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A criterion for the existence of soliton solutions of telegraph equation

In this paper we consider a telegraph equation. In the case of a rectangular domain for the Cauchy potential
the lateral boundary conditions obtained. When considering the equation in the first quadrant a criterion
for the existence of soliton solutions is obtained.
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Introduction

Many studies have been devoted to the study of classical potentials: the Newton potential, the volume heat
potential and the wave potential. In the equations of mathematical physics Newton’s potentials are used to
solve classical problems (the Dirichlet problem, Neumann problem, Robin problem) for the Laplace equation
and other elliptic equations. It should be noted that for the first time the exact nonlocal boundary conditions
of the Newton potential, the volume heat potential and the wave potential have been found recently [1-3].
After, boundary conditions of surface potentials that satisfy homogeneous equations were studied [4, 5]. Further
applying these results, the boundary conditions for the volume elliptic-parabolic potential were found and so
on [6-19].

Boundary conditions of Telegraph Equation

In the band Q = {t >0,0<z< %} we select a limited subdomain Q; = {0 <t<
consider the Cauchy problem for a one-dimensional telegraph equation

N

0u(z,t) B 0%u(x,t)

Lu(z,t) = 92 R Au(z,t) = f(x,t); (1)
w(x,t)|i=o = 0, (2)
Ou(z,t) B
—5 =0 =0. 3)

In the characteristic coordinates { = x +t, = 2 —t the band 2 turns into a band ﬁ, and the subdomain
) turns into a subdomain 2; with bounded segments:

1 1
AoBo:n=¢ 0=&=<o; Apdin=-¢ 0=<&<o;
1 1
as t > 0, then n < £. Equation (1) also turns into equation
Pu(€,n) | A
L = —> 4+ - = 4
and the Cauchy data (2) and (3) are expressed in
u(&;m)ly=¢ =0, (5)
9u(&,n) 3u(§ﬂ7)>
— =0. 6
( o€ o ), ©)
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It is well known that the Riemann function R(&,n,&1,m1) (see [20; 92]) of the telegraph equation (4) is
representable in the form

R(&n&m) = Jo (VAE = &)t —m)) . (7)

where Jy(2) is a zero-order Bessel function (see [20; 91]).
A fundamental solution of the Cauchy problem (4)—(6) in the domain Q is given by the formula:

(€ —&,m—n)=—0(—E)0(n —n) x R(En,&,m). (8)

In contrast to [21; 256], here the fundamental solution is taken with a negative sign and the second argument
(m — n) in accordance with the domain (.
The telegraph potential in the domain € is called the integral

u(€,m) =cx* f= /55(5 —&m —n) f(&,m)déndn =

3 n
=/ dé, . R(&m, &) f(&x,m)dm =
n 1

3 n
- / ¢, /5 Jo(v/NE = &) — ) (v mn ). (9)

It is easy to verify that the telegraph potential (9) satisfies the homogeneous initial Cauchy conditions for
n=¢0<E<1/2 i

u(;m)ly=¢ =0, (10)
u(§n)  Ou(&,n) _
(%2250 o ay

and equation (4) (see [21]).
Let us find a lateral boundary conditions of the telegraph potential (9) for AgA: &= —n, 0<E< % and
1

ByB:&=1-1n, 3 <¢<1, which is equivalent to = 0, and = 1 in the original coordinates (z, ).

Theorem 1. Let f(£,m) € C! (6), then the telegraph potential u(¢,n) € C? (6) satisfies the following
lateral boundary conditions:

£
Nl 4,4 = Nallo__, = / Jol 4A(€—§1)2)§7;L1(€17—771)d§1+

CA/ANE-ED) o
+2/\/0 (V—ANE=&1)?) ulbn, ~61)ds = 0; (12)
¢ u
Nldlpgp = Nldle—y = = [ Joly/~INE— ) 61,1 - €0)des+
CN((V/IAE-6)Y)
27 / o e €@ - =0, (1)

where Ji(z) is a Bessel function of the first order.

