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The natural solvability of the Navier-Stokes equations

It is known that the three-dimensional Navier-Stokes equations (ENS) the existence theorem of smooth
solutions in the presence of smooth data for the whole with respect to time has not proved and the
uniqueness theorem is violated in the class of generalized solutions. In a number of works by the author of
this article, the results of search studies on the justification of the maximum principle for three-dimensional
ENS are given. Over time, these studies have improved and later the justice of the simplest principle
for maximum was shown for three-dimensional ENS. A further continuation of the search led to the
determination of the relationship between pressure and the square of the velocity vector modulus from
the properties of the ENS solutions. On the basis of this the answers to many problematic issues related to
the solvability of the ENS were found. And in particular, in the selected spaces, the uniqueness of the weak
and the existence of strong solutions of the problem for the three-dimensional Navier-Stokes equations for
the whole of time are proved.

Keywords: Navier-Stokes equations, pressure in the Navier-Stokes equations, the uniqueness of weak generalized
solutions, the existence of strong solutions.

Some introductory information

Unsolved problems in the theory of Navier-Stokes equations  homogeneous fluid are given in [1, 2],
etc. The initial-boundary value problem for Navier-Stokes equations [1] with respect to the velocity vector
U = (Uy, Us, Us) and the pressure P in the domain @ = (0,7] x Q:

%‘; — JAU + (U, V)U + VP = £(,x), divU = 0; (1a)

U(0,x) = ®(x), U(t,x)| 0, (1b)

xcoN

where x € Q C R3;  — is a convex domain and 9 is the boundary of Q, t € [0,T], T < oc; j(Q) — space
solenoidal vectors; Lo (Q)— is the subspace of C(Q). W () is the Sobolev space functions equal to zero on
0Q; The input data f and ® of the problem (1) meet the requirements:

i) f(t,x) € Loo (0, T; L, () N J(Q);

ii) ®(x) € L,(Q) N W] 4(Q) N J(Q), vp.

Further, we use the Holder inequalities

‘!Ude' < (Q/|U|pdx>;(ﬂ/|v|qu>; @)
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and Jung for pair products

1 1 1
UV < —|UP+S|V]9, e>0, -—+-=1, (3)
€p q P q
in addition, the integration by parts formula
ou
VAU dx = VV VU dx + Va— dx. (4)

o0

1 Explicit relation between pressure and square of the velocity vector module

From the properties of the solutions of the problem (1) a quadratic form connecting the pressure P(t,x)
from the components of the vector of the speed U(t, x) :

(v, Bv') =0, (5)
where B = HUaUB + 65PHO(75:17273 — is the symmetric matrix; v = (v1,vs,v3) — an arbitrary vector;
3
the components {v,} consist of arbitrary numbers such that Y vZ # 0; v/ = (v, va, ’Ug)l — vector column;
a=1

62 — the Kronecker symbol.
Using the orthogonal matrix T from eigenvectors matrix B the quadratic form (5) is reduced to the sum of
squares

3
(z1,22,23)A(z1,22,z3)/ = (z,Az) = Z Aa?2 =0, (6)
-1

where A = diag{A1, A2, A3}, The columns T consist of the eigenvectors of the corresponding to the eigenvalues
of the matrix B, z = T'v. Notice, that z = (21, 22, 23)— is also an arbitrary vector.

Elements of the matrix A are determined from of the characteristic equation of the matrix B,
that is [B—A|=0. Whence we obtain cubic equation A3+aX?+bA+c=0, where a= —(‘U’2 +3P);

b= 2|U’2P+3P2; c= 7(|U|2+P)P2. The solution of this equation we find using the Cardano formula. For this,
substitution A = y —a/3 we arrive at the «incomplete» type y®>+ry+d =0, r=—1/3|U[*, d= —2/(27)|U|°.
Whence follows, that the discriminant of this equation is equal to zero, that is D = (r/3)3+(d/2)? = 0. Which
means all the roots of the «incomplete> the equations are real, and two of them are equal to each other. In fact,
= {/—d/2 = B ={/-d/2=1/3|U]% y1 = A+ B =2/3|UJ% yp3 = —(A+ B)/2 = —1/3|UJ2.
From here we find the roots A, a = 1,3 of the original cubic equations: A\; = |U|2 +P; \a=P; M\3=P
Now we rewrite the quadratic form reduced to the sum of squares (6)

zAz Z)\zfo Vz.

