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We consider criteria for elementary equivalence and elementary embeddability for generic structures [1-6].
They are based on classical characterizations for the general case. The criterion for elementary equivalence
uses the well known Fräıssé–Taimanov–Ehrenfeucht overturning method [7-12]. The criterion for elementary
embeddability is based on the Tarski-Vaught test [11, 13].

1 Preliminaries

We consider collections of sentence and formulas in first order logic over a language Σ. Thus, as usual,
` means proof from no hypotheses deducing ` ϕ for a formula ϕ of language Σ, which may contain function
symbols and constants. If deducing ϕ, hypotheses in a set Φ of formulas can be used, we write Φ ` ϕ. Usually
Σ will be fixed in context and not mentioned explicitly.

Below we write X,Y, Z, . . . for finite sets of variables, and denote by A,B,C, . . . finite sets of elements, as
well as finite sets in structures, or else the structures with finite universes themselves.

In diagrams, A,B,C, . . . denote finite sets of constant symbols disjoint from the constant symbols in Σ and
Σ(A) is the vocabulary with the constants from A adjoined. Φ(A),Ψ(B),X(C) stand for Σ-diagrams (of sets A,
B, C), that is, consistent sets of Σ(A)-, Σ(B)-, Σ(C)-sentences, respectively.

Below we assume that for any considered diagram Φ(A), if a1, a2 are distinct elements in A then
¬(a1 ≈ a2) ∈ Φ(A). This means that if c is a constant symbol in Σ, then there is at most one element
a ∈ A such that (a ≈ c) ∈ Φ(A).

If Φ(A) is a diagram and B is a set, we denote by Φ(A)|B the set {ϕ(ā) ∈ Φ(A) | ā ∈ B}. Similarly, for a
language Σ, we denote by Φ(A)|Σ the restriction of Φ(A) to the set of formulas in the language Σ.

Definition [1-6]. We denote by [Φ(A)]AB the diagram Φ(B) obtained by replacing a subset A′ ⊆ A by a set
B′ ⊆ B of constants disjoint from Σ and with |A′| = |B′|, where A\A′ = B \B′. Similarly we call the consistent
set of formulas denoted by [Φ(A)]AX the type Φ(X) if it is the result of a bijective substitution into Φ(A) of
variables of X for the constants in A. In this case, we say that Φ(B) is a copy of Φ(A) and a representative of
Φ(X). We also denote the diagram Φ(A) by [Φ(X)]XA .

Remark. If the vocabulary contains functional symbols then diagrams Φ(A) containing equalities and
inequalities of terms can generate both finite and infinite structures. The same effect is observed for purely
predicate vocabularies if it is written in Φ(A) that the model for Φ(A) should be infinite. For instance, diagrams
containing axioms for finitely axiomatizable theories have this property.

By the definition, for any diagram Φ(A), each constant symbol in Σ appears in some formula of Φ(A). Thus,
Φ(A) can be considered as Φ(A ∪K), where K is the set of constant symbols in Σ.

We now give conditions on a partial ordering of a collection of diagrams which suffice for it to determine a
structure. We modify some of the conditions for structures by d to signify they are conditions on diagrams not
structures.
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Definition [1-6]. Let Σ be a vocabulary. We say that (D0;6) (or D0) is generic, or generative, if D0 is a class
of Σ-diagrams of finite sets so that D0 is partially ordered by a binary relation 6 such that 6 is preserved by
bijective substitutions, i. e., if Φ(A) 6 Ψ(B), and A′ ⊆ B′ such that [Φ(A)]AA′ = Φ(A′) and [Ψ(B)]BB′ = Ψ(B′)
are defined, then [Φ(A)]AA′ , [Ψ(B)]BB′ are in D0 and [Φ(A)]AA′ 6 [Ψ(B)]BB′ .

1 Furthermore:
(i) if Φ(A) ∈ D0 then for any quantifier free formula ϕ(x̄) and any tuple ā ∈ A either ϕ(ā) ∈ Φ(A) or

¬ϕ(ā) ∈ Φ(A);
(ii) if Φ 6 Ψ then Φ ⊆ Ψ;2

(iii) if Φ 6 X, Ψ ∈ D0, and Φ ⊆ Ψ ⊆ X, then Φ 6 Ψ;
(iv) some diagram Φ0(∅) is the least element of the system (D0;6), and D0 \ {Φ0(∅)} is nonempty;
(v) (the d-amalgamation property) for any diagrams Φ(A), Ψ(B), X(C) ∈ D0, if there exist injections

f0: A → B and g0: A → C with [Φ(A)]Af0(A) 6 Ψ(B) and [Φ(A)]Ag0(A) 6 X(C), then there are a diagram
Θ(D) ∈ D0 and injections f1: B → D and g1: C → D for which [Ψ(B)]Bf1(B) 6 Θ(D), [X(C)]Cg1(C) 6 Θ(D)

and f0 ◦ f1 = g0 ◦ g1; the diagram Θ(D) is called the amalgam of Ψ(B) and X(C) over the diagram Φ(A) and
witnessed by the four maps (f0, g0, f1, g1);

