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Nonlocal spectral problem for a second-order differential
equation with an involution

For the spectral problem −u′′(x) + αu′′(−x) = λu(x), −1 < x < 1, with nonlocal boundary conditions
u(−1) = βu(1), u′(−1) = u′(1), where α ∈ (−1, 1), β2 6= 1, we study the spectral properties. We show
that if r =

√
(1− α)/(1 + α) is irrational, then the system of eigenfunctions is complete and minimal in

L2(−1, 1) but is not a basis. In the case of a rational number r, the root subspace of the problem consists of
eigenvectors and an infinite number of associated vectors. In this case, we indicated a method for choosing
associated functions that provides the system of root functions of the problem is an unconditional basis in
L2(−1, 1).

Keywords: ODE with involution, nonlocal boundary-value problem, spectral problem, basicity of root
functions

1 Introduction

In the present paper, we carry out a complete spectral analysis of the problem

Lu = −u′′(x) + αu′′(−x), −1 < x < 1;

u′(−1) = u′(1), u(−1) = βu(1),
(1)

where the differential expression contains an involution transformation of the independent variable in the highest
derivative and the boundary conditions are nonlocal.

Throughout the following, the parameter α in problem (1) is an arbitrary number in the interval (−1, 1).
The case β = 1 (when the boundary conditions of the problem are periodic) was investigated in [1]. The case
when β = −1 leads to a degenerate problem. In this case, as it is easy to see, any number λ is an eigenvalue.
Therefore, in this paper we assume that β is an arbitrary real number for which β2 6= 1.

If α = β = 0, then problem (1) becomes the well-known nonlocal problem of the Samarskii- Ionkin
type [2], which is an example of a nonself-adjoint problem whose set of root functions contains, in addition
to eigenfunctions, infinitely many associated functions. Il’in [3] dubbed such problems essentially nonself-
adjoint and pointed out their typical instability both under the choice of associated functions and under small
perturbations of the operator. For details, see [4] and also [5–9].

We show that problem (1) has all specific features of essentially nonself-adjoint problems and that its spectral
properties can change fundamentally under arbitrarily small variations of the parameter α.

We note that the case β = 0 was investigated in detail in [10] for the space L2 and in [11] for the space Lp,
1 < p <∞.

The main result of the present paper is stated in the following theorems.
Theorem 1. Let r =

√
(1− α)/(1 + α) be irrational. Then the system of root functions of problem (1)

contains only eigenfunctions; moreover, it is complete and minimal in L2(−1, 1) but is not a basis.
Theorem 2. Let r =

√
(1− α)/(1 + α) be rational. Then the spectrum of problem (1) splits into two sequences

{λn} ∪ {λ∗n}. For each λ = λn, there exists only one eigenfunction, and for each λ = λ∗n, there exists one
eigenfunction and one associated function. The system of root functions is complete and minimal in L2(−1, 1),
and the associated functions can be chosen in such a way that the entire system is an unconditional basis in
L2(−1, 1).

Note that functional-differential equations similar to the equation in (1) were studied by numerous authors.
The algebraic and analytic aspects of the theory of ordinary differential equations with involution were discussed
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in the monographs [12, 13]. Spectral problems arising in connection with differential operators with involution
were considered in [14–18] for first-order operators and in [19, 20] for second-order operators. Spectral problems
for ordinary differential operators with non-strongly regular boundary conditions and their applications for
parabolic problems were investigated in [21-25].

2 Case of irrational r

The problem adjoint to (1) has the form

Lv(x) = −v′′(x) + αv′′(−x), −1 < x < 1;

(α− β)v′(−1) = (αβ − 1)v′(1), v(−1) = v(1).
(2)

By a straightforward computation, one can readily show that the spectra of problems (1) and (2) coincide and

σ(L) = {0; (1± α)π2n2| n ∈ N}, (3)

while the eigenfunctions of the direct problem (1) have the form (here and in what follows, µ is the arithmetic
value of the root

√
λ)

µ0 = 0 : u0 = (1− β)x+ 1 + β;

µ′l =
√

1 + απl : u
(1)
l (x) = sin(πlx), l ∈ N;

µ′′k =
√

1− απk : u
(2)
k (x) = (1 + β) sin(πrk) cos(πkx) + (1− β) cos(πk) sin(πrkx), k ∈ N

(4)

and eigenfunctions of the adjoint problem (2) have the form

µ0 = 0 : v0(x) = 1;

µ′′k =
√

1− απk : v
(2)
k (x) = cos(πkx), k ∈ N;

µ′l =
√

1 + απl : v
(1)
l (x) = (1 + β)r sin πl

r sin(πlx) + (1− β) cos(πl) cos πlxr , l ∈ N.