This relation is zero if and only then when A\, = 0, o = 1,3. Where does it follow that A\; = |U|2 +P =0,
X =P, =0, A\3= P3=0. From here

Py (t,x) yU\ = 2F; Po(t,x)=0; P3(t,x)=0. (7)
2 Estimations of the solution of the problem (1)

Theorem 1. If the input data of the problem (1) satisfy the requirements i), ii), then for the solutions of the
problem (1) the following estimate holds:

UllLe(@ < 1Rlee@) + TlfllL @ = A VT < oc. (8)

Proof. We multiply the scalar equation (1a) by the vector function pEP~!U, the product is integrated over
the domain 2 and use the identity EP = -5|U|?, then

1d

5 dt/|U|2p dx — p/,L/AUUE” 1dx+p/(U V)UEP~'Udx+

Q
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+p / EP~'VPUdx =p / EP1Ufdx, < (0,T). (9)

Each term (9) is transformed by integration by parts (4). In estimating the fourth term on the left-hand side of
we take into account (7). We estimate the right-hand side by Holder’s inequality (2) and, as a result, we get:

ou 1 1d 2
p/(8t U)E?ldx 2p%/\m dx; (10)
Q Q
—Pu/(AU U) B~ ldX—W/E” 12 VUa)?dx + p(p —1)u/E”*2(VE)2dxzo’; (11)
a=1 Q
p/ U,V)UEP 'Udx = /UVEde— —/divUEpdx+ /(U7n)EPdX =0 (12)
Q Q o
p/Ep’lUVde = —zp/EHUVde = —Q/UVEpdx: 0; (13)
Q Q
2p—1 1
2p 2p
p 2p 2p
p/ = g /|U| dx /|f| dx | . (14)
Q Q Q

From the identity (9), taking into account the relation (10)—(14), we have the estimate

1d
2pdt/|U|2pdx+pu/E” 12 (VU,)?dx 4 p(p — 1) /EPQVE) dx <
a=1
2p—1 1
2p 2p
< 2pp_1 /\U|2”dx /}ffpdx . te(0,7T). (15)
Q Q

Because of the nonnegativity of the second and third terms on the left-hand side of (15), from which we proceed
to the strengthened inequality.

1
2p

2p—1
2p
2pdt/|U|2pd <2 /]U\Zpd /]f’2pdx . (16)
Q

2p—1

Both parts (16), dividing by a positive integral 5% <f ’U|2pdx) B , we write
Q

2p 2p

d 2 2
p /|U| Pax | < /|f| Pdx
Q

Q

We integrate over ¢ in the range from 0 to ¢ and taking parity of exponents, leaving p behind it, we obtain

1
t p

1 1
/\U(t,x)|pdx < /|<1>(x)|”dx +/ /|f(7',x)|pdx dr,¥p =2m,m € N.
Q Q Q

0

Hence we have

HUHLOO(OTL ) = < || ®(x ||LP(Q) +T|f”LOO(O,T;L,,(Q))’ Vp = 2m. (17)

Whence for p = oo we arrive at the proof of the theorem 1.
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Corollary 1. For the solutions of the problem (1) the following estimates hold:

[UllLos (0.7:22(2)) < [1®l|Lo@) + Tl 0.7:12(02)) = A1, VT < 00; (18)
t 3 1
2 2 2
SNVt < (12170 + T2+ DL o1, ) = A (19
0 a=1
19115 oz < 3(12 050 + T IEIS o rsraeyy) = A (20)
t
2 1
JIVEON 7 < 5 (19, + TANE, 0 10) = Ase £€ .71 (21)
0

