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Nonlocal spectral problem for a second-order differential
equation with an involution

For the spectral problem —u”(z) + au’(—z) = Au(z), —1 < = < 1, with nonlocal boundary conditions
uw(=1) = Bu(l), v/ (=1) = w/(1), where o € (—1,1), 5% # 1, we study the spectral properties. We show
that if r = /(1 — «)/(1 4+ «) is irrational, then the system of eigenfunctions is complete and minimal in
L2(—1,1) but is not a basis. In the case of a rational number r, the root subspace of the problem consists of
eigenvectors and an infinite number of associated vectors. In this case, we indicated a method for choosing
associated functions that provides the system of root functions of the problem is an unconditional basis in
Lo(—1,1).

Keywords: ODE with involution, nonlocal boundary-value problem, spectral problem, basicity of root
functions

1 Introduction

In the present paper, we carry out a complete spectral analysis of the problem

Lu=—-u"(z)+ au’(—x), -1<2x <1
(1)
u'(=1) = (1), u(=1) = pu(1),

where the differential expression contains an involution transformation of the independent variable in the highest
derivative and the boundary conditions are nonlocal.

Throughout the following, the parameter « in problem (1) is an arbitrary number in the interval (—1,1).
The case 8 = 1 (when the boundary conditions of the problem are periodic) was investigated in [1]. The case

when 8 = —1 leads to a degenerate problem. In this case, as it is easy to see, any number A is an eigenvalue.
Therefore, in this paper we assume that 8 is an arbitrary real number for which 5% # 1.
If « = 8 = 0, then problem (1) becomes the well-known nonlocal problem of the Samarskii- Ionkin

type [2], which is an example of a nonself-adjoint problem whose set of root functions contains, in addition
to eigenfunctions, infinitely many associated functions. I'in [3] dubbed such problems essentially nonself-
adjoint and pointed out their typical instability both under the choice of associated functions and under small
perturbations of the operator. For details, see [4] and also [5-9].

We show that problem (1) has all specific features of essentially nonself-adjoint problems and that its spectral
properties can change fundamentally under arbitrarily small variations of the parameter a.

We note that the case § = 0 was investigated in detail in [10] for the space Lo and in [11] for the space L,
1<p<oo.

The main result of the present paper is stated in the following theorems.

Theorem 1. Let r = /(1 —«a)/(1+ «) be irrational. Then the system of root functions of problem (1)
contains only eigenfunctions; moreover, it is complete and minimal in Ly(—1,1) but is not a basis.

Theorem 2. Let v = /(1 — a) /(1 + «) be rational. Then the spectrum of problem (1) splits into two sequences
{A} U{N:}. For each A = A, there exists only one eigenfunction, and for each X = X\, there exists one
eigenfunction and one associated function. The system of root functions is complete and minimal in Lo(—1,1),
and the associated functions can be chosen in such a way that the entire system is an unconditional basis in
Ly(—1,1).

Note that functional-differential equations similar to the equation in (1) were studied by numerous authors.
The algebraic and analytic aspects of the theory of ordinary differential equations with involution were discussed
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in the monographs [12, 13]. Spectral problems arising in connection with differential operators with involution
were considered in [14-18] for first-order operators and in [19, 20] for second-order operators. Spectral problems
for ordinary differential operators with non-strongly regular boundary conditions and their applications for
parabolic problems were investigated in [21-25].

2 Case of irrational r

The problem adjoint to (1) has the form

Lu(z) = —v"(x) + av”(—2), -1 <z < 1;
(2)
(a =B (=1) = (af = 1)V'(1), v(=1)=w(1).

By a straightforward computation, one can readily show that the spectra of problems (1) and (2) coincide and
o(L) = {0; (14 a)n*n?| n € N}, (3)

while the eigenfunctions of the direct problem (1) have the form (here and in what follows, y is the arithmetic
value of the root v/))

po=0: up=(1-pB)x+1+p;
Wi =V1+anrl: ul(l)(ac) =sin(rwlz), l€N; (4)
W' =+1—ark: u,(f) (x) = (14 B) sin(nrk) cos(nkx) + (1 — B) cos(wk) sin(nrkz), k€N
and eigenfunctions of the adjoint problem (2) have the form
o =0: vo(z) =1;
W'y =1—ark: v](f) () = cos(mkz), keN; (5)

pr=+v1+anl: vl(l)( ) = (L+ B)rsin Z sin(nlz) + (1 — B) cos(rl) cos 2=, [ € N.

