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On the ill-posed problem for the Poisson equation

A boundary value problem in a two-dimensional rectangular region for the Poisson equation is studied in
the paper. The original ill-posed boundary value problem is transformed to the optimal control problem.
The paper gives a brief overview of the problem under study, defines the formulation of the original
boundary value problem and optimization problems, proves the existence of a solution to the regularized
optimization problem, determines the formulation of the adjoint boundary value problem, studies the
optimality conditions, and presents the application of the variable separation method. The necessary and
sufficient conditions of optimality in terms of the conjugate boundary value problem are established in
the paper, and a strong criterion for the solvability of the ill-posed boundary value problem is obtained.
Boundary value problems for the Poisson equation arise in many sections of physics, mechanics, and other
applied sciences. So, the stress function in the torsion problem of elastic rods is the solution of the Dirichlet
problem, and the height of the liquid rise in the cylindrical capillary is the solution of the Neumann
problem. But in many cases practitioners are interested in ill-posed problems for the Poisson equation and
their solvability, which determines the relevance of the problem studied in the article.

Keywords: Poisson equation, ill-posed problem, optimal control, variational inequality, two-dimensional
rectangular area.

Introduction. Recently among the experts on equations of mathematical physics interest in problems that
are ill-posed by J. Hadamard has significantly increased [1]. Due to the ill-posed problems classic work by
J. Hadamard [1], A.N. Tikhonov [2], M.M. Lavrent’ev [3] and many others can be noted, which have drawn the
attention of researchers for ill-posed problems and have made a significant contribution to the development of
this important area of mathematics. In this paper we study the ill-posed problem [1]-[8] for the Poisson equation
in two-dimensional rectangular domain. The correctness criterion of homogeneous mixed Cauchy problem for
the Poisson equation in a rectangular domain was established in the paper of T.Sh. Kalmenov, U.A. Iskakova
[6]. In paper [8] the ill-posed problem for the heat equation is considered. The general regularization method
for constructing an approximate solution of ill-posed problems of mathematical physics was proposed by
AN. Tikhonov [2]. In the book R. Lattes, J.-L. Lions [4] for regularization of ill-posed boundary value problems
the quasiinversion method is proposed. Features and questions of the regularization of Cauchy problems for
abstract differential equations with the operator coefficients are studied by I.V. Mel'nikova and U.A. Anufrieva [§].

Statement of the problem. We consider the boundary value problem

Y (2, 1) + Yau (2, 1) = f(,1); (1)
y(ovt) =0, y(ﬂ-vt) =0 (2)
y(xv _1) = <P1(9U)a yt(x’ _1) = 902(7")7 (3)

in the domain Q = {z, t|0 <z < m,—1 < ¢t < 1} with the additional condition
yi(x, 1) € Uy, where Uy is a closed convex set of Ly (0, 7). (4)
It is assumed that the data in the problem (1)—(3) satisfies the following conditions:
f € Ly(Q), p1 € H}(0,7), @2 € La(0, 7). (5)

In the book R.Lattes, J.-L.Lions [4], it is indicated that problem (1)—(3) is ill-posed in the space Lo (£2).
In this paper for solving the ill-posed problem we apply methods of optimal control.
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The optimization problem. For the investigation of the problem (1)-(4), we formulate according to it the
following optimization problem:

ytt(xat)+yrz(xat) :f(x,t)v (6)
y(0,t) = y(m,t) = 0; (7)
yt($7 _1) = 902(‘7:)5 yt(l’, 1) = ¢($)7 (8)
with functional of optimality:
TW) = [ lnale =) = ¢ (a)de > min Q
0

We note, in optimization problem (6)—(9) the function ¥ (x) plays the role of control function. In addition,
further in the work it will be shown that boundary problem (6)—(8) is well-posed, namely it is uniquely solvable
for any given functions ¢ € Uy C L2(0,7), f € La(2).

As it is known from the theory of optimal control optimization problem (6)—(9) is also ill-posed. The ill-
posedness of this problem is shown in the following: functional to be minimized (9) is not strictly convex.
Therefore, to small change of the value of the minimized functional (9) the significant change of the control
function 1 (z) can correspond in the admissible set Uy, or to single value of functional (9) the set of admis-
sible controls can correspond. For such optimization problems, there is an effective regularization method of
Tikhonov [2]. To study our problem, we will use stabilizer of Tikhonov [2].

