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On multi-periodic solutions of quasilinear autonomous systems with
an operator of differentiation on the Lyapunov’s vector field

A quasilinear autonomous system with an operator of differentiation with respect to the characteristic
directions of time and space variables associated with a Lyapunov’s vector field is considered. The question
of the existence of multi-periodic solutions on time variables is investigated, when the matrix of a linear
system along characteristics has the property of exponential stability. And the non-linear part of the system
is sufficiently smooth. In the note, on the basis of Lyapunov’s method, the necessary properties of the
characteristics of the system with the specified differentiation operator were substantiated; theorems on the
existence and uniqueness of multi-periodic solutions of linear homogeneous and nonhomogeneous systems
were proved; sufficient conditions for the existence of a unique multi-periodic solution of a quasilinear
system were established. In the study of a nonlinear system, the method of contraction mapping was used.

Key words: multi-periodic solutions, autonomous system, operator of differentiation, Lyapunov’s vector
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Introduction

It is known that many phenomena connected by a continuous medium are described by systems of partial
differential equations. In many cases, these systems are quasilinear, and these phenomena (sound, light, electro-
magnetic, gas and hydromechanical) are oscillatory-wave in nature. Consequently, the study of solutions of such
systems with oscillatory properties over both time and space variables belong to an important part of the theory
of equations in ordinary and partial derivatives. The foundations of this theory were laid in the classical works
of A.M. Lyapunov, H.Poincaré and the fundamental research of Andronov-Witt-Khaykin, Krylov-Bogoliubov-
Mitropolsky-Samoilenko, Kolmogorov-Arnold-Moser, etc.

A peculiar approach to the problems of the theory of oscillations was proposed in the works of V. Kharasakhal
and D.U. Umbetzhanov [1-8|, based on a deep connection between an almost periodic function of one variable
and a periodic function of many variables, called a multi-periodic function, where the problems are quasi-periodic
solutions of ordinary differential equations, are studied on the basis of multi-periodic solutions of systems of
the partial differential equations of the first order. In this connection, we note that many quite serious results,
known from oscillatory solutions of ordinary differential equations, they are extended to the case of multi-periodic
solutions of partial differential equations [9-20], which were further developed in the articles [21-23].

We note, that some information on multi-periodic solutions of systems of the partial differential equations
is contained in the literature review of the fundamental work [24]|, where the number of papers by one of the
authors is presented.

We also note, that many theoretical questions of physics and technology are based on oscillatory processes.
In particular, we pay attention to the works [25, 26], where an interesting research was conducted of problems
from hydromechanics and control theory related to oscillatory processes described by the differential and integro-
differential equations. These equations are attractive because it is possible for them to consider the problem of
multi-periodic solutions and use the methods outlined in this article.

Of particular interest is the work [27], where the equations with a differentiation operator along the directions
of a vector field on a torus are considered and conditions for the existence of their periodic solutions are
established. Note that the differential operator under consideration is similar to the differentiation operator,
which given in this note.

The methods of Poincaré-Lyapunov and Hamilton-Jacobi for integrating and researching of the periodic
solutions are the basis of the methodology for studying the problem of this work. It is obvious, that the sources
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of multi-periodic solutions of the differential equations are their periodic solutions with different rationally
incommensurable frequencies. In this regard, our attention is drawn to the problems studied in the articles [28, 29]
and some commonality of their study methods with the methods of this work.

One of the common ways to investigate the periodic solutions is to use the methods of boundary value
problems for the differential equations. In the works [30-35] for investigating the oscillatory solutions of some
equations of various types of mathematical physics was used, a technique calling the method of parameterization.
We note that the equations under consideration are representable as systems of equations of first-order derivatives.

In this article, we consider the quasilinear system of equations with a differentiation operator along the
directions of the vector fields, where the characteristic directions of the differentiation operator along the time
and space variables are independent, with the space variables being differentiated along the directions defined
by the Lyapunov’s system.

In the case of a non-autonomous system, the frequencies of the desired multi-periodic oscillations are mainly
determined by the system itself. Consequently, the frequencies and their number are known in advance.

