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On singular integral equations with variable limits of integration

The wide range of problems of mathematical physics is reduced to a special Volterra integral equation
of the second kind or to integral equations with variable limits of integration. Among such problems we
can include: boundary value problems for spectrally loaded differential equations [1-4], inverse problems
[5, 6], nonlocal problems [7], boundary value problems for domains with moving boundaries as the domain
degenerates at the time [8, 9] and others. In the study of integral equations with a variable lower limit of
integration, the operational method can not be used directly, since in this case the convolution theorem
is not applicable. However, the Laplace transform can be used to study this kind of integral equation by
applying the method of model solutions.
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1 Method of model solutions

Consider the operator equation
My(z)] = f(z), (1)

where M — some linear (integral) operator; y(x) — sought; f(x) — predetermined function [10].
Let B — be a certain well-known integral transformation

~

B{f(x)} = f(p),

denote by v(z,p) — the inverse transformation kernel B~!, which acts as follows:

b
f@) =5 {fo)} = [ Foyote.pip. 2)

Here the limits a and b and the path of integration can lie in the complex plane.

Definition. The solution of equation (1), in which the right-hand side is the kernel of some inverse integral
transformation, will be called the model solution of this equation.

Supposably y(x, p)— the model solution of the auxiliary problem for equation (1), on the right-hand side of
which there is a kernel of the inverse transformation B~! :

M [@\(xvp)} = ¢($,P)' (3)
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~

We multiply both sides of the equality (3) by f(p), and integrate with respect to the parameter p within
the same limits as in the inverse transformation (2). Since the operator M does not depend on p, using the

equality B! {f(p)} = f(x), will have
b
M3 [ F ey | = fa).

a

The last equality means that the solution of equation (1) for an arbitrary right-hand side f(x) can be written
in terms of the solution of the auxiliary equation (3) by the formula:

b
y(z) = / 3z, p) F(p)dp. (4)

We apply this method to the solution of the second-kind Volterra equation with variable lower limit of
integration

() — A / K(t — T)p(r)dr = f(1), (5)

which can not be solved by a direct Laplace transform, since the convolution theorem is not applicable here.
We consider an auxiliary equation with exponential right-hand side

o0

o(t) — )\/k:(t —7)p(T)dr = el

t

(function eP!— is the kernel of the inverse Laplace transform, Rep > 0).
We seek a solution of this equation in the form (¢, p) = A - ePt. As a result, we get

oo

et K(—p) = /k(—z) -ePdz.

0

1

o(t,p) = m

From this, using formula (4), we obtain a solution of equation (5) for an arbitrary right-hand side in the
form

c+i00 ~
1 f(p) ¢
t:f' f'@pd,
O e R

~

where f(p)— image of the function f(t) obtained by means of the Laplace transform.

2 Solution of reference equations

The main task of this paper is to investigate the following singular integral equations:

t

K = (1= AK)p = ult) = X [ Kt~ ru(rydr = F(0), € Ry (6)
0
w={T - 2K )w=v(t) - X/’C(T —tyw(r)dr = g(t), t € Ry, (7)

t

K(z) = WLE,’/Q exp (—412) . (8)

where
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It should be noted that the kernel of the adjoint integral equation (7) — the function K(7 — ¢) has the

following property:
/ K(r —t)dr = 1. )
t

Equation (9) means that the norm of the integral operator acting in the space of summable functions and
defined by the kernel K*(7 — t) is equal to one. This essentially distinguishes equation (7) from the Volterra
equations of the second kind, for which the solution exists and is unique.

It is obvious that equation (7) is the union integral equation for (6).

We will solve these equations by the operational method [11]. First we investigate equation (7). As noted
earlier, the Laplace transform is not directly applicable to this equation. Using the method of model solutions,
we obtain

7(p) - |1 = Aexp(—v=p)| =9(p),  Rep<0, (10)
where 7(p), g(p) — the Laplace transform, or the functions v(¢) and g¢(¢). Function

A*(p,X) =1 =X exp(—v/=p).

