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Inverse source problems for a wave equation with involution

A class of inverse problems for a wave equation with involution is considered for cases of two different
boundary conditions, namely, Dirichlet and Neumann boundary conditions. The existence and uniqueness
of solutions of these problems are proved. The solutions are obtained in the form of series expansion using
a set of appropriate orthogonal basises for each problem. Convergence of the obtained solutions is also
justified.
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1 Introduction

In many physical problems, determination of coefficients or right-hand side according to some available
information (the source term, in case of a wave equation) in a differential equation is required; these problems
are known as inverse problems. These kinds of problems are ill-posed in the sense of Hadamard.

The purpose of this paper is to study inverse problems for a nonlocal wave equation with involution of space
variable x. We consider the nonlocal wave equation

Ut (1) — Uy (T, 8) + EULe (T — 2, t) = f (), (1)

for (z,t) e Q={0<z <m, 0<t<T}, where ¢ is a real number.

Wide opportunities for applying equations with deviating argument in mathematical models have increased
the interest of the study of new problems for partial differential equations [1-3].

Among differential equations with deviating arguments, a special place is occupied by equations with a
deviation of arguments of alternating character. Such deviations include the so-called deviation of involution
type [4]. To describe them, let T be an interval in R and let X € T be a real variable.

The homeomorphism

A (X)=a(a(X)=X

is called a Carleman shift (deviation of involution) [5].
Equations containing Carleman shift are equations with an alternating deviation (at X* < X being equations
with advanced, and at X* > X being equations with delay, where X* is a fixed point of the mapping « (X) ).
Concerning the inverse problems for partial differential equations with involutions, some recent works have
been implemented in [6-11].

2 Statement of problems

The paper is devoted to two inverse problems concerning the wave equation with a perturbative term of
involution type with respect to the space variable. We obtain existence and uniqueness results for these problems,
based on the Fourier method.

Problem D. Find a couple of functions (u (z,t), f (x)) satisfying the equation (1), under the conditions

u(z,0) =0, z €[0,n], (2)
u(z,T) =1 (z), z €[0,7], (3)
ug (,0) =0, x € [0,7], (4)
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and the homogeneous Dirichlet boundary conditions
u(0,t) =u(m,t)=0, t 0,17, (5)

where ¢ (z) is a given sufficiently smooth function.
Problem N. Find the couple of functions (u (z,t), f (z)) in the domain € satisfying equation (1), conditions
(2), (3), (4) and the homogeneous Neumann boundary conditions

ug (0,t) = uy (m,8) =0, t €[0,T]. (6)

A regular solution of the problems D and N is the pair of functions (u (z,t), f (x)), where u € C? (Q) and
fec (o).

3 Spectral properties of the perturbed Sturm-Liouville problem

Application of the Fourier method for solving the problems D and N leads to a spectral problem defined by
the equation
y' () —ey’ (m—2)+ My (z) =0,0 <z <, (7)

and one of the following boundary conditions
y(0) =y (m) =0; (8)

y' (0) =y (m) =0. (9)

It is easy to see that the Sturm-Liouville problem for the equation (7) with one of the boundary conditions
(8) and (9) is self-adjoint. It is known that the self-adjoint problem has real eigenvalues and their eigenfunctions
form a complete orthonormal basis in L? (0,7) [12]. To further investigate the problems under consideration,
we need to calculate the explicit form of the eigenvalues and eigenfunctions.

It is easy to show that for |e| < 1 the problem (7), (8) has the following eigenvalues

Mo = (1+¢e)4k* k€N,

Aepr = (1—2) (2k+ 1), k € No = NU {0}

and eigenfunctions
yZDk = \/%Sil’leQ}, k eN;

(10)
yﬁ“ = \/%Sin(% + 1)z, k € No.
Similarly, the problem (7), (9) has the eigenvalues
A1 =1 +¢) 2k +1)%, k e N;
A = (1 —¢)4k? k € Ny,
and corresponding eigenfunctions
W =75
N o _ /2 .
Yohy1 = \/;cos(Qk—l-l)z, k € No; (11)

Yy = \/gcosﬂm, keN.

