(te), e = kT, 1<k < N —1,Nr=T);
(3)

N
g =uN + @, ) uiT =1
i=1
for the approximate solution of problem (2) is presented. The stability of this difference scheme is
established. In application, the stability estimates for the solution of the difference scheme for the elliptic
differential problem with the Neumann boundary condition are obtained. Additionally, the illustrative numerical
result is provided.
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Auziliary results

In this section, we give some auxiliary statements from [1] which will be useful in the sequel. We consider
the second order of accuracy difference scheme

U4l — 2up + up—1
2

+AUk:fk,fk:f(tk),tk:kT,lngN—l,NT:T, (4)
T

Uug = Vo, unNy = V7.

of the approximate solution of the boundary value problem (1). This problem is uniquely solvable, and the
following formula holds

up = (I — R*N)"H{(R" — R*" "up+ (5)
+(RN7F — RN yuy — (RN ™% — RNTF)(I + 7B) x
N—-1

x(2I+7B)"'B™' Y (RN — RNV firt
i=1
N-1
+(I+7B)2I +7B)"'B™' Y (R* — R fir 1 <k <N -1,
i=1
where
A A\?
B =B(r,A) = % + <T2) +AR=R(tB)=(I+7B)"%
Note that B(r, A) # A2 but then B(r, A) — A2 as 7 — 0 and it has same spectral properties of A2 under
some assumptions for A.
Let us denote by C-(E) = C([0,T], E) the normed space of grid functions ¢™ = {¢x}1_ for fixed 7 = %
with the norm

T p—
K% ”CT(E) = og}cang | er [l 5

From the formula (5) it follows that the investigation of the stability and well-posedness of difference scheme
(4) relies in an essential manner on a number of properties of the powers of the operator (I + 7B)~!. We were
not able to obtain the estimates for powers of the operator (I +7B)~! in the general cases of operator A. We
begin by deriving some estimates for powers of the operator (I +7B)~! with a strongly positive operator A4 in
a Banach space F.

Lemma 1. Let A be a strongly positive operator in a Banach space E. Then —A is a generator of the analitic
semigroup exp{—tA} (¢ > 0) with exponentially decreasing norm, when ¢t — +00, i. e. we have the following
estimates

lexp{~tA} |55 < M ™ (t > 0); (6)

[tAexp{—tA}|,_ . p <M et >0) (7)

for 1 < M < 400, 0 < d < +oo. Here M does not depend on 7.
Lemma 2. Let — A be a generator of the analytic semigroup exp{—tA} (¢ > 0) with exponentially decreasing
norm, when ¢ — +00. Then the following estimates hold for any & > 1 :

(M + 7B < M+ 72a(A)7F; (8)

—k
) HE—>E
l|k7B(I +7B)~*||g—p < M, (9)

where M does not depend on 7.

We have the following results.

Theorem 3. Let A be a strongly positive operator in a Banach space E. Then the difference problem (4) is
stable in C;(FE). For the solution of the difference problem (4) the following stability inequality is satisfied:

I u™ [le. < M e, ) + I uollg + llunll gl

where M does not depend on f7, ug, uy and .
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Stability of difference problem (3)

We consider the difference problem (3). Using formula (5) and the nonlocal conditions

N

up =un + @, Yy T =1,
i=1

we get

N-1
= (21 +7B)"Y(I — RN)"Y(I + R") {Bw ~(I+7B)B™' ) fﬂ'} - (10)

=1
—(I = RMYYI +7B)(I — RNTH (2 +7B) 1o+
N—-1
+H(I = RN MI+7B)2I +7B) ' B Y (RN + RNTY) fir.

=1
N-1
uy = (21 +7B)"'(I — RN)"Y(I + R") {B¢ (I+71B)B~ an} (11)
=1
—(I—R")y"Y(I—=RN"Y(2I +7B) o+
+(I =R ' I +7B)(2I +7B)"'B~! Z (RN=" + RNTY) f,7.
i=1

