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On multi-periodic solutions of quasilinear autonomous systems with
an operator of differentiation on the Lyapunov’s vector field

A quasilinear autonomous system with an operator of differentiation with respect to the characteristic
directions of time and space variables associated with a Lyapunov’s vector field is considered. The question
of the existence of multi-periodic solutions on time variables is investigated, when the matrix of a linear
system along characteristics has the property of exponential stability. And the non-linear part of the system
is sufficiently smooth. In the note, on the basis of Lyapunov’s method, the necessary properties of the
characteristics of the system with the specified differentiation operator were substantiated; theorems on the
existence and uniqueness of multi-periodic solutions of linear homogeneous and nonhomogeneous systems
were proved; sufficient conditions for the existence of a unique multi-periodic solution of a quasilinear
system were established. In the study of a nonlinear system, the method of contraction mapping was used.

Key words: multi-periodic solutions, autonomous system, operator of differentiation, Lyapunov’s vector
field.

Introduction

It is known that many phenomena connected by a continuous medium are described by systems of partial
differential equations. In many cases, these systems are quasilinear, and these phenomena (sound, light, electro-
magnetic, gas and hydromechanical) are oscillatory-wave in nature. Consequently, the study of solutions of such
systems with oscillatory properties over both time and space variables belong to an important part of the theory
of equations in ordinary and partial derivatives. The foundations of this theory were laid in the classical works
of A.M. Lyapunov, H.Poincaré and the fundamental research of Andronov-Witt-Khaykin, Krylov-Bogoliubov-
Mitropolsky-Samoilenko, Kolmogorov-Arnold-Moser, etc.

A peculiar approach to the problems of the theory of oscillations was proposed in the works of V. Kharasakhal
and D.U. Umbetzhanov [1–8], based on a deep connection between an almost periodic function of one variable
and a periodic function of many variables, called a multi-periodic function, where the problems are quasi-periodic
solutions of ordinary differential equations, are studied on the basis of multi-periodic solutions of systems of
the partial differential equations of the first order. In this connection, we note that many quite serious results,
known from oscillatory solutions of ordinary differential equations, they are extended to the case of multi-periodic
solutions of partial differential equations [9–20], which were further developed in the articles [21–23].

We note, that some information on multi-periodic solutions of systems of the partial differential equations
is contained in the literature review of the fundamental work [24], where the number of papers by one of the
authors is presented.

We also note, that many theoretical questions of physics and technology are based on oscillatory processes.
In particular, we pay attention to the works [25, 26], where an interesting research was conducted of problems
from hydromechanics and control theory related to oscillatory processes described by the differential and integro-
differential equations. These equations are attractive because it is possible for them to consider the problem of
multi-periodic solutions and use the methods outlined in this article.

Of particular interest is the work [27], where the equations with a differentiation operator along the directions
of a vector field on a torus are considered and conditions for the existence of their periodic solutions are
established. Note that the differential operator under consideration is similar to the differentiation operator,
which given in this note.

The methods of Poincaré-Lyapunov and Hamilton-Jacobi for integrating and researching of the periodic
solutions are the basis of the methodology for studying the problem of this work. It is obvious, that the sources
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of multi-periodic solutions of the differential equations are their periodic solutions with different rationally
incommensurable frequencies. In this regard, our attention is drawn to the problems studied in the articles [28, 29]
and some commonality of their study methods with the methods of this work.

One of the common ways to investigate the periodic solutions is to use the methods of boundary value
problems for the differential equations. In the works [30–35] for investigating the oscillatory solutions of some
equations of various types of mathematical physics was used, a technique calling the method of parameterization.
We note that the equations under consideration are representable as systems of equations of first-order derivatives.

In this article, we consider the quasilinear system of equations with a differentiation operator along the
directions of the vector fields, where the characteristic directions of the differentiation operator along the time
and space variables are independent, with the space variables being differentiated along the directions defined
by the Lyapunov’s system.

In the case of a non-autonomous system, the frequencies of the desired multi-periodic oscillations are mainly
determined by the system itself. Consequently, the frequencies and their number are known in advance.