In this autonomous case, the main difficulty of the considering problem is related to the uncertainty of the
frequency of periodic oscillations, which are components of the desired multi-periodic oscillations. This difficulty
was surmountable that the characteristic vector field satisfies the conditions of the Lyapunov’s system. Although,
systems of the partial differential equations that do not contain time variables are often found in the scientific
literature, but the problem of this note on the formulation is new and is being investigated for the first time.

We consider the autonomous system

Dz = P(Q)x + f(¢, ), (1)
with differentiation operator
D—£+ e2 + J§+w(§)2 (2)
- or T Ot Toc /)’
where © = (z1,...,z,) € R"™ are unknown vector-functions with respect to the time 7 € R,
— 0
7= (11,...,7m) € R™ and space ¢ = (Co,...,Ck), ¢G = (§;,m;) € R%, j = 0,k, variables; <e,8> is the
T
scalar product of m-vectors e = (1,...,1) and i = i, cee 9 ; J is a (2k + 2)-dimensional constant
15} on OTm
matrix; ¢(¢) is a (2k 4 2)-vector-function given in a §-neighborhood R§k+2 of a point ¢ = 0 in Euclidean space
0 0 0 0 o 0 —
RZk+2, — — (, o ) , — = <, ), i =0, k, is a vector operator.
oc ~\ae v aa) o, \og oy )Y
The matrix P(¢) = [pi;(¢)]] is holomorphic in the R2"*2 neighborhood of the point ¢ = 0:
+oo 1 9 j
PO =3 5 (¢ 50) PO e R, )
=07

where ¢ > 0 is some constant and § = §(g) > 0 is sufficiently small.
The vector-function f({,x) has the following properties of continuity and smoothness

F(¢ x) € CFF (R*H2 x RY) (4)
with bounded matrix of Jacobi 5
‘f(ai’ ?) <e¢ (C2) e B"P <Ry, (5)

where ¢ > 0 is a constant, Eikw x Ry is the closure of the region R¥+2 % RR.
Thus, set the problem to clarify the conditions the (6, 6)-periodicity of solutions of the system (1) when
conditions (3), (4), and (5) are performed.
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The differentiation operator along the directions of the diagonal of time and
space variables on the Lyapunov’s vector field

Differentiation by the operator D is conducted along directions of vector fields of time variables

dT
B 6
ar © (6)
and space variables
dg¢
=J ) 7
& s @
associated with the time variable 7 € R.
The characteristic of the vector equation (6), outgoing from the point 7o = (77,...,7%) when 7 = 75 is

determined by the relation 7 = 7 + e(7 — 79). For our purpose, it’s useful to take as the initial point 7o = erp.
Therefore, we have
T =erT. (8)

It should also be noted here that the dimension m of the time vector 7 is related to the dimension of the common
frequency basis of the family periodic solutions of the autonomous system (7), which cannot be specified in
advance. In our case, we note that m = k.

The vector field (7) can be characterized by the following properties:

a) The matrix J can be represented in the form

J = dia‘g[VOIQa .. -,VkIQL <Q7V> 7é 07 q S Zk+1a q # 0) (9)
0 -1
1 0
q¢=(qo,...,qx) € ZF1 is an integer vector, v = (v, ...,v) is vector, Z is the set of integers.

b) The vector function ({) is formed by a given scalar holomorphic function W¥({) in some
d-neighborhood ngﬁ of the point ¢ = 0 in Euclidean space R?**2 by applying an operator Ia% with (2k + 2)-

where I, = ( ) is a two-dimensional symplectic unit, v;,j = 0,k, are incommensurable frequencies,

matrix I = diag[ls, ..., Is], whose decomposition of the function of which ¥(¢) begins with a homogeneous form
of at least the third degree:

D(¢) = T& (), ¢ € R3*2,

0= 3 (6. 4) 90)

It is obvious, that the vector field (7) under the conditions (9) and (10) belongs to the class of Lyapunov’s
systems.
By conditions (9) and (10) can be represented system (7) to the scalar form

d&; _ 0¥

dr AL on;

(11)

with the first integral

k
H(C) = Y- (& +n)) + ¥(C). (12)

(13)
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According to the Lyapunov’s method [1, 2|, the variables (&, m;),! # 7,0 <1 < k as functions (&;,7;) with
a fixed number j can be determined from the system of the partial differential equations

OH 83)[ OH 6%‘1 OH

9&; On; - Oy afﬂ aTh',

o o _0How_OH L
8§j 8nj 8’17]' 853 8@
where H = H(() is the Hamiltonian (12) of the systems (13).

