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Families of theories of abelian groups and their closures

In studying the structural properties of elementary theories, a relationship between theories with respect
to a series of natural operators plays an important role. This relationship can be determined by placing
models of given theories in various formula definable sets. Such sets include, for example, sets defined by
unary predicates or equivalence relations. In this way, P-operators and E-operators arise, as well as their
closures, and e-spectra, i.e. the numbers of new theories that may be generated by these operators. For
E-operators, applicable to the families of theories of abelian groups, closures and generating sets, as well as
their e-spectra are described. Szmielew invariants are used as a tool for the established characterization of
a theory belonging to the E-closure of a family of theories of abelian groups. A series of families of theories
corresponding to the sets of Szmielew invariants, properties of these families, and values of e-spectra are
also described.
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0.1 Introduction

In a series of papers topological properties for families of theories are studied [1-6]. The notions of P-operator
and FE-operator were introduced allowing to study links between theories with respect to appropriate closure
operators. These operators give possibilities to generate new theories by given families of ones, and, in special
cases, to find minimal/least generating sets. Counting e-spectra for families of theories we get characteristics
for maximal variations of theories in closed sets of theories with respect to generating sets.

We continue this investigation applying for families of theories of abelian groups and describing closures
for families of theories of abelian groups with respect to the E-operator. In Sections 2 and 3 we consider basic
notions and known results for families of theories and theories of abelian groups. In Section 4 we characterize the
property when a theory of abelian groups belongs to E-closure of a given family of theories of abelian groups.
This characterization allows to describe closed sets of theories of abelian groups with(out) least generating sets.
Examples of these descriptions, for natural families of theories, are presented in Section 5.

0.2 Preliminaries

Throughout the paper we use the following terminology in [1, 2].

Let P = (P;)er, be a family of nonempty unary predicates, (A4;);c; be a family of structures such that P;
is the universe of A;, ¢ € I, and the symbols P; are disjoint with languages for the structures A;, j € I. The
structure Ap = |J A; expanded by the predicates P; is the P-union of the structures A;, and the operator

i€l
mapping (A;);cr to Ap is the P-operator. The structure Ap is called the P-combination of the structures A4;
and denoted by Combp(A;)icr if Ai = (Ap|a,)Isa,), @ € I. Structures A’, which are elementary equivalent to
Combp(A;)icr, will be also considered as P-combinations.

Clearly, all structures A’ = Combp(A;);icr are represented as unions of their restrictions Aj = (A'|p,)|s(4,)
if and only if the set po(z) = {-P(x) | i € I} is inconsistent. If A # Combp(A})icr, we
write A" = Combp(A;)icrufoc}, Where A, = A’ n 7+ maybe applying Morleyzation. Moreover, we write

i€l
Combp(A;)icrufoo} for Combp(A;)icr with the empty structure A.

Note that if all predicates P; are disjoint, a structure Ap is a P-combination and a disjoint union of
structures A;. In this case the P-combination Ap is called disjoint. Clearly, for any disjoint P-combination Ap,
Th(Ap) = Th(A%), where A’ is obtained from Ap replacing A; by pairwise disjoint A} = A;, ¢ € I. Thus,
in this case, similar to structures the P-operator works for the theories T; = Th(A;) producing the theory
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Tp = Th(Ap), being P-combination of T;, which is denoted by Combp(T;);cr. In general, for non-disjoint case,
the theory T will be also called a P-combination of the theories T;, but in such a case we will keep in mind
that this P-combination is constructed with respect (and depending) to the structure Ap, or, equivalently, with
respect to any/some A" = Ap.

For an equivalence relation F replacing disjoint predicates P; by E-classes we get the structure Ag being the
E-union of the structures A;. In this case the operator mapping (A;):cr to Ag is the E-operator. The structure
Ag is also called the E-combination of the structures .A; and denoted by Comb g (A;)icr; here A; = (Ag|a,)|sa,),
i € I. Similar above, structures A’, which are elementary equivalent to Apg, are denoted by Combg(Aj});e,
where A’ are restrictions of A’ to its E-classes. The E-operator works for the theories T; = Th(A;) producing
the theory Ty = Th(Ag), being E-combination of T;, which is denoted by Combg(T;);cr or by Combg(T),
where T = {T; | i € I'}.