The following lemma is proved in [11].
Lemma 1. The systems of functions (10) and (11) are complete and orthonormal in L* (0, 7).
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4 Main results

For the considered problems D and N, the following theorems are valid.
Theorem 1. Let || < 1, ¢ € C*[0,7] and ¥ (0) =@ (1) =0, i =0,1,2,3,4. If

cosvVl—e(2k+1)T <d1 <1

and
cosV1+e2kT < 63 < 1,

then the solution of the problem D exists, is unique and it can be written in the form

X (L—cosyVI—e(2k+1)t)sin(2k + 1)z,
e =) S i@ DT @k T

N i (1 —cosv/1+e2kt)sin2kz , .
(1 —cos I+ e2kT) 16" 2"

. - (1_5)¢§k 1 .
/@) 7;0 (1—008\/1—5(2k+1—;T) (2k +1)2 sin (2% + 1) o+

> (1+¢e) s, .
+ 2%, 13
; (1 —cosv/1+ EQkT) 4k2 St e (13)

where ¢3) | = (@ (), y5 ) and ¢ = (@ (2), ¥

Theorem 2. Let || < 1, ¢ € C*[0, 7] and ¥ (0) = ¢ (1) =0,i =0,1,2,3,4. If
cosvV1l—eRk+1)T <01 <1

and
cosV1+e2kT < o9 < 1,

then the solution of the problem N exists, is unique and it can be written in the form

u(x t)_i (1—cosx/m(2k+1)t)cos(2k:+1)m
7 _k:O (I_COSM(2I§+1)T) (2k+1)4

¢3k+1+

+§: (1 —cosv1— 52kt) cos2kx

; 14
£~ (1 - cos I — e2kT) 16k" Y (1)

e (1+¢€) Y341 .
f(x)_,; (1—005\/1+E(2k+1—3T) kg SR Dt

e o]

+ Z (1—e) vy cos 2kx; (15)
— (1 — cos /T —e2kT) 4k?

where ¢g,t)+1 = (w(4) (z), yé\,fcﬂ) and 1/)5? = (¢(4) (), yé\lg) .

5 Proof of the uniqueness of the solution

Suppose that there are two solutions {u; (z,t), f1 (x)} and {usz (x,t), f2 ()} of the problem P. Denote
u (.’E, t) =u (xa t) — U2 (1'7 t)

and
fx) = fi(x) = fa(2).
Then the functions u (z,t) and f (x) satisfy (1) and the homogeneous conditions (2) and (5).
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Let .
1
u(z,t (16)
|
ugg (1) = \/z/u (x,t) cos2kxdz, k € N; (17)
0
2 s
uggt1 (1) = \/;/u (x,t) cos(2k + 1)xdx, k € No; (18)
0
1 ™
= [ )z (19)
y
for = \/z/ f(x) cos2kxdz, k € N; (20)
0
fors1 = \/E/ f (z) cos(2k + 1)xdx, k € N. (21)
0

Applying the operator g—; to the equation (16) we have

// (e}
ug ( /D xtda:—f/umxt — EUgy (T — x,t)) dx + fo.

Integrating by parts and taking into account the homogeneous conditions (2) and (6) , we obtain

ug (t) = fo.

Hence it is easy to get fo = 0,uq () = 0.
In a similar way for the functions (17)—(21) it is easy to prove that

for =0, forg1 = 0,u2 (t) = 0, ugpy1 (£) = 0.
Further, by the completeness of the system (10) in L? (0, 7) we obtain
f@)=0u(z,t)=0,0<t<T,0<z <.

The uniqueness of the solution of the problem N is proved.
The uniqueness of the solution of the problem D can be proved similarly.

6 Proof of the existence of the solution
We give the full proof for the problem D. The existence of the solution of the problem N is proved analogously.