Lemma 1. Let r be irrational. Then each of systems (4) and (5) is complete and minimal in Lo(—1,1).
Proof. Let us carry out the proof, say, for system (4). Consider an arbitrary function f(xz) € Lo(—1,1)

orthogonal to all functions of system (4). Since it is orthogonal to the functions ul(l)(x),l € N, we see that it
coincides almost everywhere with an even function. Thus,

0= / f(z 2) x)dx = (1 + B) sin(nrk) / f(z) cos(mkz)dx.

Since r ¢ @ and (14 3) # 0, it follows that the function f(z) is orthogonal to the functions cos(wkz), k € N,
and hence f(x) = const almost everywhere on [—1,1]. Finally, from the relation (f,uo) = 0, since (1 + ) # 0,
it follows that f(x) = 0 almost everywhere on [—1,1].

Since systems (4) and (5) are complete, it follows that they are closed in Ly(—1, 1); and since they correspond
to mutually adjoint problems, we find that they are minimal. The proof of the lemma is complete.

Let us modify the eigenfunctions so as to ensure that systems (4) and (5) form a biorthonormal pair in
L2(—1,1). Since

l
(woyv0) =21+ ), (ufofV) = (14 Brsin ==, (uf? o) = (1 + B)sin(rrk), (6)
it follows that the modification should have the form
~ 1-p6 5
to(x) = 1 +5w—|— 1, vo(x) = 2
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(1) . (1) 1 — B cos(m ) mwlx
— sin(rlz), — sin(rlz) + ——1 LS
@, (v) = sin(nlx), v, (v) = sin(wlx) 175 ren cos —
1—
71](62)(35) = cos(mkx) + 1+§scos((7rkk>) sin(mrrkz), 51(3)(37) = cos(mkx).
in(7mr

Let us compute the norms of these functions in LQ(_ ,1). We have

-2
o =1, o 1>H (=8 (e ™ T 2
Hul 1, =1+ 1+5 rsin - 1+ 9] sin " ;

| = (Hg)z@im)—a(H%jrksmmk) o] =1

Lemma 2. Let r be irrational.

H ~(2)

n

ﬁl(i)H — 00 and

— 00, as n — 00.

Proof. By virtue of the theorem on the approximation of real numbers by rational fractions [26; 25], the
inequalities

l
r— -
s

1
siza

1k 1
r g )

r oq q @)

have infinitely many solutions [, k, s, ¢ € N. We denote these solutions by l,,, ky,, S, and ¢,,. Then from inequality
(7) we have |% — 7sp| < 5— and hence

. o Ty . i, T
sin? =2 =sin? [ =2 — 7s,, | < sin? —.
r r TSy

In a similar way, we obtain the inequalities |71k, — mg,| <3 I and

sin?(nrk,) < sin’ .
an

2 2 —2
2110 (152) 3 (i) el (150) 3 (0
Hvln >14+ <1+ﬂ 3 7 sin . >1+ 155 3 T sin “ .

The proof of the lemma is complete, because the right-hand sides of these inequalities infinitely increase as
n — oo.

Lemma 2 essentially completes the proof of Theorem 1, because it follows from the lemma that the considered
biorthonormal pair of function of these systems does not satisfy the condition of uniform boundedness for the

product of norms:
[l ] < o ] 2] < ®)

which is necessary for the basis property [27] in La(—1,1).

Therefore,

3 Case of rational r

Let r = /(1 — @)/(1 + @) be a rational number, which can be represented by an irreducible fraction r = Z—;
where mqy, mo € N.
Then a merging effect is observed for the following points of the spectrum o (L)

.Ulrmn = N”mzna neN. 9)
We denote the sequence extracted in (9) by u) and note that the eigenfunctions corresponding to the eigenvalues

A= \: = (ur)? are linearly dependent,

n —
U (@) = (1) (1 = B)"'ui3), (2) = sin(mminz) = ujy(2);

(=)™ = B) ol (2) =02 (x) = cos(rmanz) = v} (z).

m1n m n

Therefore, the systems of eigenfunctions (4) and (5) become incomplete in Lo(—1,1).
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We supplement the eigenfunctions corresponding to A = A}, by associated functions, that is, the solutions
of the inhomogeneous problems

Lu(x) = Nu(z) +ul(z), —1<az<I;
(10)
u'(=1) = u'(1), w(=1) = Bu(l);

Lo(x) = Xjo(a) + vj(a), —1<az<L;

(a=pB'(-1) = (af —1)v'(1), v(=1) =wv(1).