Regularized optimization problem. Effective tool is the method of regularization. In our case

o [ W@z (@>0)
0

will serve as a stabilizer.
We consider the problem of minimizing the following functional

Talw ) = [ lna(o.-1) ~ Ph(@)Pdo -+ a [ [00)Pdz - iy (10)
0 0

Thus, we have the regularized optimization problem (6)—(8), (10). Due to the presence of the stabilizer the
problem has become strictly convex, namely we get well-posed optimization problem. Therefore, for each value
a > 0 this problem has the unique optimal solution that delivers the minimum value to minimized functional
(10). However, it does not exclude the fact that the minimum value problem of functional (10) can be strictly
greater than zero.

For optimal control problem (6)—(8), (10) we will establish optimality conditions. We introduce the concept
of optimal control.

Definition 1. An element ¥ € Ly(0,7) which satisfies the condition

Tol0) = inf Tu(v)

18 called the optimal control.
We denote the solution of problem (6)-(8) by y(x,t;1) corresponding to the given control ¢ (x) € Uy.
So y(x,t;0) corresponds to the solution of problem (6)—(8) when t(z) = 0. Then, we get
w(wr,2) = [l (e, ~1i00) = .~ 1:0))x

0

T

xM@—mm—%wrnwm+w/muwwmw;
0

Lwnaﬂmw—%uﬁummmﬁmm—%@ﬁnmm.

0
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Here, 7(11,2) is the bilinear functional on Uy, L(¢1) is the continuous linear functional on admissible set
of controls U,, as it will be shown below, that the solution y(z,t; 1) of problem (6)—(8) is not only continuous
but it is continuously differentiable on control ¢. Using the notation, functional (10) can be rewritten as

*7 W) (¢ w _2L /|yw - 7 @ll(-f)|2dl‘

The ezistence of solution of the regularized problem and the variational inequality. The following theorem
holds [9].
Theorem 1. As w(v,) is the continuous symmetric quadratic functional on a Uy and satisfies the condition

(¥, ) > cl|9]|?, (e = const > 0), (11)
then for problem (6)—(8), (10) exists only ¥ € Uy:

Jo(¥) = inf To(v).

PeUy

The inequality (11) holds, as

™

(Y, ¥) = /Iyx — Ya (2, 0)\2dx+a~/1/12(z)dx.

0

The solution of optimization problem (6)-(8), (10) we denote by
(@) = arg min Jo ().

g
Further, according to the theory of strictly convex optimization problems the following optimality criterion
formulated in terms of the directional derivative is valid.
Proposition 1 (Variational inequality). The function ¢ € Uy is a function of the optimal control if and only
if the following inequality holds:
(Jay (), =) 2 0, Vo € Uy,

namely we have
s

[ e (0 =10) = @) - 5 e (0. -10) - [0G0) = ) ot

ar [ [b@) - B(@)] de 2 0, ¥ b€ Uy, (12
0
We now carry out the necessary further transformations of variational inequality (12). For this purpose, we
rewrite the boundary value problem (6)—(8) in the operator form Ay = F = {f, p2,%}. As for any admissible
controls boundary value problem (6)—(8) is uniquely solvable, then its solution y(z, ;1) can be written in the
following form y(x,t;1) = A~'F = Ay f + A7 oo + A5 M. B
Next, we take the derivative of this solution in the direction of ¢ — 1. We have
yp (2, 6:9) - [ = 9] = A7 (W —¢) =
= A AT e+ A = [AG f + AT oo + AT = w(a,69) — y(@s £ 9)
or B B
Thus inequality (12) has the form:

/ 1) — (@] - [yaws—139) — ya (2, —1; 5)] dat
0
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s

+a- /@(I) () — ()] de >0, Vo €Uy (13)
0

The adjoint boundary value problem. For further study of regularized optimization problem (6)—(8), (10),
we introduce the adjoint boundary value problem

Vi (2, 1) + Vg (2, 1) =0, x € (0,7), t € (—1,1);
v(0,t) = v(m,t) =0, t € (-1,1);

Jon(e. 1) = —y, (2, ~1:9) + (14
et @) iy (0, -155) — (), YO <m <z <
ve(z,1) = 0.
For its formal conclusion we consider the following expression
1 =
// [Gee (2, 1) + Go (2,1)] - v(2, 85 90)dadt = 0,
210

where g(.’t, t) = y(x, t; 1/)) - y(x, t; E)
We transform this expression, considering adjoint boundary value problem (14)