In this autonomous case, the main difficulty of the considering problem is related to the uncertainty of the
frequency of periodic oscillations, which are components of the desired multi-periodic oscillations. This difficulty
was surmountable that the characteristic vector field satisfies the conditions of the Lyapunov’s system. Although,
systems of the partial differential equations that do not contain time variables are often found in the scientific
literature, but the problem of this note on the formulation is new and is being investigated for the first time.

We consider the autonomous system

Dx = P (ζ)x+ f(ζ, x), (1)

with differentiation operator

D =
∂

∂τ
+

〈
e,

∂

∂τ

〉
+

〈
Jζ + ψ(ζ),

∂

∂ζ

〉
, (2)

where x = (x1, . . . , xn) ∈ Rn are unknown vector-functions with respect to the time τ ∈ R,

τ = (τ1, . . . , τm) ∈ Rm and space ζ = (ζ0, . . . , ζk), ζj = (ξj , ηj) ∈ R2, j = 0, k, variables;
〈
e,

∂

∂τ

〉
is the

scalar product of m-vectors e = (1, . . . , 1) and
∂

∂τ
=

(
∂

∂τ1
, . . . ,

∂

∂τm

)
; J is a (2k + 2)-dimensional constant

matrix; ψ(ζ) is a (2k + 2)-vector-function given in a δ-neighborhood R2k+2
δ of a point ζ = 0 in Euclidean space

R2k+2;
∂

∂ζ
=

(
∂

∂ζ0
, . . . ,

∂

∂ζk

)
,
∂

∂ζj
=

(
∂

∂ξj
,
∂

∂ηj

)
, j = 0, k, is a vector operator.

The matrix P (ζ) = [pij(ζ)]
n
1 is holomorphic in the R2n+2

ε neighborhood of the point ζ = 0:

P (ζ) =

+∞∑
j=0

1

j!

〈
ζ,

∂

∂ζ

〉j
P (0), ζ ∈ R2k+2

ε , (3)

where ε > 0 is some constant and δ = δ(ε) > 0 is sufficiently small.
The vector-function f(ζ, x) has the following properties of continuity and smoothness

f(ζ, x) ∈ C(e)
ζ

(
R2k+2
ε ×Rn∆

)
(4)

with bounded matrix of Jacobi ∣∣∣∣∂f(ζ, x)

∂x

∣∣∣∣ ≤ c, (ζ, x) ∈ R2k+2

ε ×Rn∆, (5)

where c > 0 is a constant, R
2k+2

ε ×Rn∆ is the closure of the region R2k+2
ε ×Rn∆.

Thus, set the problem to clarify the conditions the (θ, θ)-periodicity of solutions of the system (1) when
conditions (3), (4), and (5) are performed.

Серия «Математика». № 2(94)/2019 71



Zh.А. Sartabanov, B.Zh. Omarova

The differentiation operator along the directions of the diagonal of time and
space variables on the Lyapunov’s vector field

Differentiation by the operator D is conducted along directions of vector fields of time variables

dτ

dτ
= e (6)

and space variables
dζ

dτ
= Jζ + ψ(ζ), (7)

associated with the time variable τ ∈ R.
The characteristic of the vector equation (6), outgoing from the point τ0 = (τ0

1 , . . . , τ
0
m) when τ = τ0 is

determined by the relation τ = τ0 + e(τ − τ0). For our purpose, it’s useful to take as the initial point τ0 = eτ0.
Therefore, we have

τ = eτ. (8)

It should also be noted here that the dimensionm of the time vector τ is related to the dimension of the common
frequency basis of the family periodic solutions of the autonomous system (7), which cannot be specified in
advance. In our case, we note that m = k.