(5)

Lemma 1. Let r be irrational. Then each of systems (4) and (5) is complete and minimal in L2(−1, 1).
Proof. Let us carry out the proof, say, for system (4). Consider an arbitrary function f(x) ∈ L2(−1, 1)

orthogonal to all functions of system (4). Since it is orthogonal to the functions u(1)
l (x), l ∈ N, we see that it

coincides almost everywhere with an even function. Thus,

0 =

∫ 1

−1

f(x)u
(2)
k (x)dx = (1 + β) sin(πrk)

∫ 1

−1

f(x) cos(πkx)dx.

Since r /∈ Q and (1+β) 6= 0, it follows that the function f(x) is orthogonal to the functions cos(πkx), k ∈ N,
and hence f(x) = const almost everywhere on [−1, 1]. Finally, from the relation (f, u0) = 0, since (1 + β) 6= 0,
it follows that f(x) = 0 almost everywhere on [−1, 1].

Since systems (4) and (5) are complete, it follows that they are closed in L2(−1, 1); and since they correspond
to mutually adjoint problems, we find that they are minimal. The proof of the lemma is complete.

Let us modify the eigenfunctions so as to ensure that systems (4) and (5) form a biorthonormal pair in
L2(−1, 1). Since

(u0, v0) = 2(1 + β),
(
u

(1)
l , v

(1)
l

)
= (1 + β)r sin

πl

r
,
(
u

(2)
l , v

(2)
l

)
= (1 + β) sin(πrk), (6)

it follows that the modification should have the form

ũ0(x) =
1− β
1 + β

x+ 1, ṽ0(x) =
1

2
;
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ũ
(1)
l (x) = sin(πlx), ṽ

(1)
l (x) = sin(πlx) +

1− β
1 + β

cos(πl)

r sin πl
r

cos
πlx

r
;

ũ
(2)
k (x) = cos(πkx) +

1− β
1 + β

cos(πk)

sin(πrk)
sin(πrkx), ṽ

(2)
k (x) = cos(πkx).

Let us compute the norms of these functions in L2(−1, 1). We have∥∥∥ũ(1)
l

∥∥∥ = 1,
∥∥∥ṽ(1)
l

∥∥∥2

= 1 +

(
1− β
1 + β

)2(
r sin

πl

r

)−2(
1 +

r

2πl
sin

2πl

r

)
;

∥∥∥ũ(2)
k

∥∥∥2

= 1 +

(
1− β
1 + β

)2

(sinπrk)−2

(
1 +

1

2πrk
sin(2πrk)

)
,
∥∥∥ṽ(2)
k

∥∥∥ = 1.

Lemma 2. Let r be irrational. Then there exist sequences {ln} and {kn} such that
∥∥∥ṽ(1)
ln

∥∥∥→∞ and∥∥∥ũ(2)
kn

∥∥∥→∞, as n→∞.
Proof. By virtue of the theorem on the approximation of real numbers by rational fractions [26; 25], the

inequalities ∣∣∣∣r − l

s

∣∣∣∣ < 1

s2
,

∣∣∣∣1r − k

q

∣∣∣∣ < 1

q2
(7)

have infinitely many solutions l, k, s, q ∈ N. We denote these solutions by ln, kn, sn and qn. Then from inequality
(7) we have

∣∣πln
r − πsn

∣∣ < π
rsn

and hence

sin2 πln
r

= sin2

(
πln
r
− πsn

)
< sin2 π

rsn
.

In a similar way, we obtain the inequalities |πrkn − πqn| < πr
qn

and

sin2(πrkn) < sin2 πr

qn
.

Therefore, ∥∥∥ṽ(1)
ln

∥∥∥2

> 1 +

(
1− β
1 + β

)2
2

3

(
r sin

π

rsn

)−2

,
∥∥∥ũ(2)

kn

∥∥∥2

> 1 +

(
1− β
1 + β

)2
2

3

(
r sin

πr

qn

)−2

.

The proof of the lemma is complete, because the right-hand sides of these inequalities infinitely increase as
n→∞.

Lemma 2 essentially completes the proof of Theorem 1, because it follows from the lemma that the considered
biorthonormal pair of function of these systems does not satisfy the condition of uniform boundedness for the
product of norms: ∥∥∥ũ(1)

l

∥∥∥ · ∥∥∥ṽ(1)
l

∥∥∥ ≤ c1, ∥∥∥ũ(2)
k

∥∥∥ · ∥∥∥ṽ(2)
k

∥∥∥ ≤ c2, (8)

which is necessary for the basis property [27] in L2(−1, 1).