Conversely, if u(¢,n) € C? (Q) is a solution of the telegraph equation (4), satisfying the initial conditions

(5)-(6) and the lateral boundary conditions (12)-(13), then u(&,n) is given by the telegraph potential (9).
We note that for A = 0 the lateral boundary conditions of the telegraph potential coincide with the boundary
conditions of the one-dimensional wave potential which is given in [3].

Proof. We continue the function f(£,7) outside of the square Qy with zero, i.e. f(&,7) =0 in R2/Q;. Then
the telegraph potential

§ n
U(fﬂ?):E*f:/ dfl/E R(&,n,&1,m) f(E,m)dm

n

46 Bectnuk Kaparanmguackoro yHuBepcurera



A criterion for the existence of soliton solutions ...

gives a solution of equation (4) for all (¢,7) € R? and u(¢,n) € C2(1) satisfies the homogeneous initial Cauchy

conditions (5)—(6) for the whole straight line £ =7, —co < £ < +00. The value of the function u(£,n) at the point

(&, ) is determined by the value of f(&1,71) in the characteristic triangle, i.e. Ag , = {n <& <&, n<m <&}
Therefore the value of the function u(§,n) on u|aga—n=—¢ = u(§, —§) is defined by the formula

1 —£

ue.~) = [ de [ RE—€6m)s ). (14)
—£ &1

As f =0 outside & < 0 and 77 < —¢&;, then the integral (14) takes the form
&
ulapa = u(§ / d§1/ R(&, =& &,m) f(§r,m)dm =
3 =&
= [Fde [ aAER= =) e m ). (15)

Now, in (15) instead of the function f(&1,71) we put %5;21) + 2u(&,m), e

= [Fae [ aevnemarme ) (Tl uiesm) ) an -

06,0m

=1 + I, (16)
where
A 13 =1
-7 / des [ oA €~ mu, m)m a7)
61

I, = dfl Jo(WVAE — &) (—€ - 771)) (51,771)dm' (18)

0&10n

Integrating by parts the 1ntegral 15, we obtain

_ [ T AU SEU DA R

¢ B, ou(&,m) ,
- [P [ /A e ) 2 =

¢ U(G1, =61
= [ A= €t - ) g -
0 1

¢ Uu{S1,81
- [ ntvaE= e an 2 g -
0
& "
[ [ A ) e, (19)

From the initial Cauchy condition (5) it follows that %gfl) = (. Taking this into account, the integral I,
can be rewritten as
au(fla _gl)

3
b= o~ oo = [ B(V/AE— & - )= ag-
31
[ [ A e My, (20)

In the integral I 2 we change the order of integration and the limits in the domain n>0:0 <n; < ¢ and
in the domain n < 0: —¢ <n; <0, then we obtain
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3 I o ,
Ba= [ [ S (AE= =€) P, =

/dm/ *Jo (VAE =) (=€ = 2L m) g

061
"o u(&1,m)
v f i [ o (VNG €€ m) Gy
Using the formula %Jo(z) = —J1(2) (see [21]), we conclude that
0 0 0
G P VNE—ENE—m)) = 5 do() g =
— —h(e) g (VNE— E(E =) = a(a) ) (21)

2/ A= &)(=E—m)

Taking into account the last relation from (21), integrating by parts the integral I5 2, we find

P / J(VMNE= &) (€ —m)(E — &)
T2/ VAE=&)(=E—m)

42 /f J(WVAE= &) (=€ —m))(€ — &)
2.Jo \/Af—&)(—ﬁ—m)

u(&1, 771)| M dn, +

u(é-la 771)|Zld771*

0 m
/ dTh/ 8§ am \//\ (& = &1)(=€ —nu))u(&r,m)dnm+

[ [ 5 o NE G € muten e ~

u(—n1,m)dni+

:A/ J1(V/=ME+n)(E+m))(E +m)
2 )¢ J AE+m)(E+m)

# [ an [ /e G uter -

1
[ (/N G E s, m (22)
0 ¢ 0&0m
In the first integral of (22) replacing the variables —n; = &1, = &£, we have

A SN =AE-6)P)
2o VAAE-&)?