1 =« T
//[gjtt(:mt) + Y (2, 1)] - v(z, 5 90)dadt = /[w(x) —Y(z)]v(z, 1;9)dz+
Z10 0
+ [ —10) =y (o~ 50) 1) = (15)

0
Thus, we obtain desired adjoint boundary problem (14).
Optimality conditions. By applying the equality

x

/vt(f, —1)dé = —y, (v, —1;0) + o1 (@) +yy (0, —1;0) — pi(n), VO<n <z <m,
n

we rewrite expression (15) as follow

K T

/ e (2, ~1:B) — @4 ()] [ye (& —1; ) — s (2, —1; )} = — / o(@,1) - [U(z) - B())d,

0 0

then from relation (13), we finally obtain the desired variational inequality

™

/ [—o(e, 159) +a- ()] - [(@) - D(@)] do >0, Vv €Uy, (16)

0

Thus, on the basis of Proposition 1 we have established the optimality conditions, which can be formulated
as the following proposition:

Proposition 2. The element 1 (x) is the optimal solution to the problem (6)-(8), (10), if and only if it satisfies
boundary value problems (6)—(8), (14), and variational inequality (16).

Application of the method of separation of variables. For resolving the conditions of an optimality (6)—(8),
(14) and (16) we use a method of separation of variables. We will search solutions of boundary value problems
(6)—(8) and (14) in the form

ya,t) =Y () Xu(x), v(et) =) on(t)Xn(@),
k=1 k=1
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where ik
Xp(r) = 222 N\ =% k=1,2,..., (17)
/2

are systems orthonormalized eigenfunctions and eigenvalues for a spectral problem:

X"(z) =\ X(z), X(0)=X(r)=0.

From (6)—(8), (14) and (16) we accordingly obtain

{ yi(t) — kyx(t) =fk(t),j€ (—1,1); )

Yr(—1) = o Y (1) =hps k=1,2,..;

{ v (t) — k2ug(t) =0, t € (—1,1); (19)
v (=1) = K ye(=1) —puls v (1) =0; k=1,2,...;

[—oe(D) + -] - [e — U] 20, for Vg, k=1,2,..., (20)

where fi(t), ©1k, ©ors ¥p, Uk, k =1,2,... are Fourier-coefficients of functions f(x,t), v1(x), @2(x) and ¥(x),
(x) on system (17).
Assume us write solutions of boundary value problems (18) and (19):

1

— coshk(t+1) cosh k(1 —1t)
w®) =vVe = or TP hemhok T / Gilt;m) - fi(r)dr; (21)
21
B kcoshk(l —t)
v (t) = =[yr(=1) — ¢1x] - Tanhor (22)
where h k(1 h k(1
2 ( _Q'COS ( +T), —l<r <t <
Gi(t,7) = sinh 2k
’ cosh k(1 —7) - cosh k(1 +t)
- - ,—l<t<T<l.
sinh 2k
From (21)—(22) and (20) we find
—0e(1) = [n(=1) = o] -
Vi = Yk Pk sinth:’
h2k 1 h
— cot —
yk(—=1;y) = —par 3 +¢ksinh2k +/Gk(—1,7)fk(7>d7',
]
h 2k i
— cot —
Aratp = P1b — p2n—p +/Gk(—1,7)fk(7)d7 [k — 4] =0 for all 4y, (23)
]
. 12
where Ag, = W, k=1,2,...

sinh 2
Now we put, that U, = L2(0, 7). Since the functions 1)(x) do not have any restrictions except for belonging
to the space Ly(0,7), from (23) we can find the optimal values of Fourier coefficients ¢, k=1,2,...:

1

— _ coth 2k

U, = At | o1k + o2 5 _/Gk(_laT)fk(T)dT . (24)
21

Further, as o — 0 (21) and (24) imply that

. sinh k(1 +¢
yro(t) = (}él_>mo yr(t) = p1x cosh k(1 +t) + (p%#—
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1 1

~ cosh k(1 + t)/Gk(—l,T)fk(T)dT +/Gk(t,r) - Fu(r)drs (25)
—1 —1
1
o = lim By, = pup sinh 2k + ooy COSZ% — sinh 2k / Gr(—1,7) fu(r)dr. (26)

-1

_Additionally, the solutions yx(t) found under formula (21) according to optimal Fourier coefficients
Y, k = 1,2,... (24) must satisfy to limiting relations: lin%yk(—l) = 1k, which really hold. And it is
a—r
coordinated with a condition y(x, —1) = @1 (x) from (3).
Thus, for a finding of the exact solution of problem (6)—(8) according to (26) we construct the following
series:

1
— . th 2k
P(z) = Z V/2/msinh 2k | p1p +<,02kco T /Gk(—l,T)fk(T)dT sin kx
e

k=1

and for initial Cauchy-Dirichlet problem (1)—(3) we obtain the solution on the basis of formulas (25).