The vector field (7) can be characterized by the following properties:
a) The matrix J can be represented in the form

J = diag[ν0I2, . . . , νkI2], 〈q, ν〉 6= 0, q ∈ Zk+1, q 6= 0, (9)

where I2 =

(
0 −1
1 0

)
is a two-dimensional symplectic unit, νj , j = 0, k, are incommensurable frequencies,

q = (q0, . . . , qk) ∈ Zk+1 is an integer vector, ν = (ν0, . . . , νk) is vector, Z is the set of integers.
b) The vector function ψ(ζ) is formed by a given scalar holomorphic function Ψ(ζ) in some

δ-neighborhood R2k+2
δ of the point ζ = 0 in Euclidean space R2k+2 by applying an operator I ∂

∂ζ with (2k+ 2)-
matrix I = diag[I2, . . . , I2], whose decomposition of the function of which Ψ(ζ) begins with a homogeneous form
of at least the third degree:

ψ(ζ) = I ∂
∂ζΨ(ζ), ζ ∈ R2k+2

δ ,

Ψ(ζ) =
+∞∑
j=3

1
j!

〈
ζj ,

∂
∂ζ

〉j
Ψ(0).

(10)

It is obvious, that the vector field (7) under the conditions (9) and (10) belongs to the class of Lyapunov’s
systems.

By conditions (9) and (10) can be represented system (7) to the scalar form
dξj
dτ

= −νjηj −
∂Ψ(ζ)

∂ηj
,

dηj
dτ

= νjξj +
∂Ψ(ζ)

∂ξj
, j = 0, k.

(11)

with the first integral

H(ζ) =

k∑
j=0

νj
2

(ξ2
j + η2

j ) + Ψ(ζ). (12)

By the first integral (12) the system (11) can be written in the form of a canonical system
dξj
dτ

= −∂H(ζ)

∂ηj
,

dηj
dτ

=
∂H(ζ)

∂ξj
, j = 0, k.

(13)
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According to the Lyapunov’s method [1, 2], the variables (ξl, ηl), l 6= j, 0 ≤ l ≤ k as functions (ξj , ηj) with
a fixed number j can be determined from the system of the partial differential equations

∂H

∂ξj

∂xl
∂ηj
−∂H
∂ηj

∂xl
∂ξj

= −∂H
∂ηj

,

∂H

∂ξj

∂yl
∂ηj
−∂H
∂ηj

∂yl
∂ξj

=
∂H

∂ξj
, l 6= j, 0 ≤ l ≤ k,

(14)

where H = H(ζ) is the Hamiltonian (12) of the systems (13).
System (14) with the initial condition (ξl, ηl) = (0, 0) for (ξj , ηj) = 0, under conditions (9) and (10) allows

an unique holomorphic solution (ξ∗l (ξj , ηj), η
∗
l (ξj , ηj)) = ζ∗l (ξj , ηj) in the sufficiently small neighborhood R2

δ of
the point ζl = 0 in the plane R2 for fixed values l 6= j.

We obtain the function

Hj(ξj , ηj) = H
(
ζ∗0 (ξj , ηj), . . . , ζ

∗
j−1(ξj , ηj), ζj , ζ

∗
j+1(ξj , ηj), . . . , ζ

∗
k(ξj , ηj)

)
. (15)

by substituting found solutions ζ∗0 (ξj , ηj), . . . , ζ
∗
j−1(ξj , ηj), ζ

∗
j+1(ξj , ηj), . . . , ζ

∗
k(ξj , ηj) of the systems (14) to the

Hamiltonian H(ζ). Also, we set up a function

gj(ξj , ηj) = 1 +
∑
l 6=j

(
∂ξ∗l (ξj , ηj)

∂ξj

∂η∗l (ξj , ηj)

∂ηj
− ∂ξ∗l (ξj , ηj)

∂ηj

∂η∗l (ξj , ηj)

∂ξj

)
. (16)

On the basis of functions (15) and (16), we consider the system of ordinary differential equations
gj(ξj , ηj)

dξj
dτj

= −∂Hj(ξj , ηj)

∂ηj
,

gj(ξj , ηj)
dηj
dτj

=
∂Hj(ξj , ηj)