(vi) (the local realizability property) if Φ(A) ∈ D0 and Φ(A) ` ∃xϕ(x), then there are a diagram Ψ(B) ∈ D0,
Φ(A) 6 Ψ(B), and an element b ∈ B for which Ψ(B) ` ϕ(b);

(vii) (the d-uniqueness property) for any diagrams Φ(A),Ψ(B) ∈ D0 if A ⊆ B and the set Φ(A) ∪Ψ(B) is
consistent then Φ(A) = {ϕ(b̄) ∈ Ψ(B) | b̄ ∈ A}.

A diagram Φ is called a strong subdiagram of a diagram Ψ if Φ 6 Ψ.
A diagram Φ(A) is said to be (strongly) embeddable in a diagram Ψ(B) if there is an injection f : A→ B such

that [Φ(A)]Af(A) ⊆ Ψ(B) ([Φ(A)]Af(A) 6 Ψ(B)). The injection f , in this instance, is called a (strong) embedding
of diagram Φ(A) in diagram Ψ(B) and is denoted by f : Φ(A)→ Ψ(B). A diagram Φ(A) is said to be (strongly)
embeddable in a structureM if Φ(A) is (strongly) embeddable in some diagram Ψ(B), whereM |= Ψ(B). The
corresponding embedding f : Φ(A) → Ψ(B), in this case, is called a (strong) embedding of diagram Φ(A) in
structureM and is denoted by f : Φ(A)→M.

Let D0 be a class of diagrams, P0 be a class of structures of some language, andM be a structure in P0.
The class D0 is cofinal in the structureM if for each finite set A ⊆ M , there are a finite set B, A ⊆ B ⊆ M ,
and a diagram Φ(B) ∈ D0 such thatM |= Φ(B). The class D0 is cofinal in P0 if D0 is cofinal in every structure
of P0. We denote by K(D0) the class of all structuresM with the condition that D0 is cofinal inM, and by P
a subclass of K(D0) such that each diagram Φ ∈ D0 is true in some structure in P.

Now we extend the relation 6 from the generative class (D0;6) to a class of subsets of structures in the
class K(D0).

LetM be a structure in K(D0), A and B be finite sets inM with A ⊆ B. We call A a strong subset of the
set B (in the structureM), and write A 6 B, if there exist diagrams Φ(A),Ψ(B) ∈ D0, for which Φ(A) 6 Ψ(B)
andM |= Ψ(B).

A finite set A is called a strong subset of a set M0 ⊆ M (in the structure M), where A ⊆ M0, if A 6 B
for any finite set B such that A ⊆ B ⊆ M0 and Φ(A) ⊆ Ψ(B) for some diagrams Φ(A),Ψ(B) ∈ D0 with
M |= Ψ(B). If A is a strong subset of M0 then, as above, we write A 6 M0. If A 6 M inM then we refer to
A as a self-sufficient set (inM).

Notice that, by the d-uniqueness property, the diagrams Φ(A) and Ψ(B) specified in the definition of
strong subsets are defined uniquely. A diagram Φ(A) ∈ D0, corresponding to a self-sufficient set A inM, is
said to be a self-sufficient diagram (inM).

Definition [1-6]. class (D0;6) possesses the joint embedding property (JEP) if for any diagrams Φ(A),
Ψ(B) ∈ D0, there is a diagram X(C) ∈ D0 such that Φ(A) and Ψ(B) are strongly embeddable in X(C).

Clearly, every generative class has JEP since JEP means the d-amalgamation property over the empty set.
Definition [1-6]. A structure M ∈ P has finite closures with respect to the class (D0;6), or is finitely

generated over Σ, if any finite set A ⊆ M is contained in some finite self-sufficient set in M, i. e., there is a
finite set B with A ⊆ B ⊆ M and Ψ(B) ∈ D0 such that M |= Ψ(B) and Ψ(B) 6 X(C) for any X(C) ∈ D0

withM |= X(C) and Ψ(B) ⊆ X(C). A class P has finite closures with respect to the class (D0;6), or is finitely
generated over Σ, if each structure in P has finite closures (with respect to (D0;6)).