We extend analytically to the whole complex plane with a cut along the positive real semiaxis.
We show that the homogeneous integral equation

w={T - XK= /ICT—t )dr =0, (11)
t

for some values A € C C has nonzero solutions. In order to find These non-trivial solutions and determine the
corresponding values of A, it is necessary clarify the picture of the zeros of the function A*(p, \).
Assuming the parameter A € C to be given, we find the roots of equation

U(p) =1 — Xexp(—+/—p) = 0, p=s+io,

which for [A| > 1 have the form:
pr = sk +iop = — |In? |\ — (arg X + 2k7)?| — i2(arg X + 2kn) - In ||, ke Z. (12)

All the roots (12) are simple and are located on a parabola

1

=—— .2 —1?|). 13
PRIy Al (13)

It is clear that the branches of the parabola are facing to the right, and the vertex of the parabola is located
at the point p = —In? |\| on the real axis, and depending on the values |\| is shifted left or right along the real
axis of the complex plane of the variable p.

For |A| < 1 it is obvious that the function A*(p, \) is not zero at any point of the complexed plane p = s+ic
with a cut along the real positive semiaxis, since |exp(—/—p)| > 1.

But if [A| = 1, then the equation |\| = |exp(—+/—p)| with respect to the complex variable A has a unique
solution A = 1, which corresponds to the value p = 0.

The lines described by the equation |A\| = exp(|arg A + 2k7|), divide the complex plane of the parameter A
into disjoint domains D,,, m = 0,1, 2, ..., as follows:

2n—1 2n

Dy = {DO DI\ | Dis Dot =6, Dania = { DV |JDP kL:JO Dy, (14)

k=—1
where

DY = {X: A < exp|[(2n+ )7 —arg N}, DP = {X: [\ <exp[2nm +argA]}, n=0,1,2,...
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The outer parts of the boundaries 9D,,, m = 0,1,2, ..., of the domains D,,, m = 0,1,2, ..., respectively are
denoted by I';,, m =0,1,2,.... (see Picture 1).

Remark 1. Note that in addition to the domain Dy (see Picture 2) which has only the outer boundary
'y = 0Dy, each of the domains D,, has the boundary 0D,,, consisting of the outer I';,, and the inner I';,, _1:

0Dy =T 1 U, and Ty T, = (1) exp{mn},

i.e. the outer I';,, and the inner I',,,_; part of the boundary dD,, of the domain D,, have one common point
lying on the real axis of the complex plane of the parameter .

10 ,/\ —
L \ D, -
st \ 7 ™~ B
D, N\ g D,
\\\ (] )
o /\ (/
VERVAN )
. /// E) \, /1
L / - //_ 4
/ ~
/
10 // -
= o 25 2o s o = ° 5

Picture 2. Plane of the spectral parameter A (increased scale)

_ Thus, we get that A eTl,,, m=01,2.. if and only if there exists at least one point pg, for which
A*(pf)) )‘)) = 0. R

Suppose that [A| > 1. Then, according to (13) the function A*(p,)) in the left half-plane can have only a
finite number of zeros of the form (12), where

(15)

In |\ + arg X In |\ —arg X
—N; <k <Ny, N1:[||27Tg}7N2:[||27Tg}7

(here the symbol [a] denotes the integer part of the number a, whereby the integer part of the negative number is

set equal to zero). Indeed, the relations (15) follow from the condition that the real parts of the roots (12) must

take negative values, that is Re {py} < 0. Hence, from the inequality (27k +arg)? < In® || follows assertion (15).
Thus, for |A| > 1 the homogeneous equation (11) has a general solution of the form

Na
pt)y= > op-e™,

k=—N,

where ¢;, — are arbitrary constants, the numbers Ny and N are determined from the relations (15) (for given ).
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We now find a particular solution of the inhomogeneous equation (7). Suppose that the Laplace transform
of ¢g(t) is analytic in the —e < Rep < e. Then from equation (10) for VA ¢ T',,, (m =0,1,2,...) we obtain

exp(—v/)
I~ Rexp(—v/D)

Passing in this relation to the originals we shall have

v(p) =g + A -9(p)-

o(t) = glt) + X / ra(t = 7)g(r)dr,

where

“+100
— 1 / exp(—v/=p) exp(yp)dp. (16)

2mi ) 1—Xexp(—y/=p)

—100
If the roots of equation
1—Xexp(—v/—p) =0
lie on the imaginary axis, then we will make the integration along the contour, bypassing these points on the

left. The integral must be understood in the sense of Cauchy’s principal value.
Since y < 0, we find the residue of the integrand in (16) along the right cut half-plane

—(N1+1)
)=2 > V=pr exp(pi-y)+2 Z V=D - exp(pr. - y)+
k=—oc0 k=N3+1
1 = m m?
-y —mexp|— |, Repy > 0, Al > 1, eR_, 17
T % p( 4y) P W y (17)

the numbers N1, Ny and the roots py are determined from formulas (15) and (12), respectively.
But if |A] < 1, then

