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We consider criteria for elementary equivalence and elementary embeddability for generic structures [1-6].
They are based on classical characterizations for the general case. The criterion for elementary equivalence
uses the well known Fraissé-Taimanov—Ehrenfeucht overturning method [7-12]. The criterion for elementary
embeddability is based on the Tarski-Vaught test [11, 13].

1 Preliminaries

We consider collections of sentence and formulas in first order logic over a language ¥. Thus, as usual,
F means proof from no hypotheses deducing - ¢ for a formula ¢ of language ¥, which may contain function
symbols and constants. If deducing ¢, hypotheses in a set ® of formulas can be used, we write ® - ¢. Usually
3 will be fixed in context and not mentioned explicitly.

Below we write X, Y, Z, ... for finite sets of variables, and denote by A, B,C, ... finite sets of elements, as
well as finite sets in structures, or else the structures with finite universes themselves.

In diagrams, A, B, C, ... denote finite sets of constant symbols disjoint from the constant symbols in ¥ and
Y(A) is the vocabulary with the constants from A adjoined. ®(A), ¥(B),X(C) stand for X-diagrams (of sets A,
B, ), that is, consistent sets of £(A)-, X(B)-, X(C)-sentences, respectively.

Below we assume that for any considered diagram ®(A), if aj,az are distinct elements in A then
—(a1 =~ az) € ®(A). This means that if ¢ is a constant symbol in ¥, then there is at most one element
a € A such that (a = c) € ®(A).

If ®(A) is a diagram and B is a set, we denote by ®(A)|p the set {p(a) € (A) | a € B}. Similarly, for a
language ¥, we denote by ®(A)|s the restriction of ®(A) to the set of formulas in the language X.

Definition [1-6]. We denote by [®(A)]4 the diagram ®(B) obtained by replacing a subset A’ C A by a set
B’ C B of constants disjoint from ¥ and with |A’| = |B’|, where A\ A’ = B\ B’. Similarly we call the consistent
set of formulas denoted by [®(A)]4 the type ®(X) if it is the result of a bijective substitution into ®(A) of
variables of X for the constants in A. In this case, we say that ®(B) is a copy of ®(A) and a representative of
®(X). We also denote the diagram ®(A) by [®(X)]X.

Remark. If the vocabulary contains functional symbols then diagrams ®(A) containing equalities and
inequalities of terms can generate both finite and infinite structures. The same effect is observed for purely
predicate vocabularies if it is written in ®(A) that the model for ®(A) should be infinite. For instance, diagrams
containing axioms for finitely axiomatizable theories have this property.

By the definition, for any diagram ®(A), each constant symbol in ¥ appears in some formula of ®(A). Thus,
®(A) can be considered as ®(A U K), where K is the set of constant symbols in 3.

We now give conditions on a partial ordering of a collection of diagrams which suffice for it to determine a
structure. We modify some of the conditions for structures by d to signify they are conditions on diagrams not
structures.
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Definition [1-6]. Let 3 be a vocabulary. We say that (Dg; <) (or Dyg) is generic, or generative, if Dy is a class
of Y-diagrams of finite sets so that Dy is partially ordered by a binary relation < such that < is preserved by
bijective substitutions, i. e., if ®(A) < ¥(B), and A’ C B’ such that [®(A)]4, = ®(A’) and [¥(B)]5, = ¥(B)
are defined, then [®(A)]4,, [¥(B)]5, are in Dy and [®(A)]4, < [¥(B)]E,. ! Furthermore:

(i) if ®(A) € Dg then for any quantifier free formula ¢(Z) and any tuple a € A either p(a) € ®(A) or
~p(a) € B(A);

(ii) if ® < ¥ then ® C ¥;2

(iii) if @ < X, ¥ € Dy, and & C ¥ C X, then & < U;

(iv) some diagram ®q(0) is the least element of the system (Dg; <), and Dg \ {®¢(0)} is nonempty;

(v) (the d-amalgamation property) for any diagrams ®(A), ¥(B), X(C) € Dy, if there exist injections
for A — B and go: A — C with [@(A)]A(A) < ¥(B) and [® (A)]‘g“o(A) < X(C), then there are a diagram
©(D) € Dy and injections f1: B — D and g¢1: C — D for which [¥(B ]f ) < O(D), [X(C)]gl(c) < O(D)
and fo o fi = go o ¢g1; the diagram O(D) is called the amalgam of ¥(B) and X(C') over the diagram ®(A) and
witnessed by the four maps (fo, 90, f1, 91);

(vi) (the local realizability property) if ®(A) € Dy and ®(A) - 3z p(x), then there are a diagram ¥(B) € Dy,
®(A) < U(B), and an element b € B for which ¥(B) F ¢(b);

(vii) (the d-uniqueness property) for any diagrams ®(A), U(B) € Dy if A C B and the set ®(A) U ¥(B) is
consistent then ®(A) = {¢(b) € ¥(B) | b€ A}.

A diagram ® is called a strong subdiagram of a diagram W if & < V.

A diagram ®(A) is said to be (strongly) embeddable in a diagram ¥ (DB) if there is an injection f: A — B such
that [@(A)]?(A) C¥(B) ([@(A)]f(A) < ¥(B)). The injection f, in this instance, is called a (strong) embedding
of diagram ®(A) in diagram ¥(B) and is denoted by f: ®(A) — ¥(B). A diagram ®(A) is said to be (strongly)
embeddable in a structure M if ®(A) is (strongly) embeddable in some diagram ¥(B), where M = ¥(B). The
corresponding embedding f: ®(A) — W(B), in this case, is called a (strong) embedding of diagram ®(A) in
structure M and is denoted by f: ®(A) — M.

Let Dy be a class of diagrams, Py be a class of structures of some language, and M be a structure in Py.
The class Dy is cofinal in the structure M if for each finite set A C M, there are a finite set B, A C B C M,
and a diagram ®(B) € Dg such that M | ®(B). The class Dy is cofinal in Py if Dy is cofinal in every structure
of Py. We denote by K(Dy) the class of all structures M with the condition that Dyg is cofinal in M, and by P
a subclass of K(Dyg) such that each diagram ® € Dy is true in some structure in P.

Now we extend the relation < from the generative class (Dg; <) to a class of subsets of structures in the
class K(Dy).

Let M be a structure in K(Dy), A and B be finite sets in M with A C B. We call A a strong subset of the
set B (in the structure M), and write A < B, if there exist diagrams ®(A), ¥(B) € Dy, for which ®(A4) < ¥(B)
and M = U(B).

A finite set A is called a strong subset of a set My C M (in the structure M), where A C My, if A < B
for any finite set B such that A C B C M, and ®(A) C U(B) for some diagrams ®(A), ¥(B) € Dy with
M E ¥(B). If A is a strong subset of M then, as above, we write A < My. If A < M in M then we refer to
A as a self-sufficient set (in M).

Notice that, by the d-uniqueness property, the diagrams ®(A) and ¥(B) specified in the definition of
strong subsets are defined uniquely. A diagram ®(A) € Dy, corresponding to a self-sufficient set A in M, is
said to be a self-sufficient diagram (in M).

Definition [1-6]. class (Dg; <) possesses the joint embedding property (JEP) if for any diagrams ®(A),
U(B) € Dy, there is a diagram X(C) € Dy such that ®(A) and ¥(B) are strongly embeddable in X(C).

Clearly, every generative class has JEP since JEP means the d-amalgamation property over the empty set.

Definition [1-6]. A structure M € P has finite closures with respect to the class (Dg; <), or is finitely
generated over X, if any finite set A C M is contained in some finite self-sufficient set in M, i. e., there is a
finite set B with A € B C M and ¥(B) € Dy such that M | ¥(B) and ¥(B) < X(C) for any X(C) € Dy
with M = X(C) and ¥(B) C X(C). A class P has finite closures with respect to the class (Dg; <), or is finitely
generated over ¥, if each structure in P has finite closures (with respect to (Dg; <)).

Note that Dy is closed under bijective substitutions since < is preserved by bijective substitutions and < is reflexive.
*Note that ®(A) < ¥(B) implies A C B, since if a € A then (a ~ a) € ®(A), so ®(A) < ¥(B) implies ®(A) C ¥(B)
and we have (a = a) € ¥(B), whence a € B.
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Clearly, an at most countable structure M has finite closures with respect to (Dg;<) if and only if
M = |J A; for some self-sufficient sets A; with A; < A;41, 1 € w.

1EW

Note that the finite closure property is defined modulo ¥ and does not correlate with the cardinalities of
algebraic closures. For instance, if ¥ contains infinitely many constant symbols then acl(A) is always infinite
whereas a finite set A can or can not be extended to a self-sufficient set.

Besides, for the finite closures of sets A we consider finite self-sufficient extensions B in a given structure
M with respect to (Dg; <) only and B can be both a universe of a substructure of M or not. Moreover, it is
permitted that corresponding diagrams W(B) can have only finite, finite and infinite, or only infinite models.

Thus, for instance, a finitely axiomatizable theory without finite models and with a generative class (Dg; C),
containing diagrams for all finite sets and with axioms in diagrams, has identical finite closures whereas each
diagram in Dg has only infinite models.

Definition [1-6]. A structure M € K(Dyg) is (Do; <)-generic, or a generic limit for the class (Dg; <) and
denoted by glim(Dy; <), if it satisfies the following conditions:

(a) M has finite closures with respect to Dy;

(b) if A C M is a finite set, ®(A), ¥(B) € Dy, M = ®(A) and ®(A) < V(B), then there exists a set
B’ < M such that A C B’ and M = U(B’).

Clearly, uncountable (Dg;<)-generic structures can be non-isomorphic. Indeed, for instance, all infinite
structures in the empty language are generic for a given generative class although these structures are non-
isomorphic for distinct cardinalities. But, as the following theorem shows, they are isomorphic for at most
countable cases.

Theorem 1.1 [1-6]. For any generative class (Dg; <) with at most countably many diagrams whose copies
form Dy, there exists at most countable (Dy; <)-generic structure, unique up to isomorphism.

Theorem 1.2 [1-6]. Every w-homogeneous structure M is (Dg; <)-generic for some generative class (Dg; <).

Thus any first-order theory has a generic model and therefore can be represented by it.

2 Elementary equivalence and elementary embeddability

Recall that structures M; and Ms in a language 3 are elementarily equivalent (denoted by M1 = My) if
for any sentence ¢ in the language X, M; = ¢ if and only if My = .

Definition [11]|. Let My and Mz be structures in a language Y. An injective map f: X — My, where
X C My, is a partial isomorphism of My into My if for every elements aq,...,a, € X the following conditions
hold:

1) for any functional symbol F (") ¢ % and correspondent operations Fp, and Faq, in M; and My,
respectively,

f(FMl(al,""an)) :FMz(f(a1)7'~'>f(an));

2) for any predicate symbol P(™) € ¥ and correspondent predicates Py, and Pu, in M; and My,
respectively,

(a1,...,an) € Ppmy < (f(ar),..., f(an)) € Py,

A partial isomorphism f: X — M5 is called finite if the set X is finite.
The set of finite partial isomorphisms of M; into My is denoted by P(Mj, Ms).

The following well-known theorem uses the Fraissé-Taimanov—Ehrenfeucht overturning method [7-10]. It is
broadly used, in particular, in [12].

Theorem 2.1 [11]. Let My and My be structures in a language X. The following conditions are equivalent:

(1) the structures My and Ms are elementarily equivalent;

(2) for any n € w and any finite language Xog C X there are nonempty sets Z1(3g,n), ..., Zn (3o, n) of finite
partial isomorphisms of Mil|s, into Ma|s, such that for any f € Z;(X0,n), 1 <1i <mn, and for any a € M,
b € My there are g1, 92 € Zit1(3o,n), for which a € é4,, b € pg, and f C g1 N go.

Notice that considering (D;; <;)-generic structures M; in a language X, i = 1,2, we take elements for
extensions g1, 92 € Z;4+1(X0,n) in diagrams ®(A) and ¥(B) in generative classes satisfying M; = ®(A) and
My = U(B). Moreover, since the sets A and B are finite, we can replace addition of elements a and b by
addition of self-sufficient sets A and B. Finite partial isomorphisms f: X — My with X = A or p; = B are
called coordinated with given generative classes, coordinated generic, or simply generic.

The set of generic finite partial isomorphisms of M; into My is denoted by PG(M;, Ms).
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We have PG(M7, Ms) C P(My, Ms) and each partial isomorphism in P(M 7, Ms) is extensible till a partial
isomorphism in PG(M7, My). Thus, for generic structures in Theorem 2.1 it suffices to consider generic finite
partial isomorphisms in PG(M;, Ms), with their restrictions, and a modification of that theorem holds allowing
syntactically, in terms of generative classes, characterize the elementary equivalence for generic structures. Below
we consider that generic modification, whose proof can be easily obtained from the proof of [11, Theorem 5.1.1].

Theorem 2.2 Let M; be (D;; <;)-generic structures in a language 3, © = 1,2. The following conditions are
equivalent:

(1) the structures My and My are elementarily equivalent;

(2) for any n € w and any finite language Lo C X there are nonempty sets Z1(Xg,n), ..., Zn(Xo,n) of
restrictions of generic finite partial isomorphisms of Mi|s, into Ma|s, such that the following condition holds:

(x) for any f € Z;(Xo,n), 1 <i<mn, and for any a € My, b € My there are g1,92 € Z;11(Z0,n), for which
a€ by, be pg, and f C g1 Nga.

Remark 2.3. Following Theorem 2.2 and adding for any f € Z;(Xo,n) and for any a € My, b € M all
elements in some self-sufficient sets A D ¢y U {a} and B D p; U {b} we can consider sequences Z1(Xg,n), ...,
Zn (20, n) of nonempty families of generic finite partial isomorphisms with the property of sequential extensions
by 91,92 € Zi11(Zo,n) with a € &4, b € pg, and f C g1 N ga.

Proposition 2.4. If M; are elementarily equivalent (D;; <;)-generic structures, i = 1,2, then the classes
(Dy; ;) can be extended, with some extensions of their diagrams, till a common generative class (Dg; <).

Proof. Since M1 = Ms, complete diagrams ®*(A) for finite sets in M; and in My can be collected for a
homogeneous model M of the theory Th(M;) = Th(My) realizing the complete types ®*(X). The complete
diagrams for M form the required generative class (Dg; C). O

Proposition 2.4 immediately implies

Corollary 2.5. Any elementarily equivalent gemeric structures are isomorphic to some restrictions of a
common generic structure.

Since any countable structure has a countable homogeneous elementary extension and homogeneous structures
are generic, Corollary 2.5 has the following modification:

Corollary 2.6. Any elementarily equivalent countable structures are isomorphic to some restrictions of a
common (countable) generic structure.

Recall that a substructure M; = (M;; %) of My = (My; %) is called an elementary substructure (denoted
by M; < Ms), if for any formula ¢(z1,...,2,) in the language ¥ and for any elements aq,...,a, € M; the
condition M; | ¢(ay,...,ay) is equivalent to Ms = ¢(a,...,ay,). Here the structure My is an elementary
extension of My. If My # My, we write M; < Moy instead of M; < Msy. If My C M, and the condition
My < My (M1 < Ms) does not hold, we write My £ Ms (respectively My £ Ms).

The following well-known Tarski—Vaught test [11, 13] is used for the checking that a substructure is an
elementary one.

Theorem 2.7. Let My and My be structures in a language ¥, My C May. The following conditions are
equivalent:

(1) My < My;

(2) for any formula ¢(xo,x1,...,2,) in the language ¥ and for any elements aq,...,a, € My, if
My = Jxg (0, a1, ..., ay,) then there is an element ag € My such that Ms = ¢(ag, a1, ..., ay).

In the following theorem, we obviously modify Theorem 2.7 for generic cases.

Theorem 2.8. Let My be a (D1; <1)-generic structures in a language X2, My C My. The following conditions
are equivalent:

(1) My < My;

(2) for any formula ¢(xg,21,...,x,) in the language ¥ and for any elements ai,...,a, forming a self-
sufficient set A <1 My, if Mo = Jxg (0, a1, ... ,an) then there is an element ag € My in a self-sufficient set
B <1 My such that A <1 B and Ms = p(ag,a1,-..,an).

Remark 2.9. If in Theorem 2.8 the diagrams ®(A), ¥(B) € Dy, for the sets A and B, force the complete
types tp(A), tp(B), respectively, we take formulas Jxg p(z0, a1, ...,a,) and ¢(ag, ai,...,a,) which are forced
by ®(A) and ¥(B), respectively.

Recall that an elementary embedding of a structure M; into a structure Ms of the same language ¥ is a map
f: My — Ms such that for every X-formula p(z1, ..., z,) and all elements a4, ..., a, of My, M1 |E v(ai,...,ay)
if and only if My E ©(f(a1),..., f(ay)). In such a case, f is really an embedding denoted by f: M; — M,y
and for M; and My we say that M, is elementarily embeddable into M.
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Similarly to Theorems 2.7 and 2.8, the following theorems characterize the elementary embeddability in
general case and for generic structures, respectively.

Theorem 2.10. Let My and My be structures in a language 3, f: My — My be an embedding. The following
conditions are equivalent:

(1) the embedding f is elementary;

(2) for any formula ¢(xg,21,...,2,) in the language ¥ and for any elements ai,...,a, € My, if
My = Fzg (0, f(ar), ..., fla,)) then there is an element ag € My such that My = o(f(ag), f(a1), ..., f(an)).

Theorem 2.11. Let My be a (D1; <1)-generic structure in a language ¥, and f: My — Ms be an embedding.
The following conditions are equivalent:

(1) the embedding f is elementary;

(2) for any formula ¢(xg,21,...,x,) in the language ¥ and for any elements aq,...,a, forming a self-
sufficient set A <y My, if Mo | Jxo p(x0, f(ar),. .., f(an)) then there is an element ag € My in a self-sufficient
set B <1 My such that A <; B and Ms = o(f(ag), f(a1),..., f(an)).
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C.B. Cynomraros

DJIeMeHTAPJIBbIK, €HTi31JIy/dl 2KoHe 3JIeMEeHTAPJIBIK, SKBUBAJIEHTTIJIIKTi
CAKTANThIH IT'€eHEPUKAJIBIK KYPbLIBIMIAP TYPaJbl

Makasiazia reHepuKaJIbIK, KYPBIJIBIMIAD YIIIH 3JIeMEHTAPJIBIK, SKBUBAJIEHTTIIIK XKoHe 3JIEMEHTAaPJIbIK €HI13i-
JIy Kputepuiisiepi KapacToIpbuiabl. OJap YImiH XKaJIIbL 2Karjai/1arbl KITAaCCUKAJIBIK, CUITATTAMAa KOJIIAHbBIIIbL.
DuteMeHTAPIIBI SKBUBAJIEHTTI KpuTepuiti @pancce-TalitMaHOB-DpeHMONKTHIH XKAKCHI TAHBIMAJ «aYBICTBIPY »
ozicine HerizesreH. DyeMeHTapJIbIK eHrisiiay kpurepuiiinge Tapckuii-BoorTsiH TanbiMas TecTi maiigasia-
HBLIJIEL.

Kiam cesdep: reHepUKAJBIK, KYPBLIBIMIAP