3 Case of rational r

Let r =
√

(1− α)/(1 + α) be a rational number, which can be represented by an irreducible fraction r = m1

m2

where m1,m2 ∈ N.
Then a merging effect is observed for the following points of the spectrum σ(L)

µ′m1n = µ′′m2n, n ∈ N. (9)

We denote the sequence extracted in (9) by µ∗n and note that the eigenfunctions corresponding to the eigenvalues
λ = λ∗n ≡ (µ∗n)2 are linearly dependent,

u(1)
m1n(x) = (−1)m2n(1− β)−1u(2)

m2n(x) = sin(πm1nx) ≡ u∗n(x);

(−1)m1n(1− β)−1v(1)
m1n(x) = v(2)

m2n(x) = cos(πm2nx) ≡ v∗n(x).

Therefore, the systems of eigenfunctions (4) and (5) become incomplete in L2(−1, 1).
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We supplement the eigenfunctions corresponding to λ = λ∗n by associated functions, that is, the solutions
of the inhomogeneous problems

Lu(x) = λ∗nu(x) + u∗n(x), −1 < x < 1;

u′(−1) = u′(1), u(−1) = βu(1);
(10)

Lv(x) = λ∗nv(x) + v∗n(x), −1 < x < 1;

(α− β)v′(−1) = (αβ − 1)v′(1), v(−1) = v(1).
(11)

By straightforward computations, we find the functions

u∗n,1(x) = (2(1 + α)πm1n)−1

[
x cos(πm1nx) +

1 + β

1− β
(−1)(m1+m2)n cos(πm2nx)

]
+ anu

∗
n(x); (12)

v∗n,1(x) = (2(1− α)πm2n)−1

[
−x sin(πm2nx) +

1 + β

1− β
r(−1)(m1+m2)n sin(πm1nx)

]
− anv∗n(x), (13)

which are solutions of problem (10) and (11), respectively, for arbitrary an ∈ R.
Note that if we substitute u∗n,1(x) for u∗n(x) into the right-hand side of (10) and v∗n,1(x) for v∗n(x) into (11),

then problems (10) and (11) have no solutions. It follows that the corresponding problems have no associated
functions of the second or any higher order.

Lemma 3. Let r = m1/m2 be rational. Then each of the systems of root functions obtained by the following
procedures is complete and minimal in L2(−1, 1):

– for problem (1), one takes the union of the eigenfunctions (4) corresponding to λ 6= λ∗n, the eigenfunctions
u∗n(x), and the associated functions u∗n,1(x), n ∈ N;

– for problem (2), one takes the union of the eigenfunctions (5) corresponding to λ 6= λ∗n, the eigenfunctions
v∗n(x), and the associated functions v∗n,1(x), n ∈ N.

Proof. The proof is similar to that of Lemma 1. Consider the system of root functions of problem (1) and
suppose that a function f(x) ∈ L2(−1, 1) is orthogonal to all functions of that system.

Since the function f(x) is orthogonal to all eigenfunctions u(1)
l (x), l ∈ N, we find that it coincides almost

everywhere with an even function. In addition, the function f(x) is orthogonal to all eigenfunctions u(2)
k (x), k ≡ 0

(mod m2), and all associated functions u∗n,1(x), n ∈ N. By virtue of its evenness, in this case, the function f(x)
is orthogonal to all functions cos(πkx), k ∈ N, as well. Therefore, it is equal almost everywhere to a constant,
which, just as in Lemma 1, implies the assertion of the lemma. The proof of the lemma is complete.

Let us now modify the root functions of problem (4) and (5) so as to ensure that they form a biorthonormal
pair.

If λ 6= λ∗n, then the corresponding eigenfunctions satisfy the same relations (6), where l ≡ 0 (mod m1) and
k ≡ 0 (mod m2). Therefore, l = l1m1 + l2, where l1, l2 ∈ N, 1 ≤ l2 ≤ m1 − 1, and the number l

r = l1m2 + l2
m2

m1

is not an integer; consequently,

sin2 πl

r
= sin2

(
π

(
l

r
− l1m2

))
= sin2

(
π
l2m2

m1

)
≥ sin2 π

m1
. (14)

Likewise, we have k = k1m2 + k2, k1, k2 ∈ N, 1 ≤ k2 ≤ m2 − 1, and the number rk = k1m1 + k2
m1

m2
is not an

integer; consequently,

sin2(πrk) = sin2(π(rk − k1m1)) sin2

(
π
k2m1

m2

)
≥ sin2 π

m2
. (15)

Consider the eigenvalues λ = λ∗n. We have

(u∗n, v
∗
n) = (u∗n,1, v

∗
n,1) = 0, (u∗n, v

∗
n,1) = (u∗n,1, v

∗
n) = (2(1 + α)πm1n)−1 1 + β

1− β
(−1)(m1+m2)n.