∂ξj
,

(17)

which is a Lyapunov’s system corresponding to the frequency νj . Therefore, system (17) defines a two-parameter
family of periodic solutions

ξj = h
′

j(τj − τ0, ξ0
j , η

0
j ),

ηj = h
′′

j (τj − τ0, ξ0
j , η

0
j )

(18)

with arbitrary initial values (ξj , ηj)
∣∣
τj=τ0

= (ξ0
j , η

0
j ) from a sufficiently small neighborhood R2

δ , and a period

θj =
2π

νj

(
1 + c

(1)
j Hj

(
ξ0
j , η

0
j

)
+ c

(2)
j

[
Hj

(
ξ0
j , η

0
j

)]2
+ . . .

)
, (19)

which the coefficients c(1)
j , c

(2)
j , . . . didn’t depend on the initial data, and they are θj =

2π

νj
when (ξ0

j , η
0
j ) = (0, 0).

Thus, by changing j from 0 to k and using the Lyapunov’s method, we obtain all 1 + k periodic solutions
(18) of the system (17). These solutions are components of a multi-periodic solution ζ of the system (7) in the
form

ζ =

(
h
′

0

(
τ − τ0, ξ0

0 , η
0
0

)
, h
′′

0

(
τ − τ0, ξ0

0 , η
0
0

)
, . . . , h

′

k

(
τk − τ0, ξ0

k, η
0
k

)
, h
′′

k

(
τk − τ0, ξ0

k, η
0
k

))
≡

≡ h
(
τ − τ0, τ1 − τ0, . . . , τk − τ0, ξ0

0 , η
0
0 , . . . , ξ

0
k, η

0
k

)
(20)

with initial condition
ζ
∣∣
τ=τ1=...=τk=τ0

=
(
ξ0
0 , η

0
0 , . . . , ξ

0
k, η

0
k

)
= ζ0 (21)

and vector-period θ = (θ0, θ1, . . . , θk) with components (19) on a vector variable τ = (τ, τ1, . . . , τk).
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We are passing to the vector notation from (20)–(21), and then the solution ζ of the system (7) is represented
in the form

ζ = h(τ − τ0, τ − eτ0, ζ0), (22)

where h(0, 0, ζ0) = ζ0. Equation (22) together with equation (8), represent the characteristics of the operator (2).
Thus, the following assertion is substantiated.

10. Under conditions (9) and (10), operator (2) is the operator of differentiation with respect to τ of the
functions x(τ, τ , ζ) of the along direction of the main diagonal (8) of the time variables and along multi-
periodically closed curves (22) with respect to space variables.

Therefore, the function Dx along the characteristic, given by relation (22), determines the rate of change of
the function x = x(ζ) with respect to τ :

Dx
∣∣
ζ=h

=
dx(h)

dτ
.

The statement 10 allows us to go from the differential equations with operator D to the integral equations,
defined along the characteristics.

By the uniqueness property the solutions of the system (7), from the equation of characteristics (22) we
have the expression

ζ0 = h(τ0 − τ, eτ0 − τ , ζ), (23)

which is the first integral of the operator D : Dh = 0.
In addition, based on the same property, we obtain the group property of the characteristic in the form

h (τ − s, τ − es, h(s− τ0, es− eτ0, ζ0)) = h (τ − τ0, τ − eτ0, ζ0) (24)

with s ∈ R.
Then we have the following statement.
20. Under the conditions of paragraph 10 the function x (s− τ0, τ − eτ0, h(s− τ0, es− eτ0, ζ0)) taking into

account property (24), is proceed to the function x (s− τ, es− τ , h(s− τ, es− τ , ζ)) with parameter s ∈ R, and
variables (τ, τ , ζ), where the given function defined along the characteristic

τ = s− τ0,

τ = es− eτ0,
ζ = h(s− τ0, es− eτ0, ζ0)

with a parameter s based on the first integrals of the systems (6) and (7) in the form