1Note that D0 is closed under bijective substitutions since 6 is preserved by bijective substitutions and 6 is reflexive.
2Note that Φ(A) 6 Ψ(B) implies A ⊆ B, since if a ∈ A then (a ≈ a) ∈ Φ(A), so Φ(A) 6 Ψ(B) implies Φ(A) ⊆ Ψ(B)

and we have (a ≈ a) ∈ Ψ(B), whence a ∈ B.
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Clearly, an at most countable structure M has finite closures with respect to (D0;6) if and only if
M =

⋃
i∈ω

Ai for some self-sufficient sets Ai with Ai 6 Ai+1, i ∈ ω.

Note that the finite closure property is defined modulo Σ and does not correlate with the cardinalities of
algebraic closures. For instance, if Σ contains infinitely many constant symbols then acl(A) is always infinite
whereas a finite set A can or can not be extended to a self-sufficient set.

Besides, for the finite closures of sets A we consider finite self-sufficient extensions B in a given structure
M with respect to (D0;6) only and B can be both a universe of a substructure of M or not. Moreover, it is
permitted that corresponding diagrams Ψ(B) can have only finite, finite and infinite, or only infinite models.

Thus, for instance, a finitely axiomatizable theory without finite models and with a generative class (D0;⊆),
containing diagrams for all finite sets and with axioms in diagrams, has identical finite closures whereas each
diagram in D0 has only infinite models.

Definition [1-6]. A structure M ∈ K(D0) is (D0;6)-generic, or a generic limit for the class (D0;6) and
denoted by glim(D0;6), if it satisfies the following conditions:

(a)M has finite closures with respect to D0;
(b) if A ⊆ M is a finite set, Φ(A),Ψ(B) ∈ D0, M |= Φ(A) and Φ(A) 6 Ψ(B), then there exists a set

B′ 6M such that A ⊆ B′ andM |= Ψ(B′).
Clearly, uncountable (D0;6)-generic structures can be non-isomorphic. Indeed, for instance, all infinite

structures in the empty language are generic for a given generative class although these structures are non-
isomorphic for distinct cardinalities. But, as the following theorem shows, they are isomorphic for at most
countable cases.

Theorem 1.1 [1-6]. For any generative class (D0;6) with at most countably many diagrams whose copies
form D0, there exists at most countable (D0;6)-generic structure, unique up to isomorphism.

Theorem 1.2 [1-6]. Every ω-homogeneous structureM is (D0;6)-generic for some generative class (D0;6).
Thus any first-order theory has a generic model and therefore can be represented by it.

2 Elementary equivalence and elementary embeddability

Recall that structuresM1 andM2 in a language Σ are elementarily equivalent (denoted byM1 ≡M2) if
for any sentence ϕ in the language Σ,M1 |= ϕ if and only ifM2 |= ϕ.

Definition [11]. Let M1 and M2 be structures in a language Σ. An injective map f : X → M2, where
X ⊆M1, is a partial isomorphism ofM1 intoM2 if for every elements a1, . . . , an ∈ X the following conditions
hold:

1) for any functional symbol F (n) ∈ Σ and correspondent operations FM1 and FM2 in M1 and M2,
respectively,

f(FM1
(a1, . . . , an)) = FM2

(f(a1), . . . , f(an));

2) for any predicate symbol P (n) ∈ Σ and correspondent predicates PM1 and PM2 in M1 and M2,
respectively,

(a1, . . . , an) ∈ PM1
⇔ (f(a1), . . . , f(an)) ∈ PM2

.

A partial isomorphism f : X →M2 is called finite if the set X is finite.
The set of finite partial isomorphisms ofM1 intoM2 is denoted by P (M1,M2).

The following well-known theorem uses the Fräıssé–Taimanov–Ehrenfeucht overturning method [7-10]. It is
broadly used, in particular, in [12].

Theorem 2.1 [11]. LetM1 andM2 be structures in a language Σ. The following conditions are equivalent:
(1) the structuresM1 andM2 are elementarily equivalent;
(2) for any n ∈ ω and any finite language Σ0 ⊆ Σ there are nonempty sets Z1(Σ0, n), . . . , Zn(Σ0, n) of finite

partial isomorphisms of M1|Σ0 into M2|Σ0 such that for any f ∈ Zi(Σ0, n), 1 ≤ i < n, and for any a ∈ M1,
b ∈M2 there are g1, g2 ∈ Zi+1(Σ0, n), for which a ∈ δg1

, b ∈ ρg2
and f ⊆ g1 ∩ g2.