1 = m m?
T)\f(y)—WTnz::lmA + exXp (42/), yERf (].8)

Consequently, the general solution of the integral equation (7) for |A| > 1 has the form

N3

)+ )\/ _(t—=T7)g(r)dr + Z ¢k - exp(pit), (19)

k=—N,

where 7)_(0) — is determined from the equality (17), and if |A] < 1, then the integral equation (7) has a unique
solution

t) + X/ ra—(t — 7)g(T)dT, (20)

where rj_(0) is now found from equation (18), the numbers Nj, No,p;  are determined from equalities (15)
and (12).
In order for the solution v(t), defined by (19), (20), to be summable, it is sufficient that the function

A—(t — 7) be bounded for any 0 < 7 < t < 00, so 5 as a function g1 (t) + Z crexp(pit) is an integrable

function of ¢. The function ry_(t — 7) will be bounded, since rx_(6) (17) sat1sﬁes the estimate:

eA— ()] < C16] 71/ exp(—do|6]) + Cal0] /% exp(—dol6] "), VO € R_, (21)
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where

dp = min {1/4; [27(Ny 4+ 1) + arg A]> — In? |A|; 2n(No + 1) + arg A]> — In? |)\|} . (22)

The validity of the estimate (21) follows from the relations below. For the second we obtain from (17):

> Vprexppef)| < Al D Jexp(pid)] <
k=N3+1 k=N3+1
> y = 2km + arg A
<Al Y expf [(2k7r+ arg \)? — In? |)\|} 0} <
k= Nyl a=2m(Ny+ 1)+ In|A|

(o) oo
<t [ exp((s? ~ 1n* N)6)dy = |\ exp{-01a% [} [ exp{oy}dy =
=|lz=vy —a| = |In \| exp{—6 In* \)\|}/exp{0(a2 + 22 4 2a2)}dz =

= |In Al exp{—61n® || + 90,2}/6Xp{922 + 02az}dz <

< I A|(—0)7Y2 - exp{f(a® — In? |)|) }/exp{ (V—=02)*}d(vV=0z) = |In )| \\/fiexp{éﬁ}

where 65 = [2m(Ny + 1) + arg A]> — In? |A| > 0.
Similarly for the first term we have the inequality:

_(N1+1) ﬁ
k;m V=pr exp(pid)| < IlnAIN_—H exp{6,0},

where 0; = [27(Ny + 1) + arg A —In? || > 0.
The third term in (17) is estimated as follows:

oo 2 2 1
g|—3/2 m M g3 _m -2 <
9] mzzl o P\ g ) =101 exp 4|9| Z am 410]

m=1

1
< 9|~ 3/Qexp{ 4|0|}

For the representation from (18) for |A| = 1 we obtain the estimate:

i 3/227”6"‘)( 4|0> ﬁ/ ( 4|e>d<_zﬁzl):2|9|exp(_4|le>;

and for |A\| < 1 we have the estimate:
3/2 § 3/2 1
6 A™ C|o
o 3 e (~ i) <o e (7).

It is easy to verify that (19) is a solution of equation (7) for arbitrary coefficients cg.ck.
We state our results in the form of the following theorems.
Theorem 1. The values A € Dy in (14) are regular numbers of the operator (16).
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Theorem 2. The set C\ Dy consists of the characteristic numbers of the operator K* (7). Moreover, if
A€ DL, U1 \{(-1)™e™"}, m =1,2,..., then dimKer (K*) = m; and the corresponding eigenfunctions
have the form

vak(t) = exp(pxt), k=1,..,m= Ny + Na+1,

where the numbers pg, N;, N are determined from the equalities (12), (15).

Now consider the integral equation (6), which is usually called the recovery equation [12|. This name is
explained by the fact that such equations arise in the theory of recovery — the section of probability theory,
which describes a wide range of phenomena associated with the failure and restoration of the elements of a
system. The reconstruction equation is of great importance also in the study of both applied and theoretical
problems in reliability theory, queuing theory, in reserve theory, in the theory of branching processes, and so on.