τ0 = τ,

eτ0 = τ ,

ζ0 = h(τ0 − τ, eτ0 − τ , ζ),

obtained by relations (8) and (23).
Paragraph 20 allows leaving expressions defined along the characteristics of the operator D to the space of

variables (τ, τ , ζ).
Further, by the periodicity the characteristics (18) of the operator D in the period (19), the property of

multi-periodicity of the vector-function (22) can be represented as

h(τ + θ, τ + qθ, ζ) = h(τ, τ , ζ), (25)

where the vector-period (θ, θ) = (θ0, θ1, . . . , θk) with the components θ = θ0, θ = (θ1, . . . , θk) is defined by
the relation (19), and the periods θj , j = 0, k depend on the initial data ζ = ζ0 of the characteristics of the
operator (2), q ∈ Zm.

We note, that when the question of multi-periodicity, we consider periods (θ, θ) in the space of variables
(τ, τ , ζ) ∈ R×Rk ×Rk+1

δ , by replacing the initial data ζ0 to the corresponding value (23), and we get functions
with respect to variables (τ, τ , ζ), and parameter τ0 ∈ R:

θ = θ(τ0, τ, τ , ζ),

θ = θ(τ0, τ, τ , ζ).
(26)
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Since expressions (23) represent the first integral, that is, we have identity

Dh(τ0 − τ, eτ0 − τ , ζ) = 0, (27)

then periods (26) are also first integrals, and therefore, we have identity relations

Dθ(τ0, τ, τ , ζ) = 0,

Dθ(τ0, τ, τ , ζ) = 0.
(28)

Thus, as a consequence of the identities (27) and (28), we can formulate the following statement.
30. Under the conditions of the preceding paragraphs, any smooth function f(h) has the properties

Df
(
h (s− τ, es− τ , ζ)

)
= 0, (29)

f
(
h
(
s− τ + θ, es− τ + qθ, ζ

))
= f

(
h (s− τ, es− τ , ζ)

)
, (30)

where s ∈ R is the parameter, and q ∈ Zm, h(s− τ, es− τ , ζ) is the integral function (23).
In deducing relation (29) it was taken into account that if h is the first integral, and then the smooth

function f(h) is also an integral. Identity (30) follows from identity (25).

Homogeneous linear system

We consider a linear system
Dx = P (ζ)x, (31)

with respect to the unknown vector-function x = (x1, . . . , xn), where the operatorD is defined by the formula (2)
with properties (9) and (10); P (ζ) = [pij(ζ)]

n
1 is holomorphic matrix in the R2n+2

ε neighborhood of the
point ζ = 0, and satisfies condition (3).

The system (31) along the characteristics (22) represents a system of the ordinary differential equations
with the multi-periodic matrix P (h(τ − s, τ − es, ζ0)) with respect to (τ, τ) with period (θ, θ).

Then it is possible to determine the matrix X of the linear system (31)on the basis of the integral equation

X(τ0, τ, τ , ζ) = E +

τ∫
τ0

P (h(s− τ, es− τ , ζ))X(τ0, s, es, ζ) ds, (32)

where E is the unit n-matrix, τ0 ∈ R, τ ∈ R, τ ∈ Rk, ζ ∈ R2k+2
ε for sufficiently small ε > 0, X(τ0, τ0, eτ0, ζ) = E.

Obviously, the matriciant X(τ0, τ, τ , ζ) is holomorphic with respect to ζ by virtue of (3) and (θ, θ, θ)-periodic
by (τ0, τ, τ)

X(τ0 + θ, τ + θ, τ + eθ, ζ) = X(τ0, τ, τ , ζ). (33)

Further, suppose that the matrix P (ζ) provides the property of the exponential stability of system (31) in
the form

|X(τ0, τ, τ , ζ)| ≤ ae−α(τ−τ0), τ ≥ τ0 (34)

with constants a ≥ 1, α > 0, where τ0 ∈ R. If we take into account the solution x = x(τ0, τ, τ , ζ) of the
system (31) with an initial condition that turns into the initial smooth function u(ζ), when τ = τ0 in the form

x
∣∣
τ=τ0

= u(ζ) ∈ C(1)
ζ

(
R2k+2
ε

)
expressed by

x(τ0, τ, τ , ζ) = X(τ0, τ, τ , ζ)u(h(τ0 − τ, eτ0 − τ , ζ)), (35)

then from the condition (34) implies the absence of the multi-periodic solution of the system (31), that is
different from zero.