Clearly, A’ = Ap realizing poo(x) is not elementary embeddable into Ap and can not be represented
as a disjoint P-combination of A, = A;, ¢ € I. At the same time, there are E-combinations such that all
A’ = Ag can be represented as F-combinations of some .A; = A;. We call this representability of A’ to be the
E-representability.

If there is A’ = Ag which is not E-representable, we have the E’-representability replacing E by E’ such
that E’ is obtained from E adding equivalence classes with models for all theories T, where T is a theory of
a restriction B of a structure A’ = Ag to some E-class and B is not elementary equivalent to the structures
A;. The resulting structure Ag: (with the E’-representability) is a e-completion, or a e-saturation, of Ag. The
structure Ag: itself is called e-complete, or e-saturated, or e-universal, or e-largest.

For a structure Ag the number of new structures with respect to the structures A;, i. e., of the structures
B which are pairwise elementary non-equivalent and elementary non-equivalent to the structures A;, is called
the e-spectrum of Ag and denoted by e-Sp(Ag). The value sup{e-Sp(A’) | A" = Ag} is called the e-spectrum
of the theory Th(Ag) and denoted by e-Sp(Th(Ag)).

If Ag does not have E-classes A;, which can be removed, with all E-classes A; = A;, preserving the theory
Th(Ag), then Ag is called e-prime, or e-minimal.

For a structure A" = A we denote by TH(A’) the set of all theories Th(A;) of E-classes A; in A’.

By the definition, an e-minimal structure A’ consists of E-classes with a minimal set TH(A"). If TH(A') is
the least for models of Th(A") then A’ is called e-least.

Definition [2]. Let T be the class of all complete elementary theories of relational languages. For a set
T C T we denote by Clg(T) the set of all theories Th(.A), where A is a structure of some E-class in A’ = Ap,
Ag = Combg(A4;)icr, Th(A;) € T. As usual, if T = Clg(T) then T is said to be E-closed.

The operator Clg of E-closure can be naturally extended to the classes 7 C T as follows: Clg(T) is the
union of all Clg(7p) for subsets Ty C T.

For a set 7 C T of theories in a language ¥ and for a sentence ¢ with X(p) C ¥ we denote by T, the set
{TeT|peT}.

Proposition 2.1 2. If T C T is an infinite set and T € T\ T then T € Clg(T) (i.e., T is an accumulation
point for T with respect to E-closure Clg) if and only if for any formula ¢ € T the set T, is infinite.

Theorem 2.2 [2]. If 7§ is a generating set for a E-closed set Ty then the following conditions are equivalent:

(1) Ty is the least generating set for To;

(2) T4 is a minimal generating set for To;

(3) any theory in Ty is isolated by some set (Tq),, i.e., for any T € Ty there is p € T such that (Tq), = {T'};

(4) any theory in T is isolated by some set (To),, i.e., for any T € Ty there is ¢ € T such that (To), = {T'}.

0.3 Theories of abelian groups

Let A be an abelian group. Then kA denotes its subgroup {ka | a € A} and A[k] denotes the subgroup
{a € A| ka = 0}. It p is a prime number and pA = {0} then dimA denotes the dimension of the group A,
considered as a vector space over a field with p elements. The following numbers, for arbitrary p and n (p is
prime and n is natural) are called the Szmielew invariants for the group A [7]:

p.n(A) = min{dim((p" A)[p]/(p" ' A)[p]), w};
Bp(A) = min{inf{dim((p" A)[p] | n € w}, w};

Vp(A) = min{inf{dim((A/A[p"])/p(A/A[p"])) | n € W} w};
e(A) € {0,1}ande(A) =0 < (nA = {0} for somen € w,n # 0).
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It is known |7, Theorem 8.4.10] that two abelian groups are elementary equivalent if and only if they have
same Szmielew invariants. Besides, the following proposition holds.

