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Development of a mathematical model for signal
processing using laboratory data

In this paper, we consider a mathematical model for the interpretation of the radarograms which obtained
by GPR systems. As noted in [1-3], in addition to testing the algorithms, it is necessary to compare the
calculated data of the mathematical model with the real data obtained from the GPR. One of the reasons
preventing the spread of GPR technologies is the complexity of data interpretation, which requires the
involvement of highly qualified specialists. In connection with this research as a mathematical model and a
comparison with the real data of the GPR in an ideal layered medium, will provide a method for interpreting
radarograms. We have conducted a series of experimental studies using the Loza — A georadar at the newly
created laboratory ground. A distinctive feature of these studies is the choice of several localized objects
in the form of iron sheets placed in an ideal layered medium, namely in clean dry sand. The choice of
such an environment is necessary for testing the algorithms, the mathematical models developed by us
for determining the depth of localized several objects. A series of experimental studies were conducted
using georadar and a number of radarograms were obtained to study the depth of objects. A cycle of
calculations was carried out to verify the conformity of the results of mathematical modeling with real
georadar data. Key words: electrodynamics equation, magnetic permeability, dobeshi wavelets, medium
conductivity, dielectric permeability, Maxwell equation.

Keywords: electrodynamics equation, magnetic permeability, dobeshi wavelets, medium conductivity, dielectric
permeability, Maxwell equation.

1 Problem statement. Mathematical model

One of the main reasons preventing the wide spread of georadar technologies is the complexity of data
interpretation, which at the present stage requires the involvement of highly qualified specialists. The way out
of this situation is to create a mathematical apparatus for solving the inverse problem of radar sensing, which
will minimize the operator’s participation in obtaining the final result, as well as extract the maximum amount
of information from georadar data. In connection with this research as a mathematical model and comparison
with real data of ground-penetrating radar in the ideal layered medium, will provide the methodology of the
interpretation of the GPR.

This kind of problems are related to the inverse and incorrect problems, the foundations of which were laid
in the theory of the work Tikhonova, M. M. Lavrenteva, V. K. Ivanova, V. G. Romanova.

One of the main obstacles in the localization of underground facilities is the upper part of the soil lying above
the desired objects. Passing through this area, the electromagnetic waves reflected from various objects interact
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with each other, can be amplified or, conversely, mutually reduced. One way to overcome this problem is to
continue to solve the system of Maxwell’s equations from the earth’s surface in the direction of the location of the
desired objects. The problem of continuation is one of the most difficult and incorrect problems of mathematical
physics, complicated in this case by the presence of attenuation of the electromagnetic field in conducting media.
Problems of continuation of solutions of equations of mathematical physics from the part of the boundary in
many cases are strongly ill-posed problems in the classes of finite smoothness functions and are the first step in
solving the coefficient inverse problems [4-7]. The approach of regularization of the field problem was proposed
in the paper by V. Kozlov, V. G. Mazya, and V. Fomin in 1991 [8].
Consider the system of Maxwell’s equations [9]:

g, (z,y,2) € R®, x#0, t>0. (1)

e _rotH + oF + j°™ = 0,
wog +rot B =0,

There are positive functions e(z,y, 2), o(x,y, z), p(z,y, z) and the permittivity, conductivity and magnetic
permeability of the medium, respectively.

R ={&,y,2€ R, x<0} —air, R ={x,y,2€ R, x>0} — earth.
We consider that electromagnetic oscillations up to the moment of time ¢ = 0 are absent:
(B H) | t<0 =05 [t<0 =0

and then induced by a side current j°(z,y, z, ).

Let us consider one of the simplest variants of the problem, when €, o and u depend only on the depth z
and one horizontal variable y, and the source of the external current is a sufficiently long (infinite) cable located
in the center and stretched along the z axis:

0

jcm($7y7zvt) = 0 g(aj,y) V(t) (2)
1

Here, the function g(z,y) describes the transverse dimensions of the source.

In this case, ignoring the influence of the cable ends, we conclude that only three components ., H,, H,.
remain nonzero in the system of Maxwell equations.