As the eigenfunctions system (10) of the problem D forms an orthonormal basis in L2 (0,7) (this follows
from the self-adjoint problem (7), (8)), the functions u (z,t) and f () can be expanded as follows

Z Ugg+1 (8)sin (2k + 1)z + Z ugg, () sin 2kx; (22)
k=1

x) = Z fokt1sin 2k + 1)z + Z for sin 2kzx, (23)
k=0 k=1
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where for11, for, usg+1 (t), usk (t) are unknown. Substituting (22) and (23) into (1), we obtain the following
equation for the functions usg11 (t), usg (t) and the constants for11, for

gy (1) + (1 —¢) (2k + 1) ugpeyr (t) = forras

uyy (1) + (1 +¢) 4k2ugg (t) = for

Solving these equations [13], we obtain

Ugpt+1 (t) = %2 + CipcosvV1 —e(2k+ 1)t + Copsin V1 —e (2k + 1) ¢t
(1-2)(2k+1)
ugg (1) = (14_{% + D1 cos V1 + €2kt + Doy sin /1 + £2kt,

where the constants Ciy, Cok, D1k, Dok, for+1, for are unknown. To find these constants, we use the condi-
tions (2). Let tak, ¥or+1 be the coefficients of the expansions of ¥ (z)

Yopt1 = \/Z/w (x) sin (2k + 1) xdz;
0

ok = \/i / 1 () sin 2kxdz.
0

for+1
Ugpa1 (0) = ——————— + C1 = 0;
2041 (0) 1-e)@k+1)? ™

Uy, (0) = Cap, = 0;

We first find Cyg, Coy :

U2k +1 (T) = (]-;)CQ(kM (1 — COS \/1 — & (2]@ + 1) T) = ¢2k+1'

The constant for1 is represented as

Fobas = (1—2) 2k +1)" Yo
A 1—cosyVT—e(k+1)T"

Now we find D1y, Doy:

f2k
gy (0) = (T +e)dk2 + D1k = 0;

uby, (0) = Doy, = 0;

f2k

v (1) = a1

(1 — cos V1 +e2kT) = oy
For the constant fsp, we find:

(14 ¢) 4kt
1 — cos\/1+ e2kT’

Substituting usg (t) , usk+1 (), for, for+1 into (22) and (23), we find

ka:

(2,) = f: (1—cos vI—e(2k +1)t)sin (2k + 1)
S T VT sk )T

> (1 — CoS m2kt) sin kaw
= (1—cosyIvekt)

Yog+1+

+
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Suppose that 4 ,
D 0)=0, O (1) =0,i=0,1,234

then

_ 1 (4) _ 1w
¢2k+1 - (2/€+ 1)4¢2k+17 7Z}2k - 16k4 .

Then we have (12).
Similarly,

O (1— )i |
71@2:0 (1—cos\/§(2]§+1)T) (2k+1)2 Sln(2k+1)x+

(I+¢) ¢§k
+ sin 2kx.
Z 1 —cosv/1+ EQkT) 4k2

Now for the convergence of the series, we have the following estimate

- > (1—cosv1l—c(2k+1)t)
2l ’;) (1—cosvV1—e(2k+1)T) (2k 4 1)

4
511+

+i (1 — cosv/1+ e2kt)

S| <
1 —cosy/1+ €2kT) 16k% -

=1

Wb (4)
CZ 2k+ 2,€+1|+CZ 16k4|¢ | < oo. (24)

Similarly for f (z) we obtain the estimate

> (1 =€) [apyq] = (1+¢) [ty |
<> S+ <
— (1—cosvVI—e(2k+1)T) (2k + 1)2 (1 — cos /1 + e2kT) 4k>

k=1

< CZ nglc)—s—l OZ | (25)
- (2k +1)2

k=0

Since by hypotheses of Theorem 1, the function () is continuous on [0, 7], then by the Bessel inequality
for the trigonometric series the following series converge:

> |ust] se v

26
L2(0 7\') ( )

!w%+J <0 o @), (27)

Ly(0,m)

which implies the boundedness of the set

{0} el

Therefore, by the Weierstrass M-test (see [14]), the series (24) and (25) converge absolutely and uniformly in
the domain Q.