Taking into account the integrals I, I3 5 and formulas (17), (22), we have that

316(51, *fl)
&1

Iy, = (€ — & )ulér, —€1)dér . (23)

£
Ul agn = u(6, —€) = / JoVMNE—E)E — ) e, —

ARG e
2 )y, T —gE & e —adat

3 —&1 52 A
w [ [ (G NEEt ) + LA AE =BT m) ) . (24)

As Jo(v/A(€ — &) (n —m)) is the Riemann function of the telegraph equation (4), then
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0? A
96,01, Jo(VAE = &) —m)) + ZJo(\/A(f — &) —m)) =0. (25)
Therefore, we have
_ _ [ u(&r, €1
aoa = ul~9) = [ IoVAE =8 O gt
ARG, _
2 J, Ne_6)? (€ = &)u(&r, —&1)déa. (26)
It is easy to verify that the total derivative
d _(Ou(&,—&)  Ou(&,—&)
diflu(glv _51) - < 8&1 6771 ) |77:*517
e duler.—€) _ du(6r.—€) _ou(er.—&)
UlG1;, —¢1) _ auU(Q1, —Q1 1, —S1
o6, de T om (27)

Taking this into account, from (25) integrating by parts, we obtain

¢ du(fla _51) au(glv _51) _
[ wAE=aiE - oy (M o 2 e

¢ U(GQ1, 71
= [ niVAEEam ) ae

0

€
ol /NE= P Iulr, €0l — | e ol v/AE — EPTulér, —6)ds =

L Ji(v =M€= 61)?)

=) - 28

e e (28)
as Jo(0) = 1.
From the last relation it follows that

w(€, —8) = uf g 4 + Nlul g4 = u(§, =&) + N[ul|,__, (29)

i.e.

E u
Nfu] = / o(VANE &))am wlE, —m)l, _edrt

CT(V—ANE=&)? f 51) )

The boundary condition (29) is the lateral boundary condition of the telegraph potential on AgA: n = —¢,
0<é<1/2

If A = 0, then from (29) by differentiating by parts, we obtain the lateral boundary conditions for the
one-dimensional Cauchy wave potential in the case of T.Sh. Kalmenov, D. Suragan [3].

Similarly, we find the boundary conditions on ByB:

6 u
Nl =~ [ DE 6 2 61— e)dert

: ¢

S N(V-AAE-6)?)
1/ ANME - 6)?

Thus, the lateral boundary conditions N[u] on AgA and ByB are given by formulas (29), (30), respectively.

+2A

(& =&)u(é,1 =& )dé = 0. (31)
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Conversely. Let ¥ € C?(2) satisfy equation (4), homogeneous initial conditions (5)—(6) and the lateral
boundary conditions(29)—(30). Let u(&, n) be the telegraph potential defined by (9), then w = u — o satisfies the
homogeneous equation (4) and the homogeneous initial conditions (5)—(6).

By virtue of (24) and (31), we have

w+ Nw][4,4 = w|ay4 =0,

w—i—N[w]\BOB :w|BOB =0.

From the uniqueness of the solution of the mixed Cauchy problem we have w = u — 9 =0, i.e. u = 9. By
continuation of the solution outside the square under consideration, we see that N[u]|;=o = 0, and Nu}|yz=1 = 0.
Theorem 1 is completely proved.

Telegraph potential solitons

In a quarter of the plane Q = {z > 0, ¢t > 0} we consider the Cauchy problem for a homogeneous telegraph
equation

Lu(x,t) = Ou(z, t) — Mu(z,t) = (;2 - 881:2) u(w,t) — du(z,t) = 0; (32)
u(:c, t)‘tzo = T(Cﬂ), (33)

Ou(x,t) _
8oy = vla). (34)

We assume that 7(x) = v(z) = 0 at < 0 and we seek a solution in the whole half-space ¢ > 0. It is natural,
that it is determined by the Cauchy data 7(z) and v(z) at x > 0.
By 7(x) and 7(z) we denote the functions

o ={ o IZp (35)
P(x) = { 3“) ;fig (36)

The solution of the Cauchy problem wu(z,t) is determined by the Riemann formula (see [22; 174])