Lemma 1. Let conditions (3), (9), (10), and (34) be satisfied. Then the homogeneous linear system (31) has
no multi-periodic solution, except for the trivial one.

Proof. Indeed, from the representation of solutions (35) and condition (34) follows that for fixed values ζ
any solution with nonzero initial data u 6= 0 is unbounded.

Therefore, such a solution cannot be multi-periodicity. It only follows that u = 0 is the only multi-periodic
solution of the system (31).
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Nonhomogeneous linear system

Now we consider the system in the form

Dx = P (ζ)x+ f(ζ) (36)

with free term f(ζ) of holomorphic in R2k+2
ε :

f(ζ) =

+∞∑
j=0

1

j!

〈
ζ,

∂

∂ζ

〉j
f(0), ζ ∈ R2k+2

ε , (37)

where ε > 0 is some constant.
Theorem 1. Let conditions (3), (9), (10), (34), and (37) be satisfied. Then the system (36) has the unique

(θ, θ)-periodic solution holomorphic with respect to ζ ∈ R2k+2
δ for sufficiently small δ = δ(ε) > 0

x∗(τ, τ , ζ) =

τ∫
−∞

X(s, τ, τ , ζ)f(h(s− τ, es− τ , ζ)) ds, (38)

where δ = δ(ε) is chosen such that, for ζ ∈ R2k+2
δ the inequality |h(τ, τ , ζ)| < ε is satisfied.

Proof. Indeed, by a direct verification, we see, that function (38), which is determined by condition (34), in
the form of an improper integral is the solution of the system (36). In this case, it is necessary to take into account
that the matriciant X satisfies the matrix equation (32), and the integral h has the properties (22) and (23). The
periodicity of the solution (37) with respect to τ with a period θ is checked on the basis of the property (33),
and the θ-periodicity with respect to τ follows from the property (25). The property of holomorphy follows from
the holomorphy of the integral h of the matrix P , and the function f given in conditions (3), (10), and (37).

In conclusion, we note that if conditions (3) and (37) about the holomorphy of the matrix P (ζ) and vector-
function f(ζ) are replaced by the conditions of their continuous differentiability, then generalizing Theorem 1, we
can get the result about the existence of the multi-periodic solution (38), without the property of holomorphy.

Therefore, we have the following theorem.
Theorem 2. Let the matrix function P (ζ) be continuously differentiable in R2k+2

ε :

P (ζ) ∈ C(e)
ζ

(
R2k+2
ε

)
, (39)

and the free term f(ζ) of the system also has the same property:

f(ζ) ∈ C(e)
ζ

(
R2k+2
ε

)
, (40)

where C(e)
ζ

(
R2k+2
ε

)
is the class of smooth functions of order e = (1, . . . , 1) in R2k+2

ε . If satisfied conditions (9),
(10) and (34), then relation (38) represents the unique (θ, θ)-periodic solution of the system (36) for sufficiently
small δ = δ(ε) > 0, when ζ ∈ R2k+2

δ .
The proof of the Theorem 2 is similar to the proof of the Theorem 1, with the difference, that the smoothness

of the solutions is everywhere provided by the conditions (39), (40).
Now, additionally we consider the case when the free term f , except ζ ∈ R2k+2

δ , depends on (τ, τ) ∈ R×Rk.
Then we have a non-autonomous system of equations

Dx = P (ζ)x+ f(τ, τ , ζ), (41)

where the vector-function f(τ, τ , ζ) has the property

f(τ + θ, τ + qθ, ζ) = f(τ, τ , ζ) ∈ C(1,e,e)
τ,τ,ζ

(
R×Rk ×R2k+2

ε

)
, (42)

q ∈ Zk, e = (1, . . . , 1) is k-vector, e = (1, . . . , 1) is (2k + 2)-vector, ε = const > 0.
Theorem 3. Let conditions (9), (10), (34), (39), and (42) be satisfied. Then system (41) allows the unique