After exclusion of the first equation of partial derivatives of the H, component and H, obtain regarding
FE,the second order equation:

O2E, 0E, 0°E., O%E,

!
= - t
JE BT + o 5 92 + 392 g(z,y)V'(1), (3)

to which we add the initial condition

oF,
Ez| —0=0, =0;
t=0 8t =0
boundary conditions:
oF,
— =0, E|_._=0F,__ =0 FE, =0
T |y, o= = y=+u1

and conditions at the interface of media:

OF, OF,
E) __ =0, — =0,[F.]._. =0, —_— =0,
Bl =0 5] ol =0 5]
where & = go&.¢1; €0 = 8.854 - 10712 F/m dielectric constant; &, = relative dielectric constant

(t — to)?

o = 410~ g/ma — sm/m, V/(t) = exp { 2

} ley) = 0(a — 2)(a—y),

a = 0.025 m — the size of the source. V'(t) — function describing the source of electromagnetic oscillations
emitted by the transmitting antenna.
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2 Numerical calculation

Consider a homogeneous medium at a site of 10 by 12 meters with an inclusion size of 0.6 by 0.4 m. The
capacity of the pit at a depth of 0.6 m.

Parameters of homogeneous medium

Dry sand e1=6 o1 = 0.62 h1 =0.6m
Rectagular iron sheet thickness | eo =1 | 09 = 0.769 - 107 hy = 0.005 m
Wet sand €3 =40 o3 = 0.005 hsz = 0.5 m or more

Calculation parameters: step z is equal to 0.01; step y equal to 0.01. The time step is considered from the
Courant condition. The calculation time is from 0 to 60 ns. The problem is solved by a finite-difference method
using an explicit scheme.

First, we consider a homogeneous medium without inclusions. Calculate field Egl)(a: =0,y,t).

Then consider the environment with inclusion and calculate the total field £ (z = 0,y,t). The anomalous field
allows you to see the reflections from the localized object in the form of a hodograph (Fig. 1). In the case of
two localized objects (Fig. 2).

Figure 1. Anomalous field of a localized single object in a homogeneous medium

The calculated results are in good agreement with the measured GPR a GPR.

Figure 2. Anomalous field of two localized objects in a homogeneous medium

The results of the calculations are qualitatively the same as the radarogram measured by the georadar.
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8 Processing of georadar signals. Cleaning the route from moise using wavelet transform

To improve the noise immunity of the georadar method, as a rule, pre-processing of experimental measure-
ments is performed in order to isolate informative signals. The essence of the processing of georadar data is, first
of all, in the allocation of a useful signal on the background of noise and noise. To distinguish useful signals, the
difference between their characteristics and the corresponding characteristics of noise and interference waves is
used [10, 11].

One of the ways of the primary processing of the radargram is the wavelet transform. With the help of
wavelet digital signal conversion in the radar can reduce the influence of high-frequency components in the
spectrum of the signal.

One of the ways of processing of the radargram is the wavelet transform. With the help of the digital
signal wavelet transform in the radargram, it is possible to remove high-frequency components from the signal
spectrum.

The wavelet transform of a one-dimensional signal is its representation as a generalized series or Fourier
integral over a system of basis functions [12]:

_ t—>b
pan (t) = la| 1% ()

constructed from the parent (generating) wavelet 1 (t), due to time - shift operations — b and time-scale changes
— a. In the study, the signal is represented as a set of successive approximations of coarse(approximating)
Aj(t)and refined(detailing) components:

with subsequent refinement by iterative method. Each step of refinement corresponds to a certain scale, that is,
the level jof analysis (decomposition) and synthesis (reconstruction) of the signal. This representation of each
component of the signal by wavelets can be considered in both the time and frequency domains. In a multiscale
analysis, the signal f(¢) decomposes into two components:

f(@) :Zak Pk (t)+zdk Ui (1) -
k k

The basis functions ¢(t) and (t)are uniquely determined by the coefficients h; :

p(t) =2 hp(2t —1);
l

U(t) =2 gp(2t —1).
l

In the transition from the current scale j to the next j+ 1, the number of wavelet coefficients is halved, and
they are determined by the recurrence relations:

Ajy1k = E hi—2.k0; k;
7

djt1,r = E Ji—2,kCj k>
7

where
= (_1)lh2n7171-

When restoring (reconstructing) a signal by its wavelet coefficients, the process proceeds from large to small
scales and is described by the expression [12]:

aj_15 = E (hi—21a5,1 + Gr—21a;,).
1

Cepust «Maremarukas. Ne 4(92)/2018 151



S.I. Kabanikhin, K.T. Iskakov et al.

Daubechies wavelet DB4 were used to clear the signal from noise [13]. The Daubechies wavelets do not
have analytical expressions and are determined only by the filters. In practical applications, approximating hy,
and detailing gy, wavelet coeflicients are used, without calculating the specific shape of the wavelets [14]. For
Daubechies wavelet db4 the factors are the following: Decomposition into components of discrete Daubechies
wavelets is carried out according to the formulas

a; = hoS2i—1 + h152; + hasaitr1 + h3s2iqa;

d; = goS2i—1 + g152; + g252i+1 + g3S2i121=1, 2,..., n/2-1;
Uns2 = hosp—2 + h1sp—1 + haso + h3si;
dn/2 = 9goSn—2 + g1Sn—1 + 9280 + g3s1.