1 1
u(z,t) = §U($0,0)R(=’E0,0,$7t) + 5“(11,0)3(%,07%%)+

o (€. ORE1,0,0.) ~ u(€1,0) - (61, 0.2.1) ) ds =
= %T(IO)R(‘T(% O,Z,t) + %T(xl)R(zl’ O’ :Zf,t)+
), (M.~ e Rie0.0.0 ) de o

where zg =z —t, ©1 =x+1.
At 21 =0, xop = —t < 0, taking into account that 7(z¢) = 0 and v(z) = 0, from (37) it follows that

1
7(t) = u(0,t) = 5T(:c +t)R(x+t,0,2,t)|z—0+

w3 ) (MR 00— e g RiE0..0) dileno =

%T(t)R(uQ 0,t) + %/0 (V(fl)R(&,0,0,t) — 7(51)887711%(51,070,0) dé;. (38)

Equality (38) is the lateral boundary condition for the surface wave potential.
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It follows

Lemma. Suppose that the Cauchy data 7(z), v(z) € C?(—o00,00) and 7(x) = u(z,0) = 0,
v(z) = w =0 at z < 0. Then the surface telegraph potential u(x,t) for z = 0 satisfies the lateral boundary
condition (38).

It is easy to verify that for A = 0 the condition (37) becomes a boundary condition of the surface wave
potential.

Theorem 2. Suppose that the hypothesis of Lemma holds and A = 0 for x > d > 0. Then the surface
telegraph potential u(z,t) at £ — oo turns into a soliton solution, i.e. lim,_, o u(z,t) = @(z — t) if and only if
the condition is fulfilled

(gt - 51) (@, )] o—a = 0. (39)

Proof. 1t is not difficult to show that if A = 0 at x > d > 0, then the solution of the homogeneous telegraph
equation given by (37) can be represented in the form

u(x,t) = Pz +t) + oz —t). (40)
Then 5 9
(5~ 52 ) westlema = (a+ Dlama =0 (41)

Taking this into account, from (40) it follows that lim, ,.c u(x,t) = p(r —t).
Theorem 2 is proved.

This paper was published under projects AP05133239, AP05134615, BR05236656 of the Science Committee
of the Ministry of Education and Science of the Republic of Kazakhstan.
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T.II. Kommenos, [.JI. Apemnosa

Tenerpad TeHAeyiHIH COMTOH MIENIiM/IePiHIH, 0ap OOJIYBIHBIH,
KaXKeTTi YKoHe YKeTKIJIKTi IMapThl

MakaJrazia Tesierpad Teseyi kapacToipbliarad. TeopTOypbImThl 00JIbIC 2KaF1aiibiaa Kol moTeHIuaIbIHbIH
Oyifip mekapaJjapblHIa [EKAPAJBIK MapTTapbl TabbLtran. TeHgaeyai OipiHIT KBaJpaHTTa KapacTbIPFAHIA
COJTUTOH MIEeMTiMIepiniy 6ap OOMYBIHBIH KAXKETT] YKOHE XKETKITIKTI 1MapThl aJbIHFAH.

Kiam cesdep: Tenerpad TeHzeyi, Tenaerpad MOTEHIUABI, ipresi IIemiM, COJUTOH MIeiMi, JOKAJIIbl eMeC
IIeKapaJbIK IapThl, YHIPTKI.

T.II. Kanmemenos, I'.JI. Aperosa

Kputepuii cyniecTBoBaHUsI COJIMTOHHBIX pPellleHunid
TejierpadHOT0 ypaBHEHUS

B craTthe paccmorpeno Testerpaduoe ypasuenue. st cirydast mpsiMOyToOJIbHOM 00JIaCTH HaIEHBI KpaeBble
ycsioBus norennuasia Komm #a 60KOBbIX rpanunax. [Ipu paccMoTpeHun ypaBHEHUsI B IIEPBOM KBaJpaHTe
MOJTyYeH KPUTEPHUii CyIIeCTBOBAHUS COJTUTOHHBIX PEIIeHMUIA.

Karoueswie caosa: TenerpadHoe ypaBHeHHe, TeaerpadHblil moTeHna, MyH aMeHTaIbHOE PEIIeHNE, COH-
TOHHOE peIlleHue, HEeJIOKAJIbHbIE I'PDAHUYHbBIE YCJIOBUS, CBEPTKA.

Bectnuk Kaparanmgurckoro yHuBepcurera