Notice that considering (Di;6i)-generic structures Mi in a language Σ, i = 1, 2, we take elements for
extensions g1, g2 ∈ Zi+1(Σ0, n) in diagrams Φ(A) and Ψ(B) in generative classes satisfying M1 |= Φ(A) and
M2 |= Ψ(B). Moreover, since the sets A and B are finite, we can replace addition of elements a and b by
addition of self-sufficient sets A and B. Finite partial isomorphisms f : X → M2 with X = A or ρf = B are
called coordinated with given generative classes, coordinated generic, or simply generic.

The set of generic finite partial isomorphisms ofM1 intoM2 is denoted by PG(M1,M2).
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We have PG(M1,M2) ⊆ P (M1,M2) and each partial isomorphism in P (M1,M2) is extensible till a partial
isomorphism in PG(M1,M2). Thus, for generic structures in Theorem 2.1 it suffices to consider generic finite
partial isomorphisms in PG(M1,M2), with their restrictions, and a modification of that theorem holds allowing
syntactically, in terms of generative classes, characterize the elementary equivalence for generic structures. Below
we consider that generic modification, whose proof can be easily obtained from the proof of [11, Theorem 5.1.1].

Theorem 2.2 Let Mi be (Di;6i)-generic structures in a language Σ, i = 1, 2. The following conditions are
equivalent:

(1) the structuresM1 andM2 are elementarily equivalent;
(2) for any n ∈ ω and any finite language Σ0 ⊆ Σ there are nonempty sets Z1(Σ0, n), . . . , Zn(Σ0, n) of

restrictions of generic finite partial isomorphisms ofM1|Σ0
intoM2|Σ0

such that the following condition holds:
(∗) for any f ∈ Zi(Σ0, n), 1 ≤ i < n, and for any a ∈M1, b ∈M2 there are g1, g2 ∈ Zi+1(Σ0, n), for which

a ∈ δg1 , b ∈ ρg2 and f ⊆ g1 ∩ g2.
Remark 2.3. Following Theorem 2.2 and adding for any f ∈ Zi(Σ0, n) and for any a ∈ M1, b ∈ M2 all

elements in some self-sufficient sets A ⊃ δf ∪ {a} and B ⊃ ρf ∪ {b} we can consider sequences Z1(Σ0, n), . . . ,
Zn(Σ0, n) of nonempty families of generic finite partial isomorphisms with the property of sequential extensions
by g1, g2 ∈ Zi+1(Σ0, n) with a ∈ δg1

, b ∈ ρg2
and f ⊆ g1 ∩ g2.

Proposition 2.4. If Mi are elementarily equivalent (Di;6i)-generic structures, i = 1, 2, then the classes
(Di;6i) can be extended, with some extensions of their diagrams, till a common generative class (D0;6).

Proof. Since M1 ≡ M2, complete diagrams Φ∗(A) for finite sets in M1 and in M2 can be collected for a
homogeneous model M of the theory Th(M1) = Th(M2) realizing the complete types Φ∗(X). The complete
diagrams forM form the required generative class (D0;⊆). �

Proposition 2.4 immediately implies
Corollary 2.5. Any elementarily equivalent generic structures are isomorphic to some restrictions of a

common generic structure.
Since any countable structure has a countable homogeneous elementary extension and homogeneous structures

are generic, Corollary 2.5 has the following modification:
Corollary 2.6. Any elementarily equivalent countable structures are isomorphic to some restrictions of a

common (countable) generic structure.
Recall that a substructure M1 = 〈M1; Σ〉 of M2 = 〈M2; Σ〉 is called an elementary substructure (denoted

by M1 4M2), if for any formula ϕ(x1, . . . , xn) in the language Σ and for any elements a1, . . . , an ∈ M1 the
condition M1 |= ϕ(a1, . . . , an) is equivalent to M2 |= ϕ(a1, . . . , an). Here the structure M2 is an elementary
extension of M1. If M1 6= M2, we write M1 ≺ M2 instead of M1 4 M2. If M1 ⊆ M2 and the condition
M1 4M2 (M1 ≺M2) does not hold, we writeM1 64M2 (respectivelyM1 ⊀M2).

The following well-known Tarski–Vaught test [11, 13] is used for the checking that a substructure is an
elementary one.

Theorem 2.7. Let M1 and M2 be structures in a language Σ, M1 ⊆ M2. The following conditions are
equivalent:

(1)M1 4M2;
(2) for any formula ϕ(x0, x1, . . . , xn) in the language Σ and for any elements a1, . . . , an ∈ M1, if

M2 |= ∃x0 ϕ(x0, a1, . . . , an) then there is an element a0 ∈M1 such thatM2 |= ϕ(a0, a1, . . . , an).
In the following theorem, we obviously modify Theorem 2.7 for generic cases.
Theorem 2.8. LetM1 be a (D1;61)-generic structures in a language Σ,M1 ⊆M2. The following conditions

are equivalent:
(1)M1 4M2;
(2) for any formula ϕ(x0, x1, . . . , xn) in the language Σ and for any elements a1, . . . , an forming a self-

sufficient set A 61 M1, if M2 |= ∃x0 ϕ(x0, a1, . . . , an) then there is an element a0 ∈ M1 in a self-sufficient set
B 61 M1 such that A 61 B andM2 |= ϕ(a0, a1, . . . , an).

Remark 2.9. If in Theorem 2.8 the diagrams Φ(A),Ψ(B) ∈ D1, for the sets A and B, force the complete
types tp(A), tp(B), respectively, we take formulas ∃x0 ϕ(x0, a1, . . . , an) and ϕ(a0, a1, . . . , an) which are forced
by Φ(A) and Ψ(B), respectively.

Recall that an elementary embedding of a structureM1 into a structureM2 of the same language Σ is a map
f : M1 →M2 such that for every Σ-formula ϕ(x1, . . . , xn) and all elements a1, . . . , an ofM1,M1 |= ϕ(a1, . . . , an)
if and only if M2 |= ϕ(f(a1), . . . , f(an)). In such a case, f is really an embedding denoted by f :M1 → M2

and forM1 andM2 we say thatM1 is elementarily embeddable intoM2.

Серия «Математика». № 1(89)/2018 73



S.V. Sudoplatov

Similarly to Theorems 2.7 and 2.8, the following theorems characterize the elementary embeddability in
general case and for generic structures, respectively.

Theorem 2.10. LetM1 andM2 be structures in a language Σ, f :M1 →M2 be an embedding. The following
conditions are equivalent:

(1) the embedding f is elementary;
(2) for any formula ϕ(x0, x1, . . . , xn) in the language Σ and for any elements a1, . . . , an ∈ M1, if

M2 |= ∃x0 ϕ(x0, f(a1), . . . , f(an)) then there is an element a0 ∈M1 such thatM2 |= ϕ(f(a0), f(a1), . . . , f(an)).
Theorem 2.11. LetM1 be a (D1;61)-generic structure in a language Σ, and f :M1 →M2 be an embedding.

The following conditions are equivalent:
(1) the embedding f is elementary;
(2) for any formula ϕ(x0, x1, . . . , xn) in the language Σ and for any elements a1, . . . , an forming a self-

sufficient set A 61 M1, ifM2 |= ∃x0 ϕ(x0, f(a1), . . . , f(an)) then there is an element a0 ∈M1 in a self-sufficient
set B 61 M1 such that A 61 B andM2 |= ϕ(f(a0), f(a1), . . . , f(an)).
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Элементарлық енгiзiлудi және элементарлық эквиваленттiлiктi
сақтайтын генерикалық құрылымдар туралы

Мақалада генерикалық құрылымдар үшiн элементарлық эквиваленттiлiк және элементарлық енгiзi-
лу критерийлерi қарастырылды. Олар үшiн жалпы жағдайдағы классикалық сипаттама қолданылды.
Элементарлы эквиваленттi критерийi Фраиссе-Тайманов-Эренфойхтың жақсы танымал «ауыстыру»
әдiсiнде негiзделген. Элементарлық енгiзiлу критерийiнде Тарский-Вооттың танымал тестi пайдала-
нылды.

Кiлт сөздер: генерикалық құрылымдар, элементарлық эквиваленттiлiк, Фраиссе-Тайманов-Эрен-
фойхтың әдiсi, элементарлық енгiзiлу, Тарский-Воот тестi.

С.В. Судоплатов

О генерических структурах, сохраняющих элементарную
эквивалентность и элементарную вложимость

В статье рассмотрены критерии элементарной эквивалентности и элементарной вложимости для гене-
рических структур, которые используют классические характеризации для общего случая. Критерий
элементарной эквивалентности базирован на хорошо известном методе «перекидывания» Фраиссе-
Тайманова-Эренфойхта, а критерий элементарной вложимости — на известном тесте Тарского-Воота.

Ключевые слова: генерические структуры, элементарная вложимость, метод Фраиссе-Тайманова-
Эренфойхта, тест Тарского-Воота.
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