System (14) with the initial condition (&,n;) = (0,0) for (§;,7n,;) = 0, under conditions (9) and (10) allows
an unique holomorphic solution (& (&;,7;),m;(&5,n5)) = ¢ (&5, m;) in the sufficiently small neighborhood R2 of
the point ¢; = 0 in the plane R? for fixed values [ # j.

We obtain the function

Hj(&j?”j) = H(<g(€j7nj)7~~7 jfl(éhjunj)7Cj7C;+1(§j777j)7~~‘7C;(§j777j))' (15)

by substituting found solutions (5 (&5,7;), -, CG1(§5m5)5 1 (€G> m5)s - - -5 Gi(€5, my) of the systems (14) to the
Hamiltonian H((). Also, we set up a function

(14)

0,(&m) = 1+;( ) o o) S8 o) ) ), (16)

On the basis of functions (15) and (16), we consider the system of ordinary differential equations

dé - OH,(€;,1;
gj(éjaﬁj)dfj = —jéf;jm)7
(17)
d OH;(&:,n;
(E]anj)dnj jéijj 77])7

which is a Lyapunov’s system corresponding to the frequency v;. Therefore, system (17) defines a two-parameter
family of periodic solutions
gj = h](T] — 70, 55)7 T]?)v
(18)
n; = h] (Tj - T07§]O'777?)

with arbitrary initial values (¢;,7;)| = (£9,79) from a sufficiently small neighborhood Rj, and a period

Tj=T0
2m (1) 2 0 012
5= (1 e (€ 08) + 7 [ ()] + ). (19)
2
which the coefficients cgl), ;2 ,...didn’t depend on the initial data, and they are §; = 177T when ( ?, 77?) = (0,0).

J

Thus, by changing j from 0 to k and using the Lyapunov’s method, we obtain all 1 + k& periodic solutions
(18) of the system (17). These solutions are components of a multi-periodic solution ¢ of the system (7) in the
form

C = (h;)(’r _T07£8777(0)>7h'/0/ (T _Tﬂvggan(o))a"'vh;g(Tk _7—075277’2)7}2’;@/ (Tk: - 7_075277’2)) =

= h(T —T0,T1 —T0y---, Tk — 7-0758a778v R 75](37772) (20)
with initial condition
C|T=7'1=...=7'k=7'0 = (58’7787’527172) = CO (21)
and vector-period 6 = (6,01, ...,0;) with components (19) on a vector variable 7 = (7, 71,..., 7).
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We are passing to the vector notation from (20)—(21), and then the solution ¢ of the system (7) is represented

in the form

Cih(TfTo,?feTo,Co), (22)
where (0,0, (o) = (. Equation (22) together with equation (8), represent the characteristics of the operator (2).
Thus, the following assertion is substantiated.

19. Under conditions (9) and (10), operator (2) is the operator of differentiation with respect to 7 of the
functions z(7,7,() of the along direction of the main diagonal (8) of the time variables and along multi-
periodically closed curves (22) with respect to space variables.

Therefore, the function Dz along the characteristic, given by relation (22), determines the rate of change of
the function z = z(¢) with respect to 7:

dz(h)
D.I"C:h = ?

The statement 1° allows us to go from the differential equations with operator D to the integral equations,
defined along the characteristics.
By the uniqueness property the solutions of the system (7), from the equation of characteristics (22) we
have the expression
CO = h(TO —T,eT0 — T, C)v (23)

which is the first integral of the operator D : Dh = 0.
In addition, based on the same property, we obtain the group property of the characteristic in the form

h (T — s, T —es, h(S — To, €S — €70, CO)) =h (T — 7o, T — €To, CO) (24)

with s € R.

Then we have the following statement.