Proposition 3.1 [7, Proposition 8.4.12|. Let for any p and n the cardinals oy, pn, Bp, vp < w, and € € {0,1}
are giwen. Then there is an abelian group A such that the Szmielew invariants oy n(A), Bp(A),vp(A4), and (A)
are equal to &, Bp, Vp, and €, respectively, if and only if the following conditions hold:

(1) if for prime p the set {n | apn # 0} is infinite then B, = v, = w;

(2) if € = 0 then for any prime p, B, = v, = 0 and the set {(p,n) | apn # 0} is finite.

We denote by Q the additive group of rational numbers, Z,» — the cyclic group of the order p", Zp~ — the
quasi-cyclic group of all complex roots of 1 of degrees p™ for all n > 1, R, — the group of irreducible fractions
with denominators which are mutually prime with p. The groups Q, Zy~, R,, Zp~ are called basic. Below the
notations of these groups will be identified with their universes.

Since abelian groups with same Szmielew invariants have same theories, any abelian group A is elementary

equivalent to a group

)

DpnZier™ © ©, 2% © @, R & Q)

where B®*) denotes the direct sum of k subgroups isomorphic to a group B. Thus, any theory of an abelian
group has a model being a direct sum of based groups.

Recall that any complete theory of an abelian group is based by the set of positive primitive formulas [7,
Lemma 8.4.5], reduced to the set of the following formulas:

Jy(mizy + ... + Mpxy, = pky); (11)

miTy + ... +muz, =0, (12)

where m; € Z, k € w, p is a prime number [§8], [7, Lemma 8.4.7]. Formulas (11) and (12) allow to witness that
Szmielew invariants defines theories of abelian groups modulo Proposition 3.1.

0.4 Families of theories of abelian groups and their closures

Denote by T.A the set of all theories of abelian groups. Below we consider families 7 C 7.4 and corresponding
families 7', where constants 0 are replaced by unary predicates Py with unique realizations 0, and operations
+ are replaced by ternary predicates S, where = S(a,b,c¢) < a+ b = c. Clearly, each theory T € T can be
reconstructed by the correspondent theory 77 € 7’ and vice versa. So we can freely replace the closure Clg(7")
(and its elements) by the correspondent set of theories of abelian groups, denoted by Clg(7T) (as well as by
correspondent theories).

Now we fix a family 7. In view of Proposition 2.1 and the basedness by the set of formulas (11) and (12)
we have the following lemmas.

Lemma 4.1. A family Clg(T) does not contain theories with new finite invariants ap pn, Bp, vp as well as
invariants with new p and n.

Lemma 4.2. A family Clg(T) contains a theory with infinite invariant oy, , if and only if T contains a
theory with that infinite invariant or T has theories with infinitely many distinct finite invariants cup .

Using Proposition 3.1 and Lemma 4.2 we have.

Lemma 4.3. A family Clg(T) contains a theory with an infinite invariant B, (respectively, ~,) if and only if
T contains a theory with that infinite invariant, or T has theories with infinitely many distinct finite invariants
Qpn, or T has theories with infinitely many distinct finite invariants B, (vp).

Lemma 4.4. A family Clg(T) contains a theory with e = 1 if and only if T contains a theory with ¢ =1, or
T has theories forming infinite set {(p,n) | cpn # 0}, or T has theories with positive invariants B, or 7p.

Lemmas 4.2 — 4.4 describe approximations of new infinite Szmielew invariants by finite ones.

Applying Proposition 2.1, the basedness of theories in Section 3, and Lemmas 4.1 — 4.4 we can describe
E-closures for families of theories of abelian groups.

For this aim we remember the following fact for a family T of language uniform theories 77 defined by sets
I of nonempty predicates.