(θ, θ)-periodic solution in the form

x∗(τ, τ , ζ) =

τ∫
−∞

X(s, τ, τ , ζ)f(s, es, h(s− τ, es− τ , ζ)) ds, (43)

where (τ, τ , ζ) ∈ R×Rk ×R2k+2
δ , δ = δ(ε) is a sufficiently small positive number.
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The proof is conducted similarly to the proof of the Theorems 1 and 2, and therefore we will not prove that
theorem.

Here, since the free term f is periodically with respect to (τ, τ) with the same periods (θ, θ) as the integral
h(τ, τ , ζ), then the oscillations described by the system (41), and doesn’t undergo any other changes. We will
need this case when studying a nonlinear autonomous system.

Nonlinear system

Let us consider the question of the existence of the multi-periodic solution of the system (1) satisfying
conditions (3), (4), and (5). From conditions (4) and (5) follows that

|f(ζ, x)− f(ζ, y)| ≤ c|x− y|, (44)

|f(ζ, x)| ≤ b+ c|x|, (45)

where (ζ, x) ∈ R2k+2

ε ×Rn∆. Let the constants α, a, b, c and ∆ be related by

a(b+ c∆) < α∆. (46)

The value δ = δ(ε) > 0 is chosen such that, R2k+2
δ ⊂ R2k+2

ε .
We consider the space Sθ,θδ,∆ of vector-functions x(τ, τ , ζ), which continuous for each

(τ, τ , ζ) ∈ R×Rk ×R2k+2
δ , (θ, θ)-periodic for (τ, τ) and bounded by number ∆ > 0 on the norm

‖x‖ = sup
R×Rk×R2k+2

δ

max
j
|xj(τ, τ , ζ)| ≤ ∆.

We define the operator in this space

(Fx)(τ, τ , ζ) =

τ∫
−∞

X(s, τ, τ , ζ)f (h(s− τ, es− τ , ζ), x(s, es, h(s− τ, es− τ , ζ))) ds. (47)

Lemma 2. Let conditions (4), (5), (9), (10), (34), (39) and (46) be satisfied. Then the operator F in the
space Sθ,θδ,∆ has the unique fixed point for sufficiently small δ > 0.

By virtue the conditions (34) and (45) the improper integral (47) converges uniformly. Consequently, by
virtue property (4) the function (Fx)(τ, τ , ζ) is continuous for all arguments.

After shifting τ to period θ, by virtue periodicity x(τ, τ , ζ) with respect to τ , and the property (33) of the
matriciant X, by replacing τ with τ + θ, we are convinced that function (47) is also θ-periodic with respect
to τ . The periodicity of Fx with respect to τ with the period θ directly follows from the θ-periodicity of the
matriciant X, given in (33), and the integral h by τ according to property (25).

Using the estimates (34), (45), and (46) from expression (47), we obtain

|(Fx)(τ, τ , ζ)| ≤ a

α
(b+ c∆) < ∆.

Consequently, the function Fx bounded by the number ∆ > 0. Thus, we were convinced that the operator F
reflects into itself of the space Sθ,θδ,∆.

Further, on the basis of (44), from the representation (47) of the operator F we have the inequality

|(Fx)(τ, τ , ζ)− (Fy)(τ, τ , ζ)| ≤ ac

α
‖x− y‖.

Consequently, by virtue of condition (46) d =
ac

α
< 1, the estimate

|Fx− Fy| ≤ d‖x− y‖

shows that the operator F is a contraction operator.
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Obviously, the space Sθ,θδ,∆ is complete, and then the operator F has the unique fixed point in this space

x∗(τ, τ , ζ) = (Fx∗)(τ, τ , ζ) ∈ Sθ,θδ,∆. (48)

Theorem 4. Under the conditions of the Lemma 2, the system (1) has the unique (θ, θ)-periodic solution for
sufficiently small δ > 0.

For the proof, we show, that the (θ, θ)-periodic by (τ, τ) solution x∗(τ, τ , ζ) of the system (1) satisfies to the
integral equation

x(τ, τ , ζ) = (Fx)(τ, τ , ζ). (49)

Indeed, using this solution x∗(τ, τ , ζ), we consider a linear system

Dx = P (ζ)x+ f(ζ, x∗(τ, τ , ζ)) (50)

by the form (41).
Therefore, in accordance with the Theorem 3, system (50), according to formula (43), has the unique

(θ, θ)-periodic solution x of the operator expression

x = (Fx∗)(τ, τ , ζ), (51)

for sufficiently small δ > 0.
Since the solution x∗(τ, τ , ζ) satisfies the system (1), it is also solution of the equation (50).
Consequently, by virtue of the uniqueness of (θ, θ)-periodic solutions from (51), we have

x∗(τ, τ , ζ) = (Fx∗)(τ, τ , ζ). (52)

i.e. showed that x∗(τ, τ , ζ) is solution of the integral equation (49).
But as shown in the Lemma 2, it has the unique multi-periodic solution. Consequently, from the identities (48)

and (52) we have
x∗(τ, τ , ζ) = x∗(τ, τ , ζ).

Thus, the solution x∗(τ, τ , ζ) has the smoothness property for all arguments and is determined by the
integral equation (49). The theorem is completely proved.
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Ж.А. Сартабанов, Б.Ж. Омарова

Ляпунов векторлық өрiсi бойынша дифференциалдау операторлы
квазисызықты автономдық жүйенiң көппериодты шешiмi туралы

Ляпунов векторлық өрiсiмен байланысты уақыт және кеңiстiк айнымалылы сипаттама бағыты бойын-
ша дифференциалдау операторлы квазисызықты автономдық жүйе қарастырылды. Сызықты жүй-
енiң матрицанты сипаттама бойында экспоненциалды орнықтылық қасиетке ие болғанда уақыт айны-
малысы бойынша көппериодты шешiмнiң бар болуы туралы сұрақ зерттелдi. Ал жүйенiң сызықты
емес бөлiгi жеткiлiктi жатық болады. Мақалада Ляпунов әдiсi негiзiнде көрсетiлген дифференци-
алдау операторлы жүйенiң сипаттамасының қажеттi қасиеттерi негiзделдi; бiртектi және бiртексiз
сызықты жүйенiң көппериодты шешiмiнiң бар болуы және жалғыздығы туралы теорема дәлелдендi;
квазисызықты жүйенiң жалғыз көппериодты шешiмiнiң бар болуының жеткiлiктi шарты анықталды.
Сызықты емес жүйенi зерттеу барысында сығушы бейнелеу әдiсi қолданылды.

Кiлт сөздер: көппериодты шешiм, автономдық жүйе, дифференциалдау операторы, Ляпунов вектор-
лық өрiсi.
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О многопериодических решениях квазилинейных
автономных систем с оператором дифференцирования

по векторному полю Ляпунова
Рассмотрена квазилинейная автономная система с оператором дифференцирования по характери-
стическим направлениям временных и пространственных переменных, связанных с векторным полем
Ляпунова. Исследован вопрос о существовании многопериодических по временным переменным реше-
ний, когда матрицант линейной системы вдоль характеристик обладает свойством экспоненциальной
устойчивости. А нелинейная часть системы является достаточно гладкой. В статье на основе метода
Ляпунова обоснованы необходимые свойства характеристик системы с указанным оператором диф-
ференцирования; доказаны теоремы о существовании и единственности многопериодических реше-
ний линейных однородных и неоднородных систем; установлены достаточные условия существования
единственного многопериодического решения квазилинейной системы. При исследовании нелинейной
системы использован метод сжатых отображений.

Ключевые слова: многопериодическое решение, автономная система, оператор дифференцирования,
векторное поле Ляпунова.
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