By straightforward computations, we find the functions

u:l71(x) =21+ a)wmln)71 [9: cos(mminx) + %(71)(’”1“”2)” COS(WTI'LQTLZE):| + anu) (x); (12)
% . 1 . 1+ ﬁ (mi+ma)n *
thala) = (201 @)mmam) ! | ~asin(mmans) + 15 (=) sin(omn) | - 4, (13

which are solutions of problem (10) and (11), respectively, for arbitrary a,, € R.

Note that if we substitute u, ; (x) for uj,(x) into the right-hand side of (10) and v}, ; () for v}, (x) into (11),
then problems (10) and (11) have no solutions. It follows that the corresponding problems have no associated
functions of the second or any higher order.

Lemma 3. Let r = mq/mqy be rational. Then each of the systems of root functions obtained by the following
procedures is complete and minimal in La(—1,1):

— for problem (1), one takes the union of the eigenfunctions (4) corresponding to X # X
uy, (z), and the associated functions uy, 1(x), n € N;

— for problem (2), one takes the union of the eigenfunctions (5) corresponding to A # X, the eigenfunctions
vy (), and the associated functions vy, (x), n € N.

Proof. The proof is similar to that of Lemma 1. Consider the system of root functions of problem (1) and

suppose that a function f(z) € La(—1,1) is orthogonal to all functions of that system.

*
n?

the eigenfunctions

Since the function f(z) is orthogonal to all eigenfunctions ul(l)(a:)7 [ € N, we find that it coincides almost

everywhere with an even function. In addition, the function f(z) is orthogonal to all eigenfunctions u,(f) (), k=0
(mod mg), and all associated functions u} ;(x), n € N. By virtue of its evenness, in this case, the function f(z)
is orthogonal to all functions cos(mkz), k € N, as well. Therefore, it is equal almost everywhere to a constant,
which, just as in Lemma 1, implies the assertion of the lemma. The proof of the lemma is complete.

Let us now modify the root functions of problem (4) and (5) so as to ensure that they form a biorthonormal
pair.

If A # A%, then the corresponding eigenfunctions satisfy the same relations (6), where { = 0 (mod my) and
k =0 (mod msy). Therefore, I = lymq + lo, where l1,l3 € N, 1 <ly <mj — 1, and the number % =Ilimg + 12%
is not an integer; consequently,

l l l
sin? r_ sin? <7r ( - l1m2)> = sin? <7727n2> > sin? T (14)
r r mi mq

Likewise, we have k = k1ymgy + ko, k1, ko € N, 1 < ks < mg — 1, and the number rk = kymq + k‘g% is not an
integer; consequently,

k
sin?(rrk) = sin®(w(rk — kymy)) sin® <7r 2m1) > sin® —. (15)
mo mo
Consider the eigenvalues A = A). We have
1+5

(_1)(m1+m2)n

(up,vn) = (un 1,05 0) =0, (up, v 0) = (up ,0n) = (2(1+ @)mman) ™

1-—

=

Therefore, biorthonormal pairs in Ly(—1,1) are formed by the function systems

to(x), 121(1)(33), 1 #0 (mod my), 12,(62)(1‘), k # 0 (mod mo); 16)
16

*

Uy (z) = sin(mrmynz), 4, 4(r) =uy (), n €N,
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for problem (1) and
Bo(x), 57 (x), 1#0 (mod my), 5 (x), k#0 (mod my);
or(x) =201+ a)wmln(—l)(ml"’m?)"% cos(mmanz); (17)

¥ (x) = —r~ (= )(mﬁ-mz)ni gxsm(ﬂmgmc) + sin(mminx) — ap v} (z), neN,

for problem (2) with arbitrary constants a,, € R.