Recall [3] that a theory T in a predicate language ¥ is said to be language uniform, or a LU-theory if for
each arity n any substitution on the set of non-empty n-ary predicates preserves T

Proposition 4.5 [3, Proposition 6. If Ty ¢ T then T; € Clg(T) if and only if for any finite set Jy C Iy there
are infinitely many TrT with

JNJo=1nNJy. (13)
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The equations (13) for indexes mean the local correspondence between T and T;. Using replacements of these
index sets by sequences of Szmielew invariants for theories of abelian groups we get the local correspondence
for families of theories in T .A: for a family 7 C T A, a theory T € T.A\ T locally corresponds to T if replaced
(13) holds modulo infinite Szmielew invariants and, besides, simultaneously the sequence of infinite Szmielew
invariants for 7', which are not represented in infinitely many theories in 7, is approximated by sequences of
corresponding finite Szmielew invariants for theories in 7 used for replaced (13).

Theorem 4.6. If T is an infinite family of theories of abelian groups and T ¢ T is a theory of an abelian
group then T' € Clg(T) if and only if T has infinite models (3. e., T has some infinite o, ,, or some positive [y,
vp, €) and locally corresponds to T

Proof. If T € Clg(T) then T has infinite models since finite models define only finitely many positive
Szmielew invariants, these invariants are exhausted by finite ), ,,, and theories with these invariants are isolated.
If T locally does not correspond to 7 then T' ¢ Clg(T) in view of Proposition 2.1.

Conversely if T has infinite models and locally corresponds to 7 then Clg(7) contains a theory with same
Szmielew invariants as for 7' and thus T € Clg(T).

0.5 Generating sets and e-spectra

Theorem 2.2, Proposition 3.1, and Theorem 4.6 allow to characterize families of theories of abelian groups
with(out) least generating sets as well as to describe e-spectra for E-combinations of theories in T .A.

Following the series of Szmielew invariants, for a theory T' € T.A we consider the support Supp(T) of T
being the set of positive Szmielew invariants for T. Now we denote by FS (respectively, CFS) the set of all
theories in 7.4 having (co)finite supports. By ZCZS we denote the set of all theories in 7.4 having infinite
and co-infinite supports. By F we denote the set of all theories in 7.4 with finite Szmielew invariants, and by
INF — with infinite Szmielew invariants ay,,, > 0, 8, > 0, 7, > 0.

Clearly, Clg(FS) = TA and Clg(CFS) = TA implying Clg(ZCZS) = T.A. Note also that Clg(F) = T.A
whereas ZN F is E-closed.

By A, B, T, E we denote the classes of all theories in 7.4 whose positive Szmielew invariants are exhausted
by apn, Bp, Vp, €, respectively. For X,Y,Z,U € {A,B,T',E} we denote by XY, XYZ, XYZU, respectively,
the set of all theories in 7.4 whose positive Szmielew invariants are exhausted by corresponding p.ns Bps Vps €
for X,Y,Z,U.

For X as above and for a sequence S of some Szmielew invariants, we write Xg for the set of of all theories
T in X such that Szmielew invariants for 7" equal to corresponding values in S. If the sequences S do not have
finite positive values we denote by X°° the union of these Xg. If for a subset Py of the set P of all prime
numbers the sequences S do not have positive values for p € P\ Py we denote by X p, the union of these Xg.
We write X,, instead Xp, if Py is a singleton {p}.

As above we denote by Xp, Y, Xp,Yp;Zpy, Xp, Y pZpy Upyr, respectively, the set of all theories in TA
whose positive Szmielew invariants are exhausted by corresponding . n, Bp, Vp, € for Xp,, Y pr, Zpy, Uppr.

Remark 5.1. If St is a sequence of all Szmielew invariants for a theory T then Ag, Bg,I's, Eg, = {T}. As
Proposition 3.1 asserts, some Szmielew invariants can be reconstructed automatically using the rest. Therefore,
for instance, if Szmielew invariants oy, Bp, Vp for T imply ¢ = 1 then we have Ag Bg I's, = {T} for the
subsequence S%. of Sy which is obtained removing . We have a similar effect for 8, = w and v, = w with
{n | apn # 0} = w. In such a case Sy can be reconstructed both from S/ and from S7. which is obtained from
S7. removing considered 3, and ~,.