Proof. Estimates (18), (20) follow from (17) respectively for p = 1 and p = 4. To prove (19) from (15) for

p =1, we have
3 1 1
%%/‘UFdXJFM/Z(an)?dxg (/\U|2dx)2 (/\f\zdx)z.
Q o o=l Q Q

We integrate over ¢ in the range from 0 to ¢,

t 3 t
%/|U(t)|2dx+,u/2/(VUa)2dxdTS %/|q>|2dx+/(/yu\2dx)5(/\ffdx)fdr, t € (0,T7.
Q 0o =g Q Q

0 Q
Hence, since the first integral on the left-hand side is nonnegative, we get

3 t

t
1
“/Z/HVUQ(T)HiQ(Q)dT = QH‘I’HL(Q) + HUHLOO(O,T;LQ(Q))/Hf(T)HLg(Q)dT’ t (0, 7).
0 Q

a=1 0

From this, using the inequalities 2ab < (a? + b?), (18), we arrive at (19).
To prove (20), the estimate (15) is written for p = 2

1d ° i ]
4dt/|U4dx—|—,u/EZ;(VUQ)de—Fm/(VE)deS (/\Uy“dx) (/\f\‘*dx) . te(0,T]
Q Q = Q Q

Q

We integrate over ¢ in the range from 0 to ¢, and then, as in the previous case, we find

t
QM//(VE)2dxd7-§H<I>HL4(Q)+TA3HfHLm(O’T;L4(Q)), te (0,7
0 Q

Hence we come to (21).
8 Weak generalized solutions

We multiply the equation (la) by an arbitrary vector-valued function

Z(t,x) € Le(Q) NW3 (Q) N J(Q),

equal to zero for (t = T) A (x € 8(2). The product is integrable over the domain @ = [0,7] x  and with by
integrating by parts, taking into account the conditions (1) from We transfer the first two terms from U to Z.
As a result, we get

0Z >
/(—U = tu kz_l VUV Zy + (U, V)U + VP)Z) dx dt =
2 =
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= /q,z(o,x)dx+/f2dxdt. (22)
Q

Q

Definition 1. We call the vector-function U of spaces weakly generalized solution of the initial-boundary value
problem for the Navier-Stokes equations (1a) from the spaces

U € Loo(Q) N Lo (0, T3 W3 4(2)) N J(Q); Yt €[0,T]) (23)

and satisfying the identity (22) for any

Z(t.%) € Loo(Q) N WA(Q) N H(Q) A (z

_ o) .
(t=T)A(x€0R)

The validity of the definition 1 follows from the fact that all the integrals occurring in (22) are finite for
any Z, from the class indicated.

From Theorem 1 and Corollary 1, the uniqueness of weak generalized solutions of the problem (1).

Theorem 2. If the input data f and ® satisfy the requirements i) and ii), then the problem (1) has the
unique weak generalized solution U satisfying the identity (22) for any Z from the definition 1.

Proof. Let the functions U and U* be two solutions of the problem (1). We set V =TU —U*;
VR =2V(E* — E), then we have:

\%
%t — AV + (V,V)U + (U*, V)V + VR = 0; (24a)
V(0,x) =0, V(t,x)|,=0, x€ (24b)
From the equations (24a) we pass to the identity
ov .
/ SV —HAVV £ (V.V)UV + (U, V)VV + VRV | dxdr = 0, ¥t € (0,7). (25)

Q+
We transform all terms by integration by parts. As U, U* € J(Q), thereby V € J(Q), then
/(U*, V)VVdx =0, /VRde =0.
Qt Q¢

From (25) we find
HV [ +MZ/IIVV1~c I ¢ )dT——/ Z Vg—dexdT (26)
k=17 k,B=1

The integral on the right-hand side is estimated successively by the Holder inequality for p = oo and ¢ = 1, as
well as Young’s (3) for p = 2 as a result we obtain the chain of inequalities