20, Under the conditions of paragraph 19 the function x (s — 79,7 — e7g, h(s — 79, €s — €79, (o)) taking into
account property (24), is proceed to the function z (s — 7,es — 7, h(s — 7,es — 7, ()) with parameter s € R, and
variables (7,7, (), where the given function defined along the characteristic

T =58 —To,
T = €S — €Ty,

¢ = h(s — 10, es — e1p, o)
with a parameter s based on the first integrals of the systems (6) and (7) in the form
T0 =T,
et =T,
o =h(ro — 7,70 — 7, (),
obtained by relations (8) and (23).
Paragraph 2° allows leaving expressions defined along the characteristics of the operator D to the space of
variables (7,7, ().

Further, by the periodicity the characteristics (18) of the operator D in the period (19), the property of
multi-periodicity of the vector-function (22) can be represented as

h(T + 0,7+ q0,¢) = h(7,7, (), (25)

where the vector-period (6,0) = (6y,01,...,0;) with the components 6 = 69,0 = (6;,...,0) is defined by
the relation (19), and the periods 6;,j = 0,k depend on the initial data ( = (o of the characteristics of the
operator (2), ¢ € Z™.

We note, that when the question of multi-periodicity, we consider periods (#,6) in the space of variables
(1,7,¢) € Rx RF x R’g“, by replacing the initial data (p to the corresponding value (23), and we get functions
with respect to variables (7,7, (), and parameter 7y € R:

9 - 9(7-077—7?7 C),

(26)

0= 5(7-077—7?7 C)
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Since expressions (23) represent the first integral, that is, we have identity
Dh(rg — 1,em9g — 7,¢) =0, (27)
then periods (26) are also first integrals, and therefore, we have identity relations

DH(TOaTa T, C) = 05

_ (28)
DY(ry,1,7,() = 0.
Thus, as a consequence of the identities (27) and (28), we can formulate the following statement.
3°. Under the conditions of the preceding paragraphs, any smooth function f(h) has the properties
Df(h(s—r,es—?,())zo, (29)
f(h (s — 740, es —?—i—q@,()) = f(h(s —T,€es —?,C)), (30)

where s € R is the parameter, and g € Z™, h(s — 7,es — 7, () is the integral function (23).
In deducing relation (29) it was taken into account that if h is the first integral, and then the smooth
function f(h) is also an integral. Identity (30) follows from identity (25).

Homogeneous linear system

We consider a linear system
Da = P(()z, (31)

with respect to the unknown vector-function @ = (21, ..., z,), where the operator D is defined by the formula (2)
with properties (9) and (10); P(¢) = [p;;(¢)]7 is holomorphic matrix in the R2"*2? neighborhood of the
point ¢ = 0, and satisfies condition (3).

The system (31) along the characteristics (22) represents a system of the ordinary differential equations
with the multi-periodic matrix P(h(7 — 5,7 — es,(y)) with respect to (7,7) with period (6, ).

Then it is possible to determine the matrix X of the linear system (31)on the basis of the integral equation

X(TOaTa?a C) =F + /P(h(s —T,€5 — ?a C))X(T(),S,QS,C) dsa (32)

7o

where F is the unit n-matrix, 7o € R, 7 € R, 7 € R*, (e R§k+2 for sufficiently small e > 0, X (9, 79, e70,() = E.
Obviously, the matriciant X (7g, 7,7, ¢) is holomorphic with respect to ¢ by virtue of (3) and (6, 8, §)-periodic

by (70,7,7)
X(ro+0,7+6,7+¢€6,() =X (70,7, 7, (). (33)

Further, suppose that the matrix P(¢) provides the property of the exponential stability of system (31) in
the form
X (10, 7,7, )| < ae™ ") 7 > 7 (34)

with constants a > 1, > 0, where 79 € R. If we take into account the solution x = z(719,7,T,() of the
system (31) with an initial condition that turns into the initial smooth function u(¢), when 7 = 79 in the form

$|T:m =u(() € Cél) (R?H'Q)

expressed by
.I'(T(), T, ?a C) = X(T()a T, ?’ C)u(h(TO — T,€Tp — ?7 C))7 (35)

then from the condition (34) implies the absence of the multi-periodic solution of the system (31), that is
different from zero.

Lemma 1. Let conditions (3), (9), (10), and (34) be satisfied. Then the homogeneous linear system (31) has
no multi-periodic solution, except for the trivial one.

Proof. Indeed, from the representation of solutions (35) and condition (34) follows that for fixed values ¢
any solution with nonzero initial data u # 0 is unbounded.