Conclusion. From equalities (25) and (26) the following directly holds:

Firstly, with growth of index k and at a — 0 the Fourier-coefficients of the function 1 (z) and, respectively,
the solution yi(t) can increase without limit if this growth is not be «suppressed» with corresponding more
rapid decrease of the absolute values of the coefficients @1y, @2 and values of norms || fx(£)|| £, (=11

Secondly, boundary problem (1)—(3) under conditions (5) has unique Le-strong solution [10] if and only if

{exp{2k} - ou}ney s {k " exp{2k} - o}, {exp{2k} - [ fe(P)lLa-11) b ooy C Lo (27)

Thus, it is clear not only the meaning of regularization in problem (6)—(8) and (10), but also the nature of
incorrectness in Cauchy-Dirichlet problem (1)-(3) [6, 7]. And regularization allows us to find an approximate
solution.

Thirdly, we consider the example of Hadamard [11; 37]. To receive analogue of the Hadamard example in
problem (1)—(3) it is necessary to accept:

fx, ) =0, g1(x) =0, po(x) = /2/7 - k - exp{—Vk} sinkz, k € N.
Really, the solution of Cauchy-Dirichlet problem for Laplace equation has the form:

y(x,t) = /2/7 - exp{—Vk} sinkz - sinh k(t + 1), k € N. (28)

Figure. Graph of solution yy(z,t) at k = 1,6 of (28)
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In Figure are shows the graphs of the solution yk(z,t) at k = 1,6 of (28). This solution of a problem in
example of Hadamard considered by us is unique. Moreover, as k — oo the function ¢o(x) approaches uniformly
zero and that not only, but also all its derivatives approache zero and it belongs to space L2(0, 7). However the
solution (28) at any ¢ > —1 has the form of a sinusoid with an arbitrarily large amplitude and does not belong
to space L2((0,7) x (—1,1)).

In order to the function ps(x) satisfied to condition (27), it is necessary and sufficient, that the Fourier-
coefficients o) had the asymptotic behavior for large k of order exp{—(2 + )k} where ¢ > 0. In example
of Hadamard considered by us we have asymptotic which is only equal to exp{f\/E}, and it is obviously not
enough for a correctness of Cauchy-Dirichlet problem for Poisson equation.

10
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IIyaccon Tenaeyi yIIiH KOPPEKTi eMec ecell TypPaJibl

Maxkanana Ilyaccon tenzaeyi ymmiu exiesmemMi TIKOYPBIIITE OOJIBICTA IMIEKAPAJIBIK, €CEI KAPACTBIPBLIIHL.
KoppekTi emec mertik ecen tuimai 6ackapy ecebiHe KeaTipiimi. ABTOpIap 3epTTeeTiH Macesere KbICKaIa
IoJ1y »Kacall, 6aCTalKpl IIETTIK ecell IeH TUIMJIIK eCenTepiHiH, KONBIIBIMBIH aHBIKTAIl, PEryJIspH3alisi-
JIaHFaH TUIMIUTK ecebiHiH mmemmiMiHiyg 6ap 60TyBIH J9JIeIeil OTHIPHIN, TYHIHIEC METTIK eCenTiH KOWBLIbI-
MBIH aHBIKTAIl, THIMJIIK IIapTTApbIH 3epPTTEreH, COHJIal-aK alHbIMAJIbLIAPILI O6JIIKTey OJIiCIHIH KOoJI1a-
HBLIYBI KenTipinren. 2KymbicTa THIMAITIKTIH KaKeTTi »KoHe >KETKUIKTI mapTTapbl TYHiHIeC MIeTTIK ecel
TepMUH/IEPiHIe TaObLIBI, KOPPEKTI eMeC MIeTTIK eCeNnTiH MennMITiriHig o/l kpurepuiii anbiaran. [lyac-
COH TeHJEyl YIIH IIeTTik ecentep (pU3NKAHBIH, MEXaHHKA KOHE Je 0acKa KOJIIAaHOAJbI FHLIBIMIAD/IBIH
KeITereH cajiasapbiaga kesueceni. CepriMi e3ekTiy 6ypasybl TypaJibl ecebingeri keprey yHKipsco! u-
puxute ecebiHiH TIentiMi, aa MUINHAPIIK KaMUIISpAaFbl CYUBIKTHIH KoTepiayinin ouikriri Heliman ecebinin
mrenrimi 60JtbIn TabbLIaABI. Jlerenmen kernreren »karnaiia npakrukrepai [Iyaccon Tengeyi yimin KOppekTi
eMecC ecerrTep *KoHe OJIap/IbIH, MIENTIMIIIIr MoceseIepi KbI3bIKThIPaIbl, COHIBIKTAH MAKAJIAIAFbl 36PTTE/INEH
MOCEeJIEHIH, ©3€KTLIITri apTabl.