3
oV,
’/ Z VB—dexdT‘ < mkfaX”UkHLW(Q) Z /‘ﬁ“Vg’dXdT <
Q, kP=1 k.8=13, e

3 i 8Vk 2 / 3 2
<ae/2 30 [5G o+ 45 [ IVl oyt <
k,B=17 5 B=1
3 t t
_Ae/zz/uvvkmuiz(mdwAS/HWT)H;(Q)CJT, As = 34/(26).
k=179 0
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Taking into account the estimates (8), (19) and, using the latter for ¢ = 2u/A from (26), we find
t
2 2
||V(t)||L2(Q) < A5/||V(T)||L2(Q)dT’ As = 3A%/(4p), vt e (0,T].
0

Whence we have % (exp(fA5t)||V(t)||i2(Q)> < 0. From this inequality we conclude that V =0, Vt € (0,7],

that is, that the solutions U and U* match. The theorem 2 is proved.
4 Strong solutions

Definition 2. If in a domain ) a weak generalized solution of the initial-boundary value problem for Navier-
Stokes equations has all possible generalized derivatives of the same order as the equations themselves, then
this solution is called strong.

Theorem 3. If the input data of the problem (1) satisfies the requirements i), ii) and 992 € C?, then the
problem (1) has a unique strong generalized solution U from spaces

U e Woy(Q)NJw(Q), vt € [0,T)),

satisfying the equations (la) almost everywhere in @, and for them the following estimates hold:

3
2 2 2
U1, 0y < # D IIV®klg 0 +3TIENL . 0 ripacey +3(Ad2 +444) = Ag; (27)
k=1
2 2 .
JAUIZ o < Aofii® = A, (25)
2 _
HVUkHLQO(O,T;LQ(Q)) <Ag/p=Ag, k=1,3; (29)
[UllLy0,mwz0) < AollAU ||, @); A9 — const. (30)
Proof. In order to establish the inequalities (27) from the equation (1a), we pass to the identity
/ (U, — pAU) dx dr = / (f - (U,V)U + 2VE) dxdr. (31)
Q+ Q:

We will square the integrands. After that the pair product on the left side is transformed by integration by
parts. On the right side, Young’s inequality for e = 1 and p = 2. Then from (31) we pass to the inequality
From the last inequality, taking into account estimates

t 3 t
3 / / (U, ) URdxdr < 3|00 Y / VU2, oy dr = 344,
0 =10
Q

and the estimates (8), (19) and (21), we obtain estimates (27)—(29) for strong generalized solutions of the
problem (1). And note that (29) is slightly better than estimates (19).

Since the boundary of the domain 92 € C? is found to be an estimate (30), using the inequalities from
[1; 26], which is valid for any functions U(x) € W3 (€2) N W3 ((Q2): The theorem 3 is proved.

Remark. As a result, we were convinced that the properties (7) together with the estimate (8) allows one to
find answers to many problematic questions connected with the solvability of the problem (1). In addition, (8)
confirms the validity of the maximum principle for (1a) shown in [3-6] and on the basis of which the obtained
results from the same papers.
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O.III. Akprm (Akpimes)