Therefore, such a solution cannot be multi-periodicity. It only follows that v = 0 is the only multi-periodic
solution of the system (31).
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Nonhomogeneous linear system

Now we consider the system in the form

Dz = P(¢)z + f() (36)

with free term f(¢) of holomorphic in R2k+2:

— 1 2\’ 242
7(0) =Zj,<<,3<> F(0), ¢ € B2, (37)
j=0""

where € > 0 is some constant.
Theorem 1. Let conditions (3), (9), (10), (34), and (37) be satisfied. Then the system (36) has the unique

(6,0)-periodic solution holomorphic with respect to ¢ € R3* 2 for sufficiently small § = §(¢) > 0
(1,7, () = / X(s,7,7,0)f(h(s — T,es = T,()) ds, (38)
— 00

where § = d(¢g) is chosen such that, for ¢ € R§k+2 the inequality |h(7,7,()| < € is satisfied.

Proof. Indeed, by a direct verification, we see, that function (38), which is determined by condition (34), in
the form of an improper integral is the solution of the system (36). In this case, it is necessary to take into account
that the matriciant X satisfies the matrix equation (32), and the integral h has the properties (22) and (23). The
periodicity of the solution (37) with respect to 7 with a period 6 is checked on the basis of the property (33),
and the f-periodicity with respect to 7 follows from the property (25). The property of holomorphy follows from
the holomorphy of the integral h of the matrix P, and the function f given in conditions (3), (10), and (37).

In conclusion, we note that if conditions (3) and (37) about the holomorphy of the matrix P(¢) and vector-
function f(¢) are replaced by the conditions of their continuous differentiability, then generalizing Theorem 1, we
can get the result about the existence of the multi-periodic solution (38), without the property of holomorphy.

Therefore, we have the following theorem.

Theorem 2. Let the matrix function P(¢) be continuously differentiable in R2¥+2:

P(() € O (R2H2), (39)
and the free term f(() of the system also has the same property:

1(0) € ¢ (RZ), (40)
where Cée) (R2+2) is the class of smooth functions of order e = (1,...,1) in R2*+2, If satisfied conditions (9),

(10) and (34), then relation (38) represents the unique (6, §)-periodic solution of the system (36) for sufficiently
small § = §(g) > 0, when ¢ € R2**2.

The proof of the Theorem 2 is similar to the proof of the Theorem 1, with the difference, that the smoothness
of the solutions is everywhere provided by the conditions (39), (40).

Now, additionally we consider the case when the free term f, except ¢ € R?”z, depends on (7,7) € R x RF.

Then we have a non-autonomous system of equations

Dz = P(Q)x + f(7,7,0), (41)
where the vector-function f(7,7, () has the property
Fr+0,7+40,¢) = f(7,7,¢) € CL5 (R x R* x R2+2), (42)

g€ ZkF, e=(1,...,1) is k-vector, e = (1,...,1) is (2k + 2)-vector, & = const > 0.
_Theorem 8. Let conditions (9), (10), (34), (39), and (42) be satisfied. Then system (41) allows the unique
(0, 0)-periodic solution in the form

(1, 7,¢) = / X(s,7,7,0) f(s,es,h(s — T,es = 7,()) ds, (43)

where (7,7,¢) € R x RF x R2*™2 § = §(¢) is a sufficiently small positive number.
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The proof is conducted similarly to the proof of the Theorems 1 and 2, and therefore we will not prove that
theorem.

Here, since the free term f is periodically with respect to (7,7) with the same periods (6, 0) as the integral
h(r,7, (), then the oscillations described by the system (41), and doesn’t undergo any other changes. We will
need this case when studying a nonlinear autonomous system.