Let us evaluate and estimate the product of norms of root functions. By virtue of the relations presented
before Lemma 2 and the estimates (14) and (15), the products of norms of the corresponding eigenfunctions are
uniformly bounded for A # A’. If A = A%, then we have

n?

2
- - 1-—
la|® =1, f;]* = (2(1 +a)mmin B)

1+5
s [* = (1/3) + 1+ﬁ B+ (2m2m3n?)~! B a,n=2 o
m1 (2(1 + a)mmyn)? 2(1 + a)m2m? "
1/3) — (27?m3n®) " (1-B\° 1-
|17n1H = 0 (r2 ) (1+§) +1+2(1+a)%an+(2(1+a)7rm1)2ain2.

Therefore, each of the products ||@ 2 |5]|* has the form

nl?
c3(n) + cqan + csa’n?, (18)

where ¢4, c5 > 0 are constants and c3(n) satisfies the inequality 0 < ¢’3 < ¢3(n) < ¢’3 for all n € N.

Lemma 4. The products of Lo-norms of the respective root functions in the biorthonormal pair are uniformly
bounded if and only if

an=0(Mn"") as n— cc. (19)

Proof. Indeed, if a,, = O(1), then (18) is uniformly bounded provided that a,n = O(1). If the sequence
a, is not bounded, then (18) is equivalent to csa2n? as n — oo and hence is again uniformly bounded under
condition (19). The proof of the lemma is complete.

Let us show that, in a sense, condition (19) is a rule for the selection of associated functions which provides
the basis property of considered systems of root functions in La(—1,1).

Lemma 5. If condition (19) is satisfied, then each of systems (16) and (17), after the normalization in
Lo(—1,1), satisfies a Bessel type inequality and hence forms an unconditional basis in Lo(—1,1).

Proof. For example, consider system (16) of root functions of problem (1). If A # A%, then the normalization

—1/2

gives the system
3 1-8\? 1-5 . .
5 [3 + (1—"—5) ( 1 +6I) , Sln(ﬂ'll‘),

—1 _
Hﬂ,(f)Hz <cos(7rkm) + L= B cos(mk) sin (Wmlkx>) ;

1+ Bsin(mrk) Mo

where [ # 0 (mod my), k # 0 (mod ms), and, as was shown above, 1 < Hﬂ,(f) H < cg.
For A = X}, we have ’
()

[l

(|, 1|| (z) = AL {z cos(mminz) +

= sin(rmyne);

T L g( 1)(mitma)n cos(wmznx)] + AP sin(rmnx),
where 0 < ¢7 < ASP,ASIQ) <cg,n €N.
Thus, to justify the Bessel property, it suffices to prove the Bessel property of the following three systems
(n € N):
sin(mnzx), cos(mnx), (20)
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cos (wmlnm) ; (21)
mao

x cos(mmin). (22)

System (20) is orthonormal in Ly(—1,1) and hence satisfies the Bessel type inequality with constant B = 1.
The Bessel property of system (22) follows from the Bessel property of system (20), because the factor z is
bounded. Finally, system (21) is a Bessel system by virtue of the following assertion.

Lemma 6. Let {y} be a sequence of complex numbers such that

sup [Im (yx) | < oo, sup E 1< 0. (23)
k t>1
k:IRe('yk)ft|§l

Then each of the systems {sin(yxx)} and {cos(yxx)} is a Bessel system in La(—1,1).
Proof. By virtue of the estimates (23), v = mn + d,, where

sup |Im (dpx) | < 00, sup E 1< 0.
n,k n
k| Re(8n)| <1

Therefore,

/_1 f(z) sin(ygx)dx = cos(dnk) /_1 f(z) sin(mnx)dx + sin(dn) /_1 f(z) cos(mnx)dx+

1 x 1 T
—|—(5nk/ sin(5nkx)/ f (&) sin(mn&)dédx — 5nk/ cos(dnkx)/ (&) cos(mné)dédz,
—1 -1 -1 —1
which implies a Bessel type inequality for the system {sin(y;z)}.

System (21) satisfies condition (23), because

Im (v;) = 0, > < 2my + 1.
ki Re(ve)—t|<1

The unconditional basis property of system (16) follows from the well-known Bari theorem [28]. The proof
of the lemma is complete.