Applying the Laplace transform to (6) and using the convolution theorem in this case, we obtain

—~ ~ Aefx/p ~ ) R O
- - . = ) = 3 = > .
wp) =f)+ =5, p=stio ep=s
Using the inverse Laplace transform, we have:

t

1(p) = F(8) + A / rag(t = 7)f(7)dr, (23)

0
where the resolvent rx;(6) is defined in terms of the kernel of the original equation (6) by the formula

1 e /\67\/5 0 .
rar(0) = i / —————~=dp, p=s+z, (24)
YiNA e

c—100

the path of integration is parallel to the imaginary axis of the complex plane to the right of all the singular
points of the integrand, that is, to the right of all zeros of the function

~

A(p,\) =1—X-exp(—v/D).
The zeros of the function A\(p, A) have the form:
DPn = Sp +i0, = [ln2 Al = (arg A + 2nm)?] + i2(arg A + 2nm) - In A, n € Z; (25)

they are all simple and arranged on a parabola

2
g 2 Y
§s=— — + In” |},
41n? |A| A

the branches of which are turned to the left, and the vertex is on the real axis at the point
So = ln2 |X|
We note that the function ;&(p, A) in the right half-plane can have only a finite the number of zeros of p,

In|A] + &urg)\]7 Ny — [ln|)\| — arg )\}

26
2 2T ( )

—Ni <n < Ny, N1={

(here again the square bracket denotes the integer part of the number). Moreover, their number increases with
increasing |A|, if A € D,, (14), then their number is m = N; 4+ N3 + 1. Note that if A € Dy, then the function
K(p7 A) does not have zeros at all in the complex plane.

Let us calculate the integral (24). We continue the integrand analytically on the whole complex plane with
a cut along the negative real axis. Then, according to the theory of residues, we get:

+oo 00 5
1 m m
Pe0=2 2 Vp”'eXp@”'e”zﬁewZA'eXp<‘49);
m=1""T

n=—oo
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Rep, >0, |A>1, 6€Ry;

1 = m m?
ra+(0) = ENCEE Z mA™ - exp < 49), A< 1, 0cRy, (27)
m=1

where the numbers p,, are found from (25).
In order that the function pu(t) defined by (23) be essentially bounded, it is necessary and sufficient that the
following conditions are satisfied:

[0 expl-ptyit =0, Ny <<, (28)
0

where the numbers N1, N2N;, Ny are determined from the equalities (26), px from the equality (25).
Indeed, in this case the resolvent of the integral equation (6) for |A| > 1 will have the form (6) and at it will
have the form |[A| > 1

—(N1+1)

T+ (9) =2 Z vV Pn - eXp(pn : ‘9) + 2 Z VPn - eXp(pn : 0)+
n=-—oo n=Ns+1
+;§:ﬂex “™) Repy>0. 6cR (29)
2 /2 4\ P T g ) PR -

and will be a summable function, since it has the estimate
|ra]| < C-10]7% - exp(—80/0]) + Co - 6] % - exp(—00l6] ') V8 € R,

in which the constant dy determines their equalities (22).

Thus it is fair

Theorem 3. If A € Dg, then the inhomogeneous equation (6) is unconditionally uniquely solvable;
if A\ € C\ Dy, A\ € D,,, then for the unique solvability of (6) it is necessary and sufficient that m —
solvability conditions (28) be satisfied. The conditions (28) mean that the free term of the integral equation (6)
must be orthogonal to the solutions of the homogeneous conjugate integral equation (7).

The validity of these statements, as well as of conditions (28), can also be shown in the following way. The
image of the solution of the integral equation (6) is defined by

Ap) = 1

- B _ (30)

The following options are possible.

1. The function A(p,A\) =1 — X-exp(—,/p) does not have zeros in the right half-plane (this means that
|[A| <1 and A € Dy (14). In this case, the equation for any right-hand member f(t) has a unique solution that
is expressed in terms of the resolvent 7y, (6), defined by formula (27)

t

mwsz+A/%Hu—ﬂﬂﬂm,teR+ (31)
0

2. The function j?(p) vanishes at the points p,,, N; < n < Ns from (25), that is, in the zeros of the function
A(p, \) located in the right half-plane. In this case, the function (30) again will not have poles in the region
Re p > 0, so equation (6) also has a unique solution of the form (31), but the resolvent () is now determined

from (29). The condition f(p,) =0, N; < n < Na, on the inversion of the function f(p) to zero at the points
p = py, is equivalent to the following conditions

o0
/f(t) ce Prtdt =0; Ny <n< Na.
0
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So we have proved the following statement.

Lemma. On the complex plane C there are no characteristic numbers of the operator K (9).