Therefore, biorthonormal pairs in L2(−1, 1) are formed by the function systems

ũ0(x), ũ
(1)
l (x), l 6= 0 (mod m1), ũ

(2)
k (x), k 6= 0 (mod m2);

ũ∗n(x) = sin(πm1nx), ũ∗n,1(x) = u∗n,1(x), n ∈ N,
(16)
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for problem (1) and

ṽ0(x), ṽ
(1)
l (x), l 6= 0 (mod m1), ṽ

(2)
k (x), k 6= 0 (mod m2);

ṽ∗n(x) = 2(1 + α)πm1n(−1)(m1+m2)n 1−β
1+β cos(πm2nx);

ṽ∗n,1(x) = −r−1(−1)(m1+m2)n 1−β
1+βx sin(πm2nx) + sin(πm1nx)− anṽ∗n(x), n ∈ N,

(17)

for problem (2) with arbitrary constants an ∈ R.
Let us evaluate and estimate the product of norms of root functions. By virtue of the relations presented

before Lemma 2 and the estimates (14) and (15), the products of norms of the corresponding eigenfunctions are
uniformly bounded for λ 6= λ∗n. If λ = λ∗n, then we have

‖ũ∗n‖
2

= 1, ‖ṽ∗n‖
2

=

(
2(1 + α)πm1n

1− β
1 + β

)2

;

∥∥ũ∗n,1∥∥2
=

(1/3) + 1−β
1+β + (2π2m2

1n
2)−1

(2(1 + α)πm1n)2
− ann

−2

2(1 + α)π2m2
1

+ a2
n;

∥∥ṽ∗n,1∥∥2
=

(1/3)− (2π2m2
2n

2)−1

r2

(
1− β
1 + β

)2

+ 1 + 2(1 + α)
1− β
1 + β

an + (2(1 + α)πm1)2a2
nn

2.

Therefore, each of the products ‖ũ∗n‖
2 ∥∥ṽ∗n,1∥∥2 and

∥∥ũ∗n,1∥∥2 ‖ṽ∗n‖
2 has the form

c3(n) + c4an + c5a
2
nn

2, (18)

where c4, c5 > 0 are constants and c3(n) satisfies the inequality 0 < c′3 ≤ c3(n) ≤ c′′3 for all n ∈ N.
Lemma 4. The products of L2-norms of the respective root functions in the biorthonormal pair are uniformly

bounded if and only if
an = O(n−1) as n→∞. (19)

Proof. Indeed, if an = O(1), then (18) is uniformly bounded provided that ann = O(1). If the sequence
an is not bounded, then (18) is equivalent to c5a2

nn
2 as n → ∞ and hence is again uniformly bounded under

condition (19). The proof of the lemma is complete.
Let us show that, in a sense, condition (19) is a rule for the selection of associated functions which provides

the basis property of considered systems of root functions in L2(−1, 1).
Lemma 5. If condition (19) is satisfied, then each of systems (16) and (17), after the normalization in

L2(−1, 1), satisfies a Bessel type inequality and hence forms an unconditional basis in L2(−1, 1).
Proof. For example, consider system (16) of root functions of problem (1). If λ 6= λ∗n, then the normalization

gives the system √
3

2

[
3 +

(
1− β
1 + β

)2
]−1/2(

1 +
1− β
1 + β

x

)
, sin(πlx);

∥∥∥ũ(2)
k

∥∥∥−1

2

(
cos(πkx) +

1− β
1 + β

cos(πk)

sin(πrk)
sin

(
π
m1

m2
kx

))
;

where l 6= 0 (mod m1), k 6= 0 (mod m2), and, as was shown above, 1 ≤
∥∥∥ũ(2)

k

∥∥∥
2
≤ c6.

For λ = λ∗n, we have
ũ∗n(x)

‖ũ∗n‖
= sin(πm1nx);

∥∥ũ∗n,1∥∥−1
ũ∗n,1(x) = A(1)

n

[
x cos(πm1nx) +

1 + β

1− β
(−1)(m1+m2)n cos(πm2nx)

]
+A(2)

n sin(πm1nx),

where 0 < c7 ≤ A(1)
n , A

(2)
n ≤ c8, n ∈ N.