Formula (1) is a pyramidal algorithm for calculating the wavelet coefficients of Mall [14]|. These formulas
digital filter h,, from the s, signal allocates low frequencies, and the filter g,, allocates the upper frequencies.
Wavelet transform the track radargram has been used on a software-controlled threshold processing of detail
coefficients (thresholding). The algorithms thresholding the adaptive threshold limits established for each factor
on the criterion of Stein’s unbiased risk estimation (Stein’s unbiased risk estimation) [15].

When restoring (reconstructing) a signal by its wavelet coefficients, the process proceeds from large to small
scales and is described by formulas at each step [16]:

ar = hasn + h1s, + hos1 + hasz_q;

(2= goSz +g18n —1+92511+G35n;
a; = hasii +hisia o +hosica gy +hasia a 11=3,5,.. n/2——1(=4,6,..n/2 (odd);
@i = goSizt +g18ici m G281y + g3Sicaywi=4,6,.. n/2 (even).

provided that the detailing coefficients of the previous levels are recorded in place of the signal values.
The results of the transformation track of Daubechies wavelets is presented in Figure 3.
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Figure 3. Chart of the radargram route after the wavelet transform
4 Testing of the model based on the device Loza - B. FExperimental studies

To test the algorithm of the mathematical model to detect the depth of the objects and study its physical
properties, a laboratory polygon was created, located 80 kilometers from Astana along the Kurgaldzhinskaya
highway. A sand pit was chosen for the landfill, which corresponds to the model of the environment: air; clean
dry sand; targets; and the underlying layer (wet sand), see figure 4 left fragment). The size of the pit: length
0.6 m.; width 0.5 m.; depth 0.65 m. the dimensions of the target - iron sheet rectangular: width 0.3 m; length
0.4 m.; thickness 0.005 m. Cm. Figure 4 (left fragment). The target is placed at a depth of 0.6 m. for georadar
studies, it is necessary to mark the site where the object is located, see Figure 4 (right fragment).
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Figure 4. Metal disk

In order to test the algorithm, which will be given in the next section below, and to verify the results
of numerical calculations for the detection of localized objects, a test experiment was conducted to detect a
localized object using a georadar.

Georadar Loza - V was measured with the diversity of antennas. The measurements consist of 20 points,
starts with 0 point and ends with 20 point. The transmitting antenna (source) is at point 0 and the receiving
antenna measures at all other points. Then the transmitting antenna (source) is moved to the next point, and
the receiving antenna goes through all the other points. And so continue until 20 point. See Figure 4 (right
fragment), Figure 5. All data were digitized and summed. Then a comparative analysis of the measured data
with the results of solving the inverse problem of detecting localized objects was carried out.

A A 4

A A A A A
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mar 20 cMm
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L] e o e e o e o e

Figure 5. Scheme of the experiment with antenna diversity

Figure 6 shows the results of measurements carried out by the device in a homogeneous medium, i.e. without
a target. This is necessary for us to analyze the radargrams obtained directly from the media in which the targets
are placed.

Figure 6. The radargram of a homogeneous medium
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Figure 7 shows the results of measurements carried out by GPR according to the above scheme. Researched
the area in which is hidden a single object — an iron sheet of a rectangular shape.

10 30

a b

Figure 7. a) Radargram of the area with one hidden object-iron sheet; b) The difference of the
radargrams received from the environment with the target and without it on the same site

Similar experimental studies were carried out on a site in which two identical objects are hidden — iron
sheets at a depth of 60 cm and at a distance from each other relative to the day surface by 20 cm.the results of
the studies in the form of radargrams are presented in Figure 8 (a) with targets and in Figure 8 (b), the result
is the same as in the past case of the difference.

ns

a b

Figure 8. a) radargram of the area with hidden two identical objects-iron sheet; b) the difference
of radargrams obtained from the medium with and without targets on the same site

By the type of the hodograph it is possible to assume, what layers with what parameters are in the studied
environment. You can also use a hodograph to determine that a localized object is present in your environment,
and you can specify its location.
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Figure 9. Radargram of the experiment

According to the hodograph, the depth of the localized object is determined, which is equal to 60 cm.
(Fig. 9). In this paper, a mathematical model to determine the depth of localized objects is constructed.

A series of experimental studies, with the use of georadar Loza-B. a cycle of calculations to verify the
compliance of the results of mathematical modeling of real georadar data.