Now we show the possibility of termwise differentiation of the series (24) twice in the variable x and twice
in the variable t. For this purpose, we prove that the series obtained by means of term by term differentiation
converge absolutely and uniformly on 2. Given the estimates (26) and (27) we have

> (1—cosv1l—c(2k+1)t)
Z (1—cosv1—e(2k+1)T) (2k + 1)?

[tz (2,t)]

SIS+
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+§: 1—COS\/1+62]€7§)

S| <
1 —cosv/1+ 52kT) 4k2 -

=1

1 (4) (4)
<C g +C E 00
= ~ (Qk 1)2 ‘¢2k+1| 4k2 ‘77[} | < )

(|sin\/1—€(2k‘—|—l)t|
1—cosv1—e(2k+1)T) (2k + 1)2

o .0 < VT=23 ¢ 5 [v6] +
k=0

> ‘sin V14 E?k;t|
Vi
A 5; (1 — cos /1 + 22kT) 4k?

5| <

§ : (4) § : L@
< +
— Ckzo (2k ) ‘¢2k+1| Ok:1 4](;2 ‘/IZJZIC
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P. Tanpurorny, B.T. Tepebek

MNuBomonusaabl TOJNKBIH TEHJAEY1 YIIIH JIepeKKe3ai Kepi ecernrep

Maxamnaga exi TypJii mekapaJibIk MIApTIEH, aTtal aiiTkanga, Jupuxie xoune Hefiman 1mexkapasbik mapTra-
pPBIMeH OepijireH MHBOJIIOIUSCH TOJIKBIH TEHIEY1 YIIiH Kepi ecenTep Kachl KapacThIPbLIIbl. OChl ecenrepiiy,
merriMinig 6ap 60Ty bl MEH >KaJIFbI3AbIFEL 1asesaer . Hlemim opbip eceniy coiikec opToronasas 6asucrepi
apKbLIBI 2KIKTEJINeH KAaTap apKpLIbl ajablHAbpl. Ol menriMaepain X KUHAKTBIIBIFDL JOJIeJIeH .

Kiam cesdep: kepi ecem, uHBOMIONUsI, OGeitokas TOaKbH TeHaeyi, [IItypm-Jluysumn ecebi, memmivHuin 6ap
OOJIYbI, IIENTIMHIH KaJIFbI3bIFbI.
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P. Tarmmurorsy, B.'T. Topebek

Oob6paTHble 331291 UCTOYHUKA JJ1 BOJTHOBOTO
YPaBHEHUsI C MHBOJIIOIIME

B crarpe paccmorpen kiracc oOpaTHBIX 3a7a9 IS BOJIHOBOTO YPAaBHEHUS C WHBOJIIOIUEN M1 CIy9Ia€B JIBYX
Pa3HbIX I'PAHUYHBIX YCJIOBHUI, a UMEHHO IpaHUYHBIX ycjiaoBuit Jupuxie u Heitmana. /lokazanbl cyIecTBo-
BaHUE U €UHCTBEHHOCTD PEIICHUH ITUX 3a/a4. Perenns norydeHbl B BUIe Pa3JI0KEHUsI PSAJIOB C UCIIOJIB30-
BaHUEM HabOPa MOJIXOIAIIIMX OPTOTOHAJLHBIX 0A3MCOB I KasKJIOW 3a1adu. TaksKe JI0Ka3aHa CXOAUMOCTD
TIOJIyY€HHBIX PEIIeHUN.

Karouesvie crosa: obpaTHas 3aja4a, MHBOJIONNSA, HEJOKAJIBPHOE BOJIHOBOe ypaBHeHHMe, 3anada [IlTypma-
JlnyBuiist, cyIecTBOBaHME pelIeHnsl, €INHCTBEHHOCTD PEITICHNS.
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