Thus, to justify the Bessel property, it suffices to prove the Bessel property of the following three systems
(n ∈ N):

sin(πnx), cos(πnx), (20)
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cos

(
π
m1

m2
nx

)
; (21)

x cos(πm1nx). (22)

System (20) is orthonormal in L2(−1, 1) and hence satisfies the Bessel type inequality with constant B = 1.
The Bessel property of system (22) follows from the Bessel property of system (20), because the factor x is
bounded. Finally, system (21) is a Bessel system by virtue of the following assertion.

Lemma 6. Let {γk} be a sequence of complex numbers such that

sup
k
|Im (γk) | <∞, sup

t≥1

∑
k:|Re(γk)−t|≤1

1 <∞. (23)

Then each of the systems {sin(γkx)} and {cos(γkx)} is a Bessel system in L2(−1, 1).
Proof. By virtue of the estimates (23), γk = πn+ δnk, where

sup
n,k
|Im (δnk) | <∞, sup

n

∑
k:|Re(δnk)|≤1

1 <∞.

Therefore, ∫ 1

−1

f(x) sin(γkx)dx = cos(δnk)

∫ 1

−1

f(x) sin(πnx)dx+ sin(δnk)

∫ 1

−1

f(x) cos(πnx)dx+

+δnk

∫ 1

−1

sin(δnkx)

∫ x

−1

f(ξ) sin(πnξ)dξdx− δnk
∫ 1

−1

cos(δnkx)

∫ x

−1

f(ξ) cos(πnξ)dξdx,

which implies a Bessel type inequality for the system {sin(γkx)}.
System (21) satisfies condition (23), because

Im (γk) = 0,
∑

k:|Re(γk)−t|≤1

≤ 2m2 + 1.

The unconditional basis property of system (16) follows from the well-known Bari theorem [28]. The proof
of the lemma is complete.

Theorem 2 is completely proved.
We note that using the proven basis property of the system of root functions in the case when the parameter

r is a rational number, the problems describing the process of heat propagation in a thin closed wire wrapped
around a weakly permeable insulation can be considered by the method of separation of variables. Such problems
with periodic boundary conditions with respect to the space variable were considered in [1].
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Л.В. Крицков, M.A. Садыбеков, Ә.М. Сәрсенбi

Инволюциясы бар екiншi реттi дифференциалды теңдеу
үшiн локалдық емес шеттiк есеп

Шеттiк шарттары u (−1) = βu (1) , u′ (−1) = u′ (1) , β2 6= 1, локалдық емес мынадай спектралдық
есептiң −u′′ (x)+αu′′ (−x) = λu (x) , −1 < x < 1, α ∈ (−1, 1) , спектралдық қасиеттерi зерттелдi. Егер
r =

√
(1− α)/(1 + α) иррационал сан болса, онда есептiң меншiктi функциялары толық және ми-

нималды жүйе құрайды, алайда базис емес. Осы тұжырым дәлелденген. Егер r рационал сан болса,
онда есептiң ақырсыз қосымша алынған функциялары бар. Бұл жағдайда қосымша алынған функ-
цияларды таңдап алу жолдары келтiрiлген. Және таңдап алынған түпкiлiктi функциялар жүйесi
L2 (−1, 1) кеңiстiгiнде базис құрайтыны көрсетiлген.

Кiлт сөздер: инволюциясы бар жай дифференциалды теңдеулер, локалдық емес шеттiк есеп, спек-
тралдық есеп, базис, түпкiлiктi функциялар.

Л.В. Крицков, M.A. Садыбеков, А.М. Сарсенби

Нелокальная краевая задача для дифференциального
уравнения второго порядка с инволюцией

В статье изучены спектральные свойства для спектральной задачи −u′′(x) + αu′′(−x) = λu(x),
−1 < x < 1, с нелокальными граничными условиями u(−1) = βu(1), u′(−1) = u′(1), где
α ∈ (−1, 1), β2 6= 1. Показано, что если r =

√
(1− α)/(1 + α) иррационально, то система собственных

функций полна и минимальна в L2(−1, 1), но не образует базиса. В случае рационального числа r
корневое подпространство задачи состоит из собственных векторов и бесконечного числа присоеди-
ненных векторов. В этом случае указан метод выбора присоединенных функций, при котором система
корневых функций задачи является безусловным базисом в L2(−1, 1).

Ключевые слова: ОДУ с инволюцией, нелокальная краевая задача, спектральная задача, базисность
корневых функций.

60 Вестник Карагандинского университета