Kiam cesdep: Ilyaccon Teneyi, KOPpPEKTi eMec eceln, TYHiHIeC MmeKapasbIK ecel, THiMIl 6ackapy, THIMITIK
IapTTapbl, PErysapu3aliis, BAPUAIUJIBbIK, TEHCI3IIK, eKiomeM/Ii TIKOYPBIIIThI 00JIbIC.
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M.T. Jlxxenanues, M.M. Amanranuesa, K.B. Uman6epiues

O HekoppeKTHOIT 3a/1a4e a4 ypaBHenus: Ilyaccona

B pabotre paccmorpena KpaeBast 3ajatda B IBYMEPHO IPSIMOYTOJIBHOM obsacTu ajist ypasuenus [lyaccona.
Uzyuennas HeKOppeKTHas KpaeBasl 3a/1a4a CBOJUTCA K 3a/1a4e ONTUMAJIBLHOIO yIpaBjeHus. ABropamMu JaH
KpaTKuil 0030p ucciexyeMoil IpobseMbl, OIpe/iesIeHbl IIOCTAHOBKA NCXOTHONW KPAaeBOU 33/1a9M U 3aJJa49U OIl-
THUMU3AIAN, JOKA3aHO CYIIECTBOBAHHUE PEIICHUS PEryIdPU3UPOBAHHON 3a1a9i OINTHUMU3AINAM, OIIPEAECJICHA
IIOCTaHOBKa COIIPSKEHHOI KpaeBOW 3a/a4M, UCCJIeI0BaHbl YCJIOBUSA ONTHUMAJIBHOCTH, IPEJICTABIECHO IIpUMe-
HEHUE MeTOJla Da3JieJIeHNs IIepeMeHHBIX. B paboTe ycTaHOBJIEHBI HEOOXOIUMBIE M JOCTATOYHBIE YCJIOBUS
ONTUMAJIbHOCTA B TEPMHHAX COIPSAXKEHHOU KpaeBOI 3aladd, a TaKzKe IOJIydeH CHUJIbHBIM KPUTEpHUU pas-
PeInMOCTH HEKOPPEKTHON KpaeBoil 3amaun. Kpaesble 3ajaun s ypaBHenus llyaccona BO3HHKAIOT BO
MHOTI'HX pa3jiesiaX hU3MKU, MEXAHUKU U JIPYTUX IPUKJIATHBIX HAyK. Tak, QyHKINSA HAIPSXKEHUH B 3aja4e
0 KPY4YeHHUU YIPYTUX CTEepXKHel saBjsercd pelieHueM 3amadn Jlupuxie, a BbICOTa MOABEMA KUJIKOCTH B
MWIMHAPAIECKOM KalWIspe — pemrenneM 3aaa4u Heiimana. Bo MHOrEX ciy4asx mIpakTHKOB MHTEPECYIOT
HEKODPPEKTHBIE 33/1a49U JJIs ypaBHeHHs [lyaccoHa M BOIIPOCHI UX Pa3pEIINMOCTH, YTO OIPEEsieT aKTyalb-
HOCTB HCCJIEYEMOI B CTaTbe IPOOIEMBL.

Kmouesvie caosa: ypasuernne IlyaccoHa, HEKOppEKTHas 3a/a9a, CONPsIKEHHAs TDAHMYHAS 33/1a9a, OITHU-
MaJIbHOE yIIpaBJI€HHE, YCJIOBUS ONTHUMAJIbHOCTH, PEryJIIPU3aIus, BAPDUAIMOHHOE HEPABEHCTBO, JIByMepHas
[IPSIMOYTOJIbHAs 00JIACTD.
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