Actually, applying formula (5), we get

N-1 N
1/}—UNT+Z’UJI¢7'7 (I- RQN {Z — R*N- k ) (un + ) 7+

k=1 k=1

2

-1

N
+ Z(RN?IC — RN Myuyr — Z RN=F _ RN+kY(I 4+ 7B)x
k=1 k=1

N-1
x(2[+7B)"'B7' Y (RN - RN“)fn?} +
=1
N—-1N-1
+(I+7B)2I +7B) 7' B Y Y (R - RE £

i=1 k=1

By computing and interchanging the order of summation, we obtain

Y= -RM)TI-R) T {(R-RB"* — RN + R*™) (uny + )7+ (I — RN — RN*L 4 RPNF1) gy —

N-1
—(I=R*™M)™ (I-R)™'(I+7B)(2 +7B)'B~' (R— RN — RNt + R*N) Y (RN — RN fir24
i=1

N—
+(I =R (I+7B)2[+7B)7} Z (I - R +R— RN~ — R 4 RNTY) f,72,
It follows that
Y—(I+RV)Y'I-R"""Blo=(T+R")""(I-R")(2I+7B)B 'un—
N—-1 ) ]
—~(I+RY)"I+7B)2I+7B)'B (I - R""') Y (RN"'— RN ™) fir+
=1
N-1

+(I+7B)*(I+7B)"'B™* Y ((I+R)(I-R')—R"""+R"") fir.
=1
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Thus
uy = (2 +7B) "I - R")" "I+ RMB{y— I+ RY) "I -R""")B 'y +

N-1
+( + U+ +7B)" - N fir—
I+RYY ' I+7B)2[+7B)'B2(I-R 1)) (RN""— RN*T)f
i=1

N-1
~(I+7B)*@2I+7B)"'B™>> ((I+R)(I-R')— RN+ RN fn} =
i=1

=@2I+7B)"Y(I - RN *(I+ R")By — (I — RN) "I — RN"Y)(Q2I +7B) '+

+(I = RN) NI +7B)*2I +7B) 2B~  (R—RY) Y (RN — RV fir—

N-1
~(I=RY)"MI+7B)2I +7B)"'(I+RV)B™" ) fn} —~
1=1
N—
—(I — RN Y1+ 7B)*2I +7B)"2(I + RV)B Z (I+R)R' — RN~" + RN*) fn} =

:(2]+7-B)_1(I—RN)‘1(I+RN){Bw (I+7B)B 1Zfz }

—(I =RMY™YI = RN "YHY(2I 4+ B) o+
N-1 A
+(I = RN)"MI+7B)2I +7B)"' B~ Y (RN + RN*Y) fir.
i=1
From that there follow formulas (10) and (11).
N-1
Theorem 4. Let A be a strongly positive operator in a Banach space E and ¢p = A=t 3" f;7,¢ = 0. Then
i=1
difference problem (13) is stable in C,(F). For a solution of the difference problem (13) the following stability
inequalities holds

| u™ Mo < Ml 7 Ml e, ()5

where M; does not depend on f7 and 7.
Proof. By Theorem 3 we have the following estimate

e Nle. @< M7 lle, ) + 1 wolls + [lunll ] (12)

for solution of problem (4). Therefore, to prove the theorem it is sufficient to establish estimates for || vl 5 and
[lun]| 5. Applying formulas (10) and (11), the triangle inequality and estimates (8), (9), we get

luollp < Mill £7 e, (o)

lunllp < Mill F7 e, (&)

Theorem 4 is proved.
Application

Now, we will give the application of Theorem 4 to elliptic equations. Let {2 be the unit open cube in the
n—dimensional Euclidean space R” (0 < x < 1,1 < k < n) with boundary S, Q@ =QUS. In [0,T] x Q we
consider the nonlocal boundary value problem for the multidimensional elliptic equation

102 Bectnuk Kaparanmgurckoro yHuBepcureTa



Numerical solution of the nonlocal boundary value ...

a2 n a2
~ 2t — 3 ap(2) 5% + uly, ) = f(y,);

r=1

r=(21,...,2,) €EQ0<y < T,

T
u(0,2) = u(T,z), [u(s,z)ds =0, z €
0

) g pe

where o, (z) (z € Q) and f(y,z) (y € (0,T), = € Q) are given smooth functions and «,(x) >0, 6 > 0 is a
sufficiently large number. Here, 7t is a normal vector to S. The discretization of problem (13) is also carried
out in two steps. In the first step, let us define the grid sets
ﬁh = {J? =T = (hljla 7hm.7m)7 .] = (j17 7]m)7
0<jr <My, heMy =1, 7 =1,...m,};
Qy :ﬁhﬂQ, Sh :ths.

We introduce the Banach spaces Loy = Lo(Qn) and Cj = C(Qp) of the grid functions ¢"(x) =
= {p(h1j1,.--s hmjm)} defined on Qj, equipped with the norms

1/2

e, = | X 1" @) b b (14)

xeﬁh

and

" |, = sup |¢"(z) (15)

€N

respectively. To the differential operator A generated by problem (13), we assign the difference operator A7 by

the formula .

(ar(x)u%)zmjr (16)
r=1
acting in the space of grid functions u”(z), satisfying the condition %h(@ (V x € Sp). It is known that A7 is

a self-adjoint positive definite operator in L2(Q;) and C(Qy). With the help of A%, we arrive at the nonlocal
boundary value problem

P 4 At (1,2) = ()

r€eQ,0<y<T;

T - (17)
uh(0,2) = uM(T, z), [ul(s,2)ds = 0, x € Qp;
0
h
%(Q =0, ¢ €5y
In the second step, we replace problem (17) by the second order of accuracy difference scheme (3)
ul z)—2ul(z)+ul_ | (z
I A (o) = JL ) S @) = )
Yy = k1,1 <kE<N—-1,Nt=T,x € Qp; (18)

N
ul(z) = u’ﬁ,(x), S ul(z)r =0,z € Q.
i=1

Using the results of Theorem 4, we can obtain the following theorem.
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N-1
Theorem 5. Let T and h be sufficiently small numbers and > f"(y;,x) = 0. Then, solutions of difference
i=1

scheme (18) satisfy the following estimates

o H“ZHLQ;L = Ml1g§@n§aj§—1 Hf’?HLZ’L ;

o225y Ikl < M, e [172c,,

here M; does not depend on 7, h and f,?, 1<k<N-1.
The illustrative numerical result

When the analytical methods do not work properly, the numerical methods for obtaining approximate
solutions of partial differential equations play an important role in applied mathematics.
For numerical analysis, we consider the nonlocal boundary problem for the two dimensional elliptic equation

8%u o

— 3 — gz T u=3costcosu, O<t<2m 0<ax<2m
w(0,z) =u (2w, x); fOQﬂu(s,x) ds=0, 0 <z <2m; (19)
Ug (t,0) = uy (¢, 27) = 0, 0<z<2m.

The exact solution of this problem is
u(t,z) = costcosz.

For an approximate solution of the nonlocal boundary problem (19), we consider the set [0,27]_ x [0, 27], of a
family of grid points depending on the small parameters 7 and h

[0,27]_ x [0,27], = {(tk,2n) : t, = k7,0 <k < N,N7 =27, 2, =nh,0<n<M,Mh=27}.

For a numerical solution, we consider the difference scheme of the second order of accuracy in ¢ and the first
order of accuracy in x.

k+1 k k—1 k k k
Uy U, U, Uy 1+ Uy +Up g

= — 72 +uﬁ:3costkcosxn,1§k§N—l,lgngM—l;

ud) = ul, zg\]:_oluil:&0§n§]\4; (20)
u’f—u’ézuﬁ/l—uﬁ/[ﬂ:(), 0<Ek<N.

It is the system of algebraic equations and it can be written in the matrix form

Aun+1 +Bun +Cun—1 = D@nv 1<n< M — 17

(21)
Ug = U1, Up—1 = UM -
Here,
[0 0 0 0 0 0 0 O] [1 0 0 0 0 0 0 —1]
0 a 0 O 0 0 0 O c b c O 0 00 O
0 0 a O 0 0 0 O 0 ¢ b ¢ 0 0 0 O
0 0 0 a 0 0 0 O 0 0 ¢ b 0 0 0 O
A=C=]. .o e ,B=1. . . . e
0 0 0 O a 0 0 O 0 0 00 b ¢ 0 O
0 0 0 O 0 a 0O 0 0 0O c b c O
0 0 0 O 0 0 a O 0 0 0O 0 ¢c b ¢
0 00 0 . 0 0 0 0 (N4 X (N+1) o111 . 111 1_(N+1)X(N+1)’
where a =~y b= % + i +1, o=~
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cp? 0
oL 3costy cos
Pn = . = . )
oN-1 3costn_1COS Ty
Pn 1 (N+1)x1 0 (N+1)x1

and D = Iy is the identity matrix,

Ug = . , s=n—1, n, n+ 1.

N
s

IS

(N+1)x1

Therefore, to solve the matrix equation (21), we will use the modified Gauss elimination method. We seek
the solution of the matrix equation by the following form:

Up = Qpt1Un+1 T 5n+1; n=M-1,..,1,0, (22)

where up; = (I — cyM)_1 Bum,a; (j=1,....,M—1)are (N+1)x (N +1) square matrices, 8; (j =1,...,M—1)
are (N +1) x 1 column matrices, ay is the identity and /51 are zero matrices and

pi1 = — (B+ Cay) " 4;

Brs1 = (B+Can) (Do —CBp),n=1,...,M —1.

Now, we give the error analysis between exact solutions u(ty,z,) and the approximate solutions u* for the
different values of N and M. The errors are computed by the formula

M= e max  fulte wn) = (23)
The numerical results for the difference scheme (20) are given in the following tables 1, 2.
Tablel
Two dimensional | N, M = 20,20 | N,M = 40,40 | N, M = 80,80
Difference scheme 0.1329 0.0607 0.0290
Table 2

Two dimensional | N, M = 20,400 | N, M = 40,1600 | N, M = 80,6400
Difference scheme 0.0029 7.1859¢ — 04 1.7955e — 04

As it is seen in Table 1, if N and M are doubled, the value of errors decrease by a factor of approximately
1/2. Moreover, as it is seen in Table 2, if N is doubled and M > N2, the value of errors decrease by a factor of
approximately 1/4 difference scheme as the second order of accuracy.
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A. Amerpaseie, A. Xama

DJIJTATICTIK TeHAeyJep YHIiH JOKAJIIbIK eMecC
MIETTIK ecenTepai CAHJbIK IIMelry

Maxkasana katasn oH, A omepaTopel 6ap 3/UMICTIK TeHjey yimiH MmbrHa Typaeri —v” (¢)+Av (t) = f(t),

T

(0<t<T), v(0)=v(T)+¢p, [v(s)ds =1 TOKAIIBIK eMeC MIETTIK ECENT] KyBIKTAI IIEIIyTe ApHATFAH
0

eKiHIII perTi MpJIiri 6ap eKi aJbIMIbl alfpBIMJIBIK cxeMa KesTipiiren. Ecen kaunait na 6ip ' Banax keHicri-

riHze KapacThIPbLIALL. AMDPBIMIBIK CXeMaHbIH OPHBIKTEI 60JIATHIHBL KopceTiareH. Kocbiminana meTTik mapr-
Tapbl Heiiman typingeri auddepeHmanabl ecen YImH albIPbIMIBIK, CXeMa IIENNMiHiH OPHBIKTHLIBIFBIH
Garasaynap kepcerisiren. CoHpaii-ak, CaH/IbIK, eCenTeyJIep/IiH HoTHuKeyepi GepireH.

Kiam ce3dep: OPHBIKTBLIBIK, OH OMEPATOPJIAP, JJIIUICTIK TEHIAEY/IED, CAHIBIK HOTHKE, eKIHIII PETTi T2/ Iiri.
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A. Amerpaseie, A. Xama

YHucseHHoe pellieHUe HeJOKaJbHOW KpaeBoii 3ajadu
JJIs SJUTANTUYECKNX yYPaBHEHUM

B crarpe mpenacraBnena aByxmmaroBas Pa3sHOCTHAasl CXeMa BTOPOTO TMOPSIAKA TOYHOCTH JJIst PUOJIT-
JKEHHOT'O DeIlleHHs] HeJIOKAJbHON KPAaeBOU 3a/1a4yl IS JJIMNTUYECKOro nnuddQepeHnnaabHOro ypaBHEHNT

" (t) + Av(t) = ft) (0 <t <T), v(0) = v(T)+ p, fv(s)ds = 1 B IPOU3BOJLHOM GAHAXOBOM

0

npocrpascTBe E ¢ CHIIBHO 1TOJIOXKHUTENIBHBIM Oo1lepaTopoM A. YcTaHOBJIEHA YCTONYMBOCTD 9TOM Pa3HOCTHON
cxeMbl. B IpUIoyKeHNN oIy YeHbI OIEHKU YCTONINBOCTH PEIeHUs] pA3HOCTHONW CXEMBI JIJIsT SJITANTHIECKOMN
nuddepeHmanbHOM 3a1a49u ¢ TpaHnIHbIM yemoBueM Heitmana. Kpome Toro, mpuBesieH 7eMOHCTPAIIOHHBIH
YUCJICHHBIH PEe3yJIbTar.

Karouesvie crosa: yCTOMYIUBOCTD, IIOJIOKUTEIBHBIE OLIEPATOPHI, SJIMIITUYECKOE YPAaBHEHNE, YUCJIEHHbIE Pe-
3yJbTATHI, ABYXIIIAroBasl Pa3HOCTHAs CXEMaA.
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