Theorem 2 is completely proved.

We note that using the proven basis property of the system of root functions in the case when the parameter
r is a rational number, the problems describing the process of heat propagation in a thin closed wire wrapped
around a weakly permeable insulation can be considered by the method of separation of variables. Such problems
with periodic boundary conditions with respect to the space variable were considered in [1].

This research is financially supported by a grants AP05131225 (L.V. Kritskov and A.M. Sarsenbi) and
AP05133271 (M. A. Sadybekov) from the Science Committee from the Ministry of Science and Education of the
Republic of Kazakhstan.
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JI.B. Kpunkos, M.A. Cagsibexkon, O.M. Copcenbi

NMuBomonusckl 6ap ekiuimi perTi nuddepeHnnasabl TeHIeY
YIIiH JIOKAJIJIBIK €MeC IIEeTTIK ecell

[lerrix maprraper u(—1) = Bu (1), v (—1) = u’' (1), B? # 1, TOKAIIBIK eMec MbIHAIAH CIIEKTPAJIIBIK,
ecenrin —u” (z) + au” (—z) = Au(z), -1 <z < 1, a € (—1,1), cuexrpanipx Kacuerrepi seprresi. Erep
r=+/(1—a)/(1+ «) uppammonan can 6osca, OHIA €CENTIH, MEHITKTI (DYHKIUAIAPHI TOJNBIK KOHE MU-
HUMaJIIBL XKyiie Kypaiiapl, anaiiga 6asuc emec. Ocbl TY>KBIPBIM JpJlelleHreH. Erep r panuonas can 6oJca,
OHJIa €CENITiH, aKbIPChI3 KOCBIMINA ajiblHFaH (byHKIUAIapbl 6ap. Bys »karmaiiia KocbIMIIa aJblHFaH DyHK-
OUSTApALI TAHIAM ajy KOJIapbl KearipisreH. 2KoHe TaHIam aJibIHFAH TYNKUTIKTI GyHKOUSIAp *Kyieci
Ly (—1,1) xenicriringe 6a3uc KypaiTbIHbI KOPCETLITEH.

Kiam cesdep: muBosonuschl 6ap xKail auddepeHnnanabl TeHAeyIep, JOKAIALIK, eMeC MIETTIK €Cell, CIeK-
TPAJJIBIK, ecell, 6a3Kc, TYNKITKTI DYHKIUIIAP.

JI.B. Kpunikos, M.A. Canpioexon, A.M. Capcenbu

Henokanpuasa KpaeBasd 3a1a49a JJjist JuddpepeHInmaIbHOTro
ypaBHEeHUsI BTOPOro IopsiJiKa ¢ MHBOJIIOIUE

B crarbe u3yueHbl CcleKTpajibHBIE CBOHCTBa st crekTpasibHoil sajgaun —u’ (x) + au” (—z) = Au(z),
-1 < & < 1, ¢ HejokagbHbIMH TrpaHmuHbiMu ycaosusamu u(—1) = Bu(l), u'(=1) = u/(1), rme
a € (—1,1), B # 1. Tloxkazano, uro ecin 1 = /(1 — ) /(1 + ) UppPAIMOHAILHO, TO CHCTEMA COBCTBEHHBIX
dyuxmii nonaa u MuauMasabna B Lo(—1, 1), HO He 06pasyer 6asmuca. B ciaydae panmoHaIbHOrO 9ucaa r
KOPHEBOe IMOJIIIPOCTPAHCTBO 3a/1a9U COCTOUT U3 COOCTBEHHBIX BEKTOPOB U BGECKOHEYHOTO YUCJIA TIPUCOE]IN-
HEHHBIX BEKTOPOB. B 9TOM CiIy9ae yKa3aH METOJ| BRIGOpa MPUCOEINHEHHBIX (DYHKIM, TPH KOTOPOM CHCTEMA
KOPHEBBIX (DYHKIMI 3871891 aABIAeTC 6€3yCaoBHbIM 6aszucoM B La(—1,1).

Karoueswie caosa: OJIY ¢ unBosonuei, HeJIoOKaJIbHAs KpaeBasl 3aja4a, ClIeKTpajbHas 3aja4a, 6a3uCHOCTD
KOPHEBBIX (DYHKITUIA.
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