Thus, it follows from the results obtained that the solutions of the integral equations (10) and (9) are
determined by expressions

[e'e] No
va(t) = g(t) +X/m_(t —7)g(r)dr + Y cr-exp(pit), t€ Ry,
f k=—N;

where the numbers py, N1, Ny are determined from the equalities (12), (15),

t

ia(t) = F(1) + A / rag(t—1)f(r)dr,  tER,.
0

and satisfy the conditions
) € LRy, palt) € Lo(Ry),
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JI.M. Axmanosa, K.E. Keprener, A.M. Basirabaera

AjinbIMaJIbl HIEKTI MHTErpaJiabl epeKIlie
WHTErpaJIJIblK TeHJEeYJIEP >KAlJIbl

MaremarukaJblk, pusuka ecenrepiniy KeH aymarbl BosibreppaHblH eKiHII TeKTi apHaibl HHTEIPAJIIbIK, TEH-
neyine, HeMece affHBIMAJIBI IIEKTI MHTErpaJIAbl WHTETPAJIBIK TeHJeysaepre, KeaTipiigi. MyHmait ecerrrep-
il immHIe Kesieci ecenTepi aTam eTyre 0OJIaIbl: CIIEKTPAJIIbl XKYKTeAreH muddepeHnaiblK, TeHIeyIep
yiuiH mekapadusik ecenrep [1-4], xepi ecenrrep [5, 6], sokasupl emec ecenrep 7], JKBUKBIMAJIBL IIEKAPAJIBI
06JIBICTAp YIIIH MIEKAapasbIK, ecenrep [8, 9] T.6. ToMenri aifHbIMAIBI MEKTI HHTErPAITAHATHIH HHTETPAJIIBIK,
TeHJIeyJIep/l OKBII-YHpPeHy Ke3iHJe »KYMBIC 9JIici, CBepTKa TeopeMachlH MaiiajaHyra O60IMalThIHIBIKTAH,
6ip/ieH KOJaHbIIMaiabl. Ajaiiia MyH/Iail HHTErPasIblK TeHIEYJIEPIl OKbII-YIPEHy YIIiH MOJEJIbIIK Iy
9JIiCiH KOJIZaHA OTBHIPHII, Jlammac TypaeHipyiH Koaganyra 601a/Ibl.

Kiam ceadep: Mozebi ey, HHTETPAJIABIK OIIEPATOD, CIEKTD, PE30JIbBEHTA, CUIIATTAMAJIBIK, CAHIaP, MEH-
ik Ti QyHKIHAIAP.

JI.M. Axmanosa, K.E. Keppener, A.M. Basrabaera

O06 0cobOBIX MHTErPAJIbHBIX yYPABHEHUSAX C IIEPEeMEHHbIMU
npejejiaMu MHTErPUPOBaHUSA

IITupokwuii crieKTp 3a7a9 MATeMATHIECKON (DUBUKK CBOJNTCA K CIIENUATHLHOMY WHTErPAIBLHOMY yYPABHEHUIO
BonbTeppa BTOporo pofa WM K MHTErpaJbHLIM yPABHEHHUAM C IEPEMEHHBIMU TIPe/IelaMi WHTCIPUPOBAHMUS.
Cpeny Takux 3a7a9 MOYKHO BBIIEUTD: KPAEBbIe 3aa91 VI CIIEKTPAJIBHO HATPYKEHHBIX IuddepeHITnab-
HBIX ypasHeHuil [1-4], obpaTuble 3anaun [5, 6], HesokanbHBIE 330aun [7], KpaeBble 3aaun Jyist obsacTei
¢ JIBIDKYIIMMACST I'PAHULAMHE, KOTJia 00J1acTh BBIpOXKaercs (8, 9] n ap. IIpu usyvyeHun nHTErpaibHbIX ypaB-
HEHWI ¢ TIepEMEHHBIM HUXKHUM TIPEJIEIOM WHTEPUPOBAHUS PAbOYMii METOJ He MOXKET ObITh UCIIOIb30BaH
HETIOCPEJICTBEHHO, TaK KaK B 9TOM CJlydae HENPUMEHUMa Teopema cBepTKh. OJIHAKO JJIsi U3YYEeHUs] TaKO-
IO MHTErpaJibHOTO ypaBHEHHUsI MOYKHO HCIOJL30BaTh ITpeobpazoBanue Jlammaca myTeM TPUMEHEHUs] MeTOoa
MOJIECJIbHBIX PEIIeHUN.

Karoueswie car06a: MOJEIBHOE PElleHNe, NHTEIPAJILHBIN OIEPATOD, CIEKTD, PEe30JbBEHTA, XapaKTEePUCTHIe-
CKHe YHUCJ1a, COOCTBEHHBIE (DYHKITUU.
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