The work was supported by the grant of MES RK under the contract M 132 from 12.03.18 «Development
of algorithms and embedded software to determine the geoelectric section for geoinformation technology GPR»

(IRN AP05133922).Received 07.09.2018, accepted for publication 12.10.2018.
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C.U. Kabanuxun, K.T. Uckakor, B.b. [lloanan6aes, M.A. [lumuiennn, JI.K. TokceitiT

3epTxaHaJbIK AepeKTepai maiigajaHa OThIPBIN JAa0bLIABI OHJEY
YIIiH MaTeMaTHuKaJbIK MOJEJb/Il 23ipJiey

MakaJstazia reopaiuosioKaInusiay KyieciMeH aJIbIHFaH pajiap CUTHAJJIAPBIH TYCIHAIPY YIIH MaTeMaTHKa-
JIBIK, MOJIEJIb KapacThIpblrad. [1-3] sKyMbIcTapia KepceTiireH/eit, ajJropuTMaepai Tecrijieyre KOCBIMIIA
MaTEeMATUKAJIBIK MOJIEJIb/IIH €CEeNTIK IePEeKTEPiH reopajiaplaH aJbIHFaH HAKTHI JIEPEKTEPMEH CAJIBICTBIPY
KakeT. ['eopajap TeXHOJIOTUIAPBIHBIH, TapaJyblHa KeJAepri KeaTipeTin cebenTepiy 0ipi — »Korapbl OLTiKTI
MaMaHIapAbl TAPTYIALI TAJAIl €TEeTiH JepeKTep/ il TYCIHAIpYAiH Kypaesiiairi. Ocbiran GaitIaHBICTBI MaTeMa-
THUKAJBIK MOJIEJIb/I YKOHE TeopaJlapblH HAKTHI JIePEeKTePiMEH CAJIBICThIPA OTBHIPBII, HICAJJIbI JIeHIreieri
OpTaHBI 3ePTTEY PaIaporpaMMaJIap/ibl TYCIHIIPY 9IiCiH YChIHAIHI.

Kiam ceadep: a3ieKTpaAuHAMUKA TEHJIEY1, MArHUT ©TKi3rimriri, JloGeru BeitBieTTepi, OPTaHBIH, O TKI3TIIITIT,
JUIEKTPJIK OTKi3rimiri, Makceeaa TeHaeyi.

C.U. Kabanuxun, K.T. Uckakor, B.B. Illonnan6aes, M. A. Ilumienus, JI.K. Tokcent

156

PazpaboTka MmaTemaTrmdeckoii Mojiesin 1o oopaboTke curHaJja
C UCMOJIb30BAaHUEM JAaHHBIX JIaOOPATOPHBIX MCCJIEIOBAHUIL

B crarpe paccmorpena maremMaTrnyeckas MOJIEIb I MHTEPIIPETAIMN PaJIapOrpaMM, IIOJIYUEeHHBIX Ieopa-
JIMOJIOKAMOHHOM cucreMmoil. Kak ormedeno B paborax [1-3], noMumo anpobanuy ajropurMoB, HeOGXOAU-
MO COIIOCTaBUTBH pacUYeTHbIE JAHHbIE MAaTEMATUYECKOU MOJEJU C PEAJbHBIMU JAHHBIMU IIOJIYyYEHHBIX OT
reopasapa. OJHOI U3 IPUYMH, HPEHATCTBYIOMUX PACIHPOCTPAHEHUIO I'EOPAJIAPHBIX TEXHOJIOIHil, sBJIsSeT-
Csl CJIOKHOCTb WHTEPIPETAINY JAHHBIX, TPeOYIOIasi MPUBJIEYeHNs] BHICOKOKBATUMUIIMPOBAHHBIX CIIEIHa~
JUCTOB. B CBsi3U ¢ 9TUM mCCI€TIOBAHMS MATEMATHYECKON MOJEIN, a TAKXKe COMMOCTABJICHHE C PeabHBIMU
JAHHBIMH eopaJapa B UJleajIbHOI CJIOUCTOI cpeie MO3BOJIUT IOy YUTh METOAUKY MHTEPIIPeTallui PaJiapo-
rpaMM.

NI0UEBBIE CAOBG: BHEHUE DJIEKTPOINHAMUKN, MATHUTHAS TPOHUIIAEMOCTDb, BEWBJIETHI 11, TTPOBO-
K €8blE CAO aBHEHUE JICKTPOIIHA. , Ma a o) aeMOCTb, BEHBJIE oberru, mpoBo
JIMMOCTD CPeJIbl, JMJIEKTPpUYEcKas IPOHUIIAEMOCTD, ypaBHenue Makcsesuia.
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