Hapbe-Ctokc TeHAey/iepiHiH TabuFy >Karaaiga IenrijaeTiHmairi

Ymemmemai Hasbe-Crokce tengeyiepinin (HCT) nepekTepi ChIITHIFBIP GOIFAHBIMEH, Y3AK, YAKBIT GOMBI ChIII-
TBHIFBIP IIENTIMJIEPiHIH TaOBLIATHIHBIFLL JoJIEIIeHOEreH]l KoHe KaIIblIaMa MENMIED KIAChIHIA KAJTKbI-
JIBIK, TEOPEMACHIHBIH, OPBIHAAJIMANTHIHBI Ty paJibl MaJtiMeTTep Oesrimi. Ymemmemai HCT-ne makcumy™m Karu-
JACBIH HEri3zeyre MakaJia aBTOPBIHBIH 0ipa3 KYMBICTAPBIH/IA 3€PTTEY i3/IeHiCTePIHIH HOTHKeIepi KeITipi-
red. Bys 3eprreynep xbuigap 60ibI XKeTiipe gaMbIThLIbn, HoTHKECIHIe HCT-Fa MakcuMym Karuaachi-
HBIH, ©T€ YKEHIJ TYpi OPBIHIAJATHIHIBIFBI KepceTiiren. [3menicri xkanracteipy 6apbicbiaga HCT mrermim-
JepiHiH KacueTTepiHeH KBhICHIM MeH 2KBLITAM/IBbIK, BEKTOPBHI MOJYJIi KBa/IPATHIHBIH apaKaThIHAC Oail/IaHbICH
Tabpurad. By wormke merizinme HCT-ubiy mentileTiviri XKeHIHIETT KONITETEH ©36KTI Moceeepre Kay-
an aJbHAbI. 3epPTTeyIIinid Tangaran Kericririage yrmesmemai HCT-ra koitburran ecenTiy 9/1ci3 memiminiy
2KaJIKBIIBIFBI MEH QJIJII IIEIIMiHIH y3aK O0bI TaOBLIATHIHIBIFEI JIDJI€JIEHTEH.

Kiam ceadep: Hasbe-Crokc TeHieyepi, Hapbe-CTOKC TeH €y IepiHIer] KBICHIM, 9JICI3 2KaJIIbLIAMAa IIelTiM-
HiH »KAJIKBLIBIFBI, 9JI1 MIENIIMHIH TaObLIATHIHILIFE.

AT, Akeimn (Axuries)

EcrecTtBennas paszpemmumocts ypaBHeHuit Hasbe-CTokca

WsBectHO, uTO 1y1s1 TpexMepHbix ypasaenuit Hasoe-Crokca (YHC) me 10Ka3aHbI CyIIECTBOBAHKE B IIEJIOM
10 BPEMEHU TJIAJIKUX PELICHU [IPY HAJNYIUY [VIaJIKUX JTaHHBIX, a B KJIacce ODODIIEHHBIX PEIIEHMH O HApyIIe-
HUM TeOpeMa eINHCTBEHHOCTH. ABTOPOM CTAThU paHee MPHUBEIEHBI PE3yJIbTATHI MOUCKOBBIX MCCJIEIOBAHUI
110 060CHOBAHUIO MPHUHIMIIA MakcuMmyMa jiyisi Tpexmepubix Y HC. Co BpeMeHneM pe3yJibTaThl 3TUX UCCIIEI0-
BaHUI yJIydIIa/MCh, ¥ BIIOCJIEJICTBAN ObLIa JOKA3aHa CIIPABEJINBOCTD [IPOCTEHINEr0 IPUHIUIIA MAKCUMYMA
st tpexmepbix Y HC. JlanbHeiitee nccaeqoBanmne MO3BOJIMIO YCTAHOBUTD u3 cBoiicTB perrennit Y HC co-
OTHOIIIEHUE MEXKJLY JABJIEHUEM U KBaIPATOM MOJLYJIs BEKTOPA CKOPOCTH, HA OCHOBE Yero HaliIeHbI OTBETHI HA
MHOT'He€ ITpoGJIeMHbIE BOIIPOCHL, CBsi3aHHbIE ¢ paspemuMocThio Y HC. B wacTHOCTH, B BBIGpAHHBIX IPOCTPAH-
CTBaX JOKa3aHbI €IMHCTBEHHOCTH CJIA0bIX W CYIIECTBOBAHNE CUJIBHBIX PEIIeHWI 3aJa9u JJI TPEXMEPHBIX
ypasuenunii HaBbe-CTOKca B 11€7I0M IO BPEMEHH.

Karoueswie caosa: ypasuenus Hasbe-Crokca, nasienue B ypaBHenusix Hasbe-CToKca, € IMHCTBEHHOCTD CJla-
ObIX OOOOIIEHHBIX PEIIEHU, CyIIeCTBOBAHUE CUJILHBIX PEIeHMUIA.
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