In general case, subsequences S/ of St define, for combinations of A sys Bsyry Lispry Egrr, the following
possibilities for cardinalities: 1 (if T is uniquely defined), 2 (having, for instance, positive ¢, ,, only and varying
¢), w (having finitely many free positions for Szmielew invariants which can vary independently from 0 to w),
2¢ (having countably many free positions for Szmielew invariants which can vary independently from 0 to w).

Recall [9] that a group A is divisible if for any natural n > 0 and any element a € A the equation nx = a
has a solution in A.

Theorem 5.2. |9]. Any divisible subgroup A of abelian group B is a direct summand in B.

Theorem 5.5. [9]. Any nonzero divisible abelian group A is represented a direct sum of groups isomorphic to
Q or Zy~.

Recall [9, 10] that a group A is bounded if there is a positive number n such that n.A = {0}. Otherwise the
group A is called unbounded. A group A is torsion free if all nonunit elements have infinite order.

Cepust «Maremarukas. Ne 4(92)/2018 75



In.I. Pavlyuk, S.V. Sudoplatov

The following proposition is implied by Proposition 3.1 and summarizes possibilities for combinations of A,
B, T, E.

Proposition 5.4. 1. AB = AT = ABI' = A C FS§, A is divided into A N F, consisting of theories with
finite models, and A \ F, counsisting of theories with infinite bounded models.

2. B=T = BI' = O, where O is a singleton consisting of the one-element group.

3. AE consists of theories T without 8, and +y, in Supp(T’) and such that sets {n | ., # 0} are finite for
each p, i.e., with bounded quotients with respect to maximal divisible subgroups.

4. BE consists of all theories of divisible abelian groups.

5. I'E consists of all theories of torsion free abelian groups.

6. ABE consists of all theories of abelian groups 4 with bounded quotients relative to maximal divisible
subgroups B, i. e., the theories Th(.A/B) form the set A.

7. ATE consists of all theories of abelian groups without 3, in Supp(7') and such that sets {n | oy, # 0}
are finite for each p.

8. BT'E consists of all theories of abelian groups such that quotients with respect to maximal divisible
subgroups are torsion free.

9. ABTE =T A.

Since theories of finite abelian groups with unbounded «,, are isolated and force theories with infinite
0p.ny Bps Vp, and positive €, as well as since these values for distinct p are independent, we have the following
proposition.

Proposition 5.5. 1. For any Py C P, Clg [ U (A,NF) | =Clg| U A, | = U A,BT°E with the
pEPy pEPy pePy

least generating set |J (A, NF).
pEPo
2. For any Py C P, Clg (Ap,NF) = Clg(Ap,) = Ap,BRTRE with the least generating set Ap, N F;

Clg ( U (A, NF) | is a subset of Clg (Ap, N F) which is proper if and only if |Po| > 2.
pEPy
Taking Py = P we have the following
Corollary 5.6. Clg(ANF) = Clg(A) = AB*I'*E with the least generating set AN F.
Clearly, e-Sp(T") = 0 for any theory T being a E-combination with unique finite structure, in particular,
for a finite abelian group. Now we divide A, into singletons A, , consisting of theories of abelian groups with
unique positive Szmielew invariant . For a fixed p and n and an infinite union (J A,, , produces a family

of theories whose E-combination T}, ,, has e-Sp(7}, ) = 1 witnessed by A, , with apy,; = w. Uniting the families
U Ag,., for p € Py we get E-combinations T with e-Sp(T") = |P,| which is obtained by additivity as in [4].