Nonlinear system

Let us consider the question of the existence of the multi-periodic solution of the system (1) satisfying
conditions (3), (4), and (5). From conditions (4) and (5) follows that

1f(¢ ) = f(Cy)] < clz—yl, (44)

(¢ @) < b+ cla, (45)

—=2k+2

where (¢,2) € R X EZ. Let the constants «, a, b, c and A be related by

a(b+ cA) < aA. (46)

The value § = §(e) > 0 is chosen such that, R3*t? ¢ R2++2,
We consider the space Sg”z of vector-functions x(7,7,(), which continuous for each
(1,7,() € R x R* x R§k+2, (6, 0)-periodic for (7,7) and bounded by number A > 0 on the norm

lzll=" sup  mazlz;(T,7,¢)] < A
RXRFXRY

We define the operator in this space
(FI’)(T,?, C) = / X(57 T7?7 C)f (h(S —T,€8 — ?7 <)7 I(Sv €s, h(S —T,€8 — ?7 g))) ds. (47)

Lemma 2. Let conditions (4), (5), (9), (10), (34), (39) and (46) be satisfied. Then the operator F' in the

space Sg’g has the unique fixed point for sufficiently small § > 0.

By virtue the conditions (34) and (45) the improper integral (47) converges uniformly. Consequently, by
virtue property (4) the function (Fx)(7,7, () is continuous for all arguments.

After shifting 7 to period 6, by virtue periodicity z(7,7, ) with respect to 7, and the property (33) of the
matriciant X, by replacing 7 with 7 + 6, we are convinced that function (47) is also 6-periodic with respect
to 7. The periodicity of Fz with respect to 7 with the period 8 directly follows from the A-periodicity of the
matriciant X, given in (33), and the integral h by 7 according to property (25).

Using the estimates (34), (45), and (46) from expression (47), we obtain

(Fa)(r, 7,0 < Z(b+cd) < A.
Consequently, the function Fz bounded by the number A > 0. Thus, we were convinced that the operator F

reflects into itself of the space Sg’g.
Further, on the basis of (44), from the representation (47) of the operator F' we have the inequality

_ _ ac
|(F2)(r,7,0) = (Fy) (1.7, Q) < —llz —y].
Consequently, by virtue of condition (46) d = e - 1, the estimate
«

|Fz — Fy| < df|lz - y]|

shows that the operator F' is a contraction operator.
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Obviously, the space Sg’g is complete, and then the operator F' has the unique fixed point in this space
" (7,7,¢) = (Fz")(7,7,¢) € S5 (48)

Theorem 4. Under the conditions of the Lemma 2, the system (1) has the unique (6, #)-periodic solution for
sufficiently small § > 0.

For the proof, we show, that the (6, #)-periodic by (7,7) solution z. (7,7, ) of the system (1) satisfies to the
integral equation

(1,7, ¢) = (Fz)(7,7, (). (49)
Indeed, using this solution z. (7,7, (), we consider a linear system

by the form (41).
_Therefore, in accordance with the Theorem 3, system (50), according to formula (43), has the unique
(8, 0)-periodic solution = of the operator expression

x = (Fa,) (1,7, (), (51)

for sufficiently small 6 > 0.
Since the solution . (7,7, () satisfies the system (1), it is also solution of the equation (50).
Consequently, by virtue of the uniqueness of (6, #)-periodic solutions from (51), we have

(1,7, C) = (Fay) (7,7, (). (52)

i.e. showed that z.(7,7, () is solution of the integral equation (49).
But as shown in the Lemma 2, it has the unique multi-periodic solution. Consequently, from the identities (48)
and (52) we have

.’E*(’T7 Fa C) = LC*(’7'7 Fa C)

Thus, the solution x*(7,7,() has the smoothness property for all arguments and is determined by the
integral equation (49). The theorem is completely proved.
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KA. Caprabanos, B.2K. Omapora

JIsaImyHOB BeKTOPJIBIK epici boiibiHIIA AuddepeHInaagay ornepaTopibl
KBa3WCBHI3bIKThl AaBTOHOM/IBIK, >KYIi€HIH, KOIIIIepUOoAThI MIEHIiMi TypaJibl

