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Identification hyperbolic problems with
the Neumann boundary condition

In the present study, an identification problem with the Neumann boundary condition for a one-dimensional
hyperbolic equation is investigated. Stability estimates for the solution of the identification problem are
established. Furthermore, a first order of accuracy difference scheme for the numerical solution of the
identification problems for hyperbolic equations with the Neumann boundary condition is presented. Stability
estimates for the solution of the difference scheme are established. This difference scheme is tested on an
example and some numerical results are presented.
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Introduction

Identification problems take an important place in applied sciences and engineering, and have been studied
by many authors (see, e.g., [1-4] and the references given therein). The theory and applications of source
identification problems for partial differential equations have been given in various papers (see, e.g., [3, 5-8] and
the references given therein).

The well-posedness of the unknown source identification problem for parabolic and delay parabolic equations
have been well-investigated (see, e.g., [9-14], and the references given therein).

The solvability of the inverse problems in various formulations with various overdetermination conditions
for telegraph and hyperbolic equations were studied in many works (see, e.g., [15-18] and the references given
therein). Some new representations were given for the solutions and coefficients of the equations of mathematical
physics in [5, 19-23]. They gave such formulas for evolution equations of first and second-order in time, in
particular for parabolic and hyperbolic equations in the linear and nonlinear cases.

In this study, we consider the time-dependent source identification problem for a one-dimensional hyperbolic
equation with the Neumann boundary condition

Pui) — 2 (a(0) 24E2) = p (W) (@) + f (t), o € (0.0) L€ (0,T),
U(Oax):¢($)7Ut(0,$):¢(x),$€[075]7 (1)

Uy (,0) = uy (t,1) = 0, [ u(t,z) dz = (1) ,t € [0,T],

where u (¢t,2) and p(t) are unknown functions, a(x) > a > 0, f(¢,2),((t),¢ (x) and 9 (z) are sufficiently
smooth functions and ¢ (z) is a sufficiently smooth function assuming ¢’ (0) = ¢’ (I) = 0 and fol q(x)dz #0.

Our interest in this study is to investigate the stability of differential and difference identification problems.
The stability estimate for the solution of problem (1) is established. A first order of accuracy difference scheme
for the numerical solution of identification hyperbolic problems with the Neumann boundary condition (1)
is presented. The theoretical statements for solution of this difference scheme are supported by result of the
numerical experiments.
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Stability of differential problem (1)

To formulate our results, we introduce the Banach space C'(H) = C ([0,T], H) of all abstract continuous
functions ¢ (¢) defined on [0, 7] with values in H equipped with the norm

||¢HC(H) = og&XT & (O -

Let Lo [0,1] be a space of all square integrable functions «y () defined on [0,!] equipped with the norm

1
1 2
o = ( / Iv(a?)lzdx> ,

and let W3 [0,1], W2 [0,1] be Sobolev spaces with norms

1
2

l
|’Y||W2.1[0,l]</0 [v2 (2) + 77 ()] dx) ;

2

!
IVllwzio,q = </0 (72 (2) + 72, (x)] di’?) ;

respectively. We introduce the positive definite self-adjoint operator A defined by the formula

Au = —% (a (@) C“;ff)) 2)

with the domain
D (A) ={u:u,u" € Ly [0,1] ,u' (0) = (I) =0}.

Throughout the present paper, M denotes positive constants, which may differ in time and thus is not a subject
of precision. However, we will use the notation M («, 3,7, ...) to stress the fact that the constant depends only
on «, 3,7, ...

We have the following theorem on the stability of problem (1).

Theorem 1. Assume that ¢ € W2 [0,1],% € W}[0,]] and f(¢,z) is a continuously differentiable function
in ¢ and square integrable in z, ( (t) is a twice continuously differentiable function. Suppose that ¢ (z) is a
sufficiently smooth function assuming ¢’ (0) = ¢’ (1) = 0 and fé g (z) dx # 0. Then for the solution of problem
(1) the following stability estimates hold

02y
5 +lull o w20y < Mi(q) {HwH 201 T ¥ llwaon + 3)
H o2 C(Lalod]) c(wzlo,l]) W2[0,l] wi[o,l]
of
17O o+ 1o |
L2[0,l] at C(L2[07l]) C[O,T]

1Pl co,ry < M2 (q) [”()OHW,}[O,Z] + ¥l 0 + 1S o, + (4)

of

17O o+

0t o)
Proof. We will use the following substitution

u(t,z) =w(t,x)+n(t)q(x), (5)

where 7 (t) is the function defined by the formula

n(t) = / (t - 5)p(s)ds,n (0) = (0) = 0. (6)
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Tt is easy to see that w (¢, x) is the solution of problem

P — 2 (ale) 245) = £ (12) + 0 (1) [ (a (@) ()],

€ (0,0),t € (0,7),

(7)
w (0,7) = ¢ (z),w (0,2) =9 (z),z €[0,1],
Uy (t70) = Uy (tvl) =0,,t€ [OvT} :
Applying the integral overdetermined condition fol u (t,z) dx = ¢ (t) and substitution (5), we get
1
() = [yw(t,x)da
n(t) ;
fo q(x
From that and p (t) = n” (t) it follows
I 92
p(t) = e f o (b2)dv
fo
Applying fo x)dx # 0, we get the estimate
0%w (t,.
(0] < M (0 [c" o)+ ] ®
L3[0,1]
for all ¢ € [0,T]. From that it follows
1 62
1Pl o,y < M3 (q) |IIC ||COT +H : (9)
[0,7] [0,7] o2 C(Lalo)
Now, using substitution (5), we get
u(t,z) O*w(t,z)
Applying the triangle inequality, we obtain
0%u H 0w
vy < |77 + [l lall £ap0, - (10)
‘ I oo 19 lleson clomy T E=(00

Therefore, the proof of estimates (3) and (4) is based on equation (1), the triangle inequality, estimates
(9), (10) and on the following stability estimate

< My(q,a) |:||90||W22[0,l] + ”wHer[O,l] T (1)
C(L2[0,1))

+ 1< oo,y

O |l (Lo

17O gon + | 5

for the solution of problem (7). It was proved in [16] for the identification hyperbolic problem with the Dirichlet
boundary condition. The proof of (11) is carried out according to the same approach. This completes the proof
of Theorem 1.
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Stability of the difference scheme

To formulate our results on difference problem, we introduce the Banach space C; (H) = C ([0, T]
all abstract grid functions ¢™ = {¢ (tk)}ivzo defined on

H) of

T

0,T], = {tx = k7,0 <k < N,NT =T},

with values in H equipped with the norm

167 e, ary = max 16t -

Moreover, Loy, = L2 [0,1],, is the Hilbert space of all grid functions v" (z) = {’yn}ﬁio defined on

0,1, ={zn =nh,0<n< M,Mh =1},

equipped with the norm

1
M 3
"z, = {ZW‘Qh} !
i=0

and Wy, = W3 [0,1], ,W3, = WZ0,1], are the discrete analogues of Sobolev spaces of all grid functions
VY (z) = {'yn}ﬁio defined on [0,], with norms

711

s, = {z%

Yi+1 — 2'71 + vi-1

M—1 3
s, = {3 s X W

respectively. For the differential operator A defined by (2), we introduce the self-adjoint positive definite
difference operator Ay defined by the formula

M-1
1 n - ¥n n - ¥n—
Ane () = {_h (a (Zns1) % —a(zn) ‘ph@l> }n_l , (12)
acting in the space of grid functions " (z) = {9%}24:0 defined on [0,1], satisfying the conditions

v1— o =¢m —pmu-1=0.
M
For the numerical solution {{uﬁ}ivfo} of problem (1), we consider the first order of accuracy difference
- n=0

scheme

Wkl g k1 kL gkt

k+1_ o, k k—1
TSt ( (Tni1) == —a(zy) - h) = prq (@) + f (s 0) 5

tr=kr,x, =nh,1<kE<N-1,1<n<M-1,Nt=T,

(13)

n:(p(l‘n), ;.,- =¢(l‘n),0<n<M,Mh=l7

k+1 k+1 _ k41 k+1 _ Q.
uy ' —ug ' =uy — Uy =0;

211 f“h C(tgs1), -1 <k N-1.

Here, it is assumed that ¢ — g0 = qu — qpr—1 = 0 and Zz 1 ql # 0. We have the following theorem on the
stability of difference scheme (13).
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Theorem 2. For the solution of difference scheme (13), the following stability estimates hold

ahyy 2t N N1
; ' 5 -
7-2 + {uk"rl}k:l HC (W2 ) < (14)
k=1 ||, (Lan) A2k
T 2h
g N-1
h h h k k—1
<5 @) [ + 19y + 11, + {252 +
k=2 CT(LZIL)
" {Ckﬂ — 2Ck + Ch—1 }Nl
2 b)
T k=1 llco,1].
N-1 h h h
| RS oy, < M6 @ [0 g, + 1" g, + 152, + (15)
N-1 N-1
=t Cr1 — 2Ck + Cr—1
+ + .
T T b1
k=2 || (Lan) Clo,T],
Here and throughout this subsection fJ* (z) = {f (tx, xn)}ﬁio , 1<k<N-1
Proof. We will use the following substitution
Uy, = wy; + dn, (16)
where
an = q(zn)
and
k
Mes1 = (k+1—i)pir2, 1<k <N —1ng=n =0. (17)
i=1
N 1M
It is easy to see that {{wﬁ}kﬂ]} is the solution of difference problem
—Jn=0
W _ok Lopk—1 wﬁ+1 7w71z+1 warl*wﬁtll
. 2.,.2n+ = - % (a (xn—&-l) +1h 70‘(1'?1) ' h ' > =

= f (thy ) + F [0 (o) B — () 2

18
ISESN-L,1<n<M-1; (18)
w2=<p(xn),'”";“’3 =1 (x,),0 <n <M,

u’f'H ug'H uﬁjl u’f\jllzo,—lgng—l.

Applying the overdetermined condition Zf\izl uFTh = ¢ (t)11) and substitution (16), one can obtain that
M-
M1 = Ch1 = Dima fﬂh
= M—1
Zz 1 @il

1= -
D1 — =Nk T e—1 T"g’“Jr”" L and (19), we get

(19)

Then, using formulas pg =

» Cosr — 2Ck + Goor — M1 ( P 2wk 4wl h
k = ’

7—2 Z’L 1 Z
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Crr1 — 2Ck + Ch—1 Wity — 2wj +wp_
|pk‘ < My (q) [ ~ 72 — 72 - (20)
Lap,
forall 1 <k < N — 1. From that it follows
N-1
N-1 <k+1 — 2€k + Ck—1
00, 200 : g
k=1 llcio,7].
N-1
{wzﬂ ~ 20+ uf_ }
+ 2
-
k=1 Cr(Lan)
Now, using substitution (16), we get
k+1 k k—1 k+1 k k—1
U —2u; +u w — 2w, +w
n T2n n _ n T2n n + pryq (xn) )
Applying the triangle inequality, we obtain
N-1
h h h
Up gy — 2up +ug
{ - T2 S (22)
k=1 Cr(Lan)
N-1
h h h
w — 2wy +wi
< { k41 7—2k k—1 } I

k=1 Cr(Lap)
M
fotanal,

Therefore, the proof of estimates (14) and (15) are based on equation (13), the triangle inequality, estimates
(21), (22) and on the following stability estimate

#leeni= g,

wh o — 2wl + wh Nt
{ by = 0L+ } < Mi(g)x (23)
k=1 Cr(Lan)
7 I R
[, + 1 s+ 1]+ { } R
k=2

Cr(Lan)

_|_

{Ck+1 — 2Ck + Cp—1 }N_l

T2

k=1 {lcio,7].

for the solution of difference problem (18). It was proved in ([9]) for the identification hyperbolic problem
with the Dirichlet boundary condition. The proof of (23) is carried out according to the same approach. This
completes the proof of Theorem 2.

Numerical Experiments
In this section, we study the numerical solution of the identification problem

827“552’”“') - 82;&’@ =p(t) (1 +cosz)+e tcosx,w € (0,7),t € (0,1);

w(0,z) =1+ cosz,u (0,2) = — (1 +cosx),x € [0,7];
(24)
Uy (£,0) = ug (t,m) =0, € [0,1];

fow u(t,z)dr =me 't €0,1]

for a hyperbolic differential equation. The exact solution pair of this problem is (u(¢,z),p(t)) =
= (et (1+cosz),e?).
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For the numerical solution of problem (24), we present the following first order of accuracy difference scheme
for the approximate solution for the problem (24)

ktl_ o,k k—1 uktl 72uk+1+uk+l B
Uy ;izn-‘run _ Una hn2 n-1 _ Dk (1 + cos xn) Te tkt1 cog T

tr =k, x, =nh,1<kE<N-1,1<n<<M-1;

)

=}

1
0 __ . U, —U
Uy = 1+ coszy, =—=

=—(l4cosxz,),0<n< M,Mh=mn,Nt=1; (25)

k+1 k+1 _  k+1 k+1 _ Q.
Uy~ —uy =uy — Uy =0;

Zf\ifl uf“h =qe~tt1, 1 <k N —1.
Algorithm for obtaining the solution of identification problem (25) contains three stages. Actually, let us define
uf = wk 4+ (14 cosz,),0<k<N,0<n <M, (26)
Applying difference scheme (25) and formula (26), we will obtain the formula

—tpp1 _ M1 ]-H_lh
Mgt = 2z Wi —1<k<N-1 (27)
Yoicq (I4cosx;)h

and the difference scheme

wﬁ+172wﬁ+w2_1 . wﬁii—2w2+1+wﬁtll + 2(cos h—1) COS T Zfi;l wf+1h o
T2 h? h2 n Zﬁvizl(1+cosmi)h B
= |1+ 213@10”71) e tticosa,, 1<ESN-1,1<n<<M-1;
h2 3T (14cos ;) h ’ ’ ’

1,0
w) =1+ cosay, 22 = — (1+cosz,),,0 < n < M;

k+1 k+1 k+1 k+1
w0+ —ler :wM+ —wMtl:O,—léng—l.

M
In the first stage, we find numerical solution {{wﬁ}kN_O} of corresponding first order of accuracy auxiliary
—“J)n=0

difference scheme (28). For obtaining the solution of difference scheme (28), we will write it in the matrix form as

AwFt 4+ Buk + Cuh ™t = b 1 <k <N - 1
(29)
w® = {1 + cos ﬂfn}i/[:o ywh={(1-7)(1+ Cosxn)}ano )

where A, B,C are (M + 1) x (M + 1) square matrices, w®,s = k, k41, f¥ are (M + 1) x 1 column matrices and

1 -1 0 . 0 0 -1
b a+c b+c - c1 c1 0
0 b4+c atco - Co Co 0
A= . . . ,
0 cyp—2 cCyp—2 - a+cpy—o b+cp—_o 0
0 ev—1 cem—-1 - bH+ey—1 atepy—1 b
0 0 0 . 0 -1 1
L 4 (M+1)x (M+1)
(0 0 0 - 0 0 O] [0 0 0 - 0 0 0]
0 e -0 00 0 g 0O- 0 00
0 0 e 0 0 O 00 g - 000
B = . . C = .. ’
0 0 O e 0 0 0 O g 0 0
0 0 O 0 e O 0 0 O 0 g O
0 0 O 0 0 O 000 - 000
L 4 (M1 x(M+1) L 4 (M1 x(M+1)
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0 0
ot wy
cpk: . w’® = . , for s=k,k+£1.
Phr—1 Wiy
(M+1)x1 (M41)x1
Here,
12 1 2 _
a:ﬁ—*—ﬁab:_ﬁae:_ﬁmg:ﬁa
M-—1
2 h—1
d= Z (1+c0sxi)h,cn:%cosxn,lgnngl,

i=1

& 1 2m(cosh — 1)

Op = = e*t""“cosxn,lgngfl,lgnngl.
h2y .~ " (14 cosz;h)

So, we have the initial value problem for the second order difference equation (29) with respect to k with matrix
M
coefficients A, B and C. Since w’and w'are given, we can obtain {{wﬁ}g_o} by (29).
= 0

n=

Now, applying formula (17), we can obtain

Mkl — 20K + Mk
= =

Pr J1<k<N-1 (30)

In the second stage, we obtain {pk}g;ll by formulas (27) and (30). Finally, in the third stage, we obtain
M
{{uﬁ}g_o} by formulas (26) and (27). The errors are computed by
= 0

n=

1

M 2
E, = omax, (2:0 |u (t, n) — qu|2 h) ; (31)

E = — .
» 1211<a§_1|p(tk) Prl s

N

o~

where u (¢, z) , p(t) represent the exact solution, u, represent the numerical solutions at (¢, z,) and py, represent
the numerical solutions at ¢;. The numerical results are given in the following Table.

Table
Error analysis
Error N=M=20 | N=M=40 | N=M =80 | N=M=160

E, 0.0501 0.0250 0.0124 0.0062
E, 0.0472 0.0244 0.0124 0.0063

As it is seen in Table, we get some numerical results. If N and M are doubled, the value of errors decrease
by a factor of approximately 1/2 for first order difference scheme (25).
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A. Ameipaseie, @. DIvmapab

IHlerTik miapTel Heiiman Typinge 6o/1aTbiH
NAeHTU(PUKAIMNSAIBIK I'MIepPO0JIajblK, ecernTep

MakauJra merTik maptel Heiiman Typingeri 6ip esmemM i rumepboJsiaiblK TYp/Ieri TeHaey Yo uaeHTuduKa-
nusiay ecebin 3eprreyre apHasral. Unenrndurkannsiay ecebiHiy memimMi yIiH OPHBIKTBLIBIK, Oaraiayiapbl
anprarad. [llerrik mapter Heitman Typinzeri rumepbostaabik TEHAEYIED VIMiH HAeHTUMUKAAAIAY eceOiH
CaHBIK IIEITy YIIH A9/Air 6ipiHi peTTi affbIPhIMIBIK, CXeMa YCHIHBLIFaH. ARBIPBIMJIBIK CXeMAHbBIH, IIEITiMi
VIIiH OPHBIKTBUIBIK, Oarasaysiapbl KeaTipiaren. Byi aflbIpbIMIbIK cxeMa KapaltaiibIM ecell YIIiH TeKcepisi,
CaH/IBIK, eCeNTeysIep HOTUXKECI KeJITipiyreH.

Kiam cesdep: ke3nepai nnentudukanusiiay ecebi, runepbosaibik, auddepeHnnaiibl TeHAeY, afibIPbIMIbIK,
CcXeMaJiaphl.
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A. AmbipassieB, @. Ivmapabd

N neaTudukanmoHHble TUIIEPOOJIMYECKE 3aJJa9n
c rTpaHNYHBIM ycjoBueM Heiimana

B crarbe nzyuaena 3ajava miaeHTHdUKAIMA C TPAHUYIHBIM ycjaoBueM Heiimana Jjisi OJIHOMEPHOTO T'UIEp-
GOJINYECKOr0 ypaBHEHUsI. YCTAHOBJIEHBI OIEHKM YCTONYMBOCTH DelleHus 3aja4u ujaeHTndurkanuu. Kpome
TOT0, MIPEJICTAB/IEHA PA3HOCTHAST CXEMa MEPBOTO MOPSIIKA TOYHOCTH JJjIsl YUCJIEHHOTO PEIeHus 3a/1ad UIeH-
TupUKAIIN [JIsT TUIIEPOOSINIEeCKUX yPABHEHUN € TPAHUYHBIM ycjioBueM HeiimaHa. YCTAHOBJIEHBI OIEHKHU
YCTORYUBOCTH PEIIeHUsI PA3HOCTHON CXeMbI. DTa PA3HOCTHAs CXeMa IIPOBEPEHA Ha IIPUMEPE U IIPEJICTABIIE-
HBI HEKOTOPBIE€ YUCJIEHHBIE PE3Y/IHTATHI.

Kmouesvie crosa: 3amada naeHTH(PUKAIIIN UCTOYHUKA, TUIepbondeckne auddepeHnuaibible ypaBHEHUS,
Pa3HOCTHBIE CXEMBbI.
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