Ap,n

Taking finite direct sums EBp’nZZ(ﬁﬁ”’") we again can produce infinite «,, ,, for E-closures such that these a,, can
be independently achieved or not achieved. Thus we get 2 possibilities for variations of infinite a, , which is
witnessed by some E-combinations T with e-Sp(T') = 2¢. Since there are 2 distinct theories of abelian groups
this value is maximal. Summarizing the arguments we have arbitrary admissible values of e-spectra and obtain
the following

Theorem 5.7. For any A € wU {w, 2%} there is an E-combination T of theories of finite abelian groups (in
A NF and with least generating set) such that e-Sp(T) = A.

Now we define a subfamily of Clg(A) producing an E-combination without the least generating set. Choose
an infinite set Py C P and take a countable set D C P(F) such that (D, C) is a dense linearly ordered set
isomorphic to (Q, <) and without cuts (4, A’) having |J A # [ A’. Denote by Clg(A)p the family

{Th (@pex2(”) | X € D}

Clearly, Clg(A)p does not have isolated points and has 2¢ cuts producing |Clg(Clg(A)p)| = 2¥. Moreover,
for any Py C P with |P \ Py| = w we can take continuum many infinite Pj C P which are disjoint from P,
and produce continuum many theories in corresponding sets Clg(A)p, for D' C P(F}), and separated from
Clg(A)p with respect to Hausdorff topology.

Similarly we can add theories in A N F with positive invariants for P C P which is disjoint from Py and
produce the value 2¢ for e-spectrum. Again the E-closure of that extended family does not have the least
generating set.
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Thus, by Theorem 2.2, the following theorem holds.

Theorem 5.8. There are 2% families Clg(A)p whose E-closures do not have least generating sets and whose
E-combinations T satisfy e-Sp(T) = 2.

Addind/replacing the arguments above for oy, ,, with 5, and/or v, we get the following theorems.

Theorem 5.9. For any A\ € wU {w,2%} there is an E-combination T of theories in BE (respectively, T'E,
ATE, BTE, TA) and with least generating set) such that e-Sp(T) = .

Theorem 5.10. There are 2¢ families Clg(BE)p (respectively, Clg(TE)p, Clg(ATE)p, Clg(BI'E)p,
Clg(TA)p) whose E-closures do not have least generating sets and whose E-combinations T satisfy
e-Sp(T) = 2v.

Clearly, Theorems 5.8 and 5.10 are witnessed by subfamilies of ZCZS.
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Nu.U. Ilasmok, C.B. Cynomnaros

AbGenpaik rpynnaJjap TEOPUSICHIHBIH, >KUbIHTBIKTAPbI
2KOHE OJIapAbIH, TYNBIKTaMaChl

DJjieMeHTapIIbl TEOPUSIAPABIH, KACUETTEPiHIH KYPBUIbIMIAPHIH OKY OapbICHIHIA MaHBI3IbI POJIII KOIiMIi
omepaTopJiap KaTapblHa KATBICThI TEOPHUSIIaAPIbIH aPAChIHIAFbl 63apa bailylanbIcTapbl aTKapaapl. by e3apa
6aMJIAHBICTBI OCHI TEOPUSITIAP/IBIH, MOIEIbAEPIH OPTYPJIl HOPMYIIB/Ii aHBIKTAIFAH KUBIH/IAPFA OPHAJIACTHIPY
apKbUIbl aHblKTayFra Gosaael. OcblHIAM Teopusaapra, MbICAJIbI, GIPOPBIHILI IPEIUKATIIEH HEMeCce SKBUBA-
JIEHTTI KaTbIHACIIEH HGeplireH XKublHaap Kataael. Cost cebenti, P-omepaTopsiap *xKoHe E-omeparop/iap koHe
OJIAP/IBIH TYHBIKTAMAJIAPHI e-CIEKTPJIAP, AFHU OChl TEOPUsIAPDMEH TYBIHIAJIATHIH KaHA TEOPUSIAD CAHBI,
naiiga 6osanel. F-oneparopsap yiiH abesibiK IpyInaiap TeOPUsIChIHBIH JKUBIHTBIKTAPBIHA COMKeC TYNBIK-
TaMaJjap YKoHEe TYBIHIAJFAaH KUBIHIAD, COHBIMEH Hipre e-ClieKTpJiap cumarraaaasl. Kypas peTinme KoWbLI-
FaH CUIATTaMaJa TEOPUSHBIH F-TyHbIKTaMaChHIa OChI a0ebIiK TPYNIAJIap TEOPUSCHIHBIH, *KUBIHTHIFBI
YIIIH [IMeJIeBTIK MHBapUAHTTaphl KOJJIAHBLIAAbI. Byl Makaiaga Teopusijiap KUbIHIBIKTAPBIHBIH, CEPUsLIa-
PBI KoHE COMKECIHIIE IIIMEJIEBTIK NHBAPUAHTTAPBIHBIH *KUBIHTBIKTAPHI AHBIKTAJIAIbI, OChI YKUBIHTHIKTAP/IBIH
KacHeTTepi 3epTTeseli, COHBIMEH KATap e-CIIEKTPJIAP/IBIH, MarblHAJIAPhI CUIATTAIATbI.
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Kiam cesdep: Teopusiiap YKUBIHTBIFBI, abe/Ib/IiK TpyIma, F-omepaTop, TYBIHIAJFAH *KWbIH, TYHBIKTaMa,
e-CIIeKTpP.

Nu.N. Masmok, C.B. Cymnomraros

CewmeiicTBa Teopuii abejieBbIX I'PYNN U WX 3aMbIKAHUS

IIpu nsyyenuu CTPpyKTYPHBIX CBOMCTB JIEMEHTAPHBIX TEOPHIl BasKHYIO POJIb UIPAET B3aMMOCBA3b MEXKY
TEOPUSIMU OTHOCUTEJILHO Psijia, €CTECTBEHHBIX OMEPATOPOB. DTy B3AMMOCBSI3b MOXKHO OIPEENISITh, OMe-
mast MOJIESIA JIAHHBIX T€OPHUil B pa3indHble (DOPMYIBHO ONPEIEINMble MHOXKECTBa. K TaKMM MHOXKECTBAM
OTHOCATCS, HAIIPUMEDP, MHOXKECTBA, 33/1aBaeMble OJITHOMECTHBIMHU IIPEJUKATaMU UJIN OTHOIIEHUSIMU SKBUBA-
JienTHOCTH. TakuM 06pa3oM, BOSHUKAIOT P-omepaTopsl u F-omepaTopbl, HX 3aMbIKAHUSI, & TAKXKE e-CIIEKTPHI,
T.€. HOBBIE€ TEOPHUU, KOTOPbIE MOTYT MIOPOXK/IAThCHA JaHHbIMU omeparopamu. st F-omepaTtopoB, TpUMEHN-
TEJIbHO K CeMefcTBaM Teopuil abeseBbIX I'DYIII, OIHMCHIBAIOTCS 3aMBIKAHUS U ITOPOXKIAIONINE MHOYKECTBA,
a TaK»Ke UX e-CIIeKTPhI. B KavuecTBe MHCTPYMEHTA I YCTAHOBJIEHHOW XapaKTepU3aIliy MO aHUsT TeOPUU
B F-3aMblkaHWe JAHHOTO CeMeicTBa TeOopuit abesleBhIX TPYII HCHOJB3YIOTCS IIMETEBCKHE WHBAPUAHTHI.
OrnpefiesIIIoTcsl Cepuu CeMeCTB TeOpHil, COOTBETCTBYIOIINX COBOKYIIHOCTSIM IIIMEJIEBCKUX WHBAPHAHTOB,
WCCJIEYIOTCSI CBOMCTBA THX CEMEICTB, & TaKKe ONHCHIBAIOTCS 3HAYEHUS e-CIEeKTPOB.

Karoueswie crosa: ceMeificTBO Teopuit, abesieBa rpynma, [-omepaTop, MOpOXKAAIoIiee MHOKECTBO, 3aMbIKa-
HUE, e-CIEKTP.
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