80

JISmyHOB BEKTODJIBIK ©piciMeH 6ailJTaHBICTHI YAKBIT KOHE KEHICTIK alHBIMAJIBLIBI CUIIATTAMAa OAFBITHI OOWBIH-
ma auddepeHuangay onepaTopbl KBa3UChI3bIKTHI aBTOHOMIBIK, YKyiie KapacThIPbLIAbl. CHI3BIKTHI XKYi-
€HIH MaTPUIAHTHI CUITaTTaMa GOMBIH A SKCIIOHEHIINAIIBI OPHBIKTHIIBIK, KACHETKE Me OOJIFAH A YAKbIT aifHbI-
MaJIbIChl OOMBIHINA KOIIIEPUOTH MIENIMHIH, 6ap 60JIybl Typasbl Cypak 3epTresi. Al XKyHeHIH ChbI3bIKTHI
eMmec 6eJiiri »KeTKigikTi KaTblK, 60saabl. Makanaga JIamyHoB ojici Herizinge kepcetijiren auddepeHim-
aJay OrmepaTopJIbl XKYMeHIH CUIIaTTaMaChIHBIH KaXKeTTI KacHeTTepl Herizmesiji; GipTeKTi KoHe GipTekci3
CBIBBIKTHI YKYHEHIH KOTEPUOTHI MEImMiHIH 6ap OOTybI XKoHE YKAJFBI3/IBIFBI TYPAJIbl TEOPEMA IOJIETICHI;
KBa3UCBHI3BIKTHI KYHEHIH »KaJIFbI3 KOIIIIEPUO/ITHI MIeNiMiHiH 6ap OOy bIHBIH KETKLIIKTI IIapThl AHBIKTAJIIBI.
CBI3BIKTBI €MeC XKYiieHi 3epTTey GapbIChIHIA CBHIFYIIBLI OeifHesey o/1ici KO TaHbLIIb.

Kiam ce3dep: KoNepuoATHI MIENTIM, aBTOHOM/IBIK, XKYyite, muddepeHnnaiay oneparopsl, JIsSmyHoB BeKTOp-
JIBIK, ©pici.
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KA. Caprabanos, B.2K. Omaposa

O MHOTONEPUOINIECKUX PENICHUSAX KBA3UJINHENHBIX
aBTOHOMHBIX CHCTEM C omepaTropom JauddepeHImpoBaHU
110 BEKTOPHOMY moJiio JIsdamyHoBa

Paccmorpena kBaswimHeiiHas aBTOHOMHAsI CHCTeEMa C OIepaTopoM muddepeHInpPOBAHNS 10 XapaKTepu-
CTUYECKNM HallPaBJIEHUSIM BPEMEHHBIX U IIPOCTPAHCTBEHHBIX IIEPEMEHHBIX, CBA3aHHBIX C BEKTOPHBIM IT0JIEM
JIsanynoBa. UccitetoBas BOIpOC O CyIIeCTBOBAHUI MHOTOTIEPUOINIECKUX IO BDEMEHHBIM IIEPEMEHHBIM Pellre-
HUI, KOTJa MATPUIAHT JIMHEHHON CUCTEMBI BJOJIb XapaKTEPUCTUK 00JIa1aeT CBOHCTBOM SKCIIOHEHIINAIBLHOMN
ycToymBOoCTH. A HeJMHENHAST 9acTh CUCTEMBI SIBJISIETCSI JIOCTATOYHO TUIaKoi. B crarhe Ha OCHOBE METO/A
JIsanyHoBa 060CHOBAHBI HEOOXOAMMBIE CBONCTBA XapaKTEPUCTUK CHCTEMBI C YKA3aHHBIM OIEPATOPOM Tud-
depeHIMPOBaHNS; TOKA3aHbl TEOPEMBI O CYIIECTBOBAHUHM U €IUHCTBEHHOCTU MHOT'OIEPHOINYECKUX Dellle-
HUI JTUHEWHBIX OTHOPOIHBIX U HEOTHOPOJIHBIX CHCTEM; YCTAHOBJIEHBI JJOCTATOYHbBIE YCJIOBUS CyIIIeCTBOBAHM I
€/IMHCTBEHHOT'O MHOTOIIEPUOINIECKOTO PEIIeHNsT KBA3WINHEIHON cucTeMbl. [1pu uccienoBannm HeJTMHEHHOMN
CHCTEMBI UCIIOJIb30BAH METOJ, C2KATBIX OTOOPAXKEHMUIA.

Kmouesvie ca06a: MHOTOTIEPUOINTECKOE PEIIEHNE, ABTOHOMHAS CHCTEMa, OmepaTop auddepeHInpOBaAHNS,
BEKTOpPHOe I1oJie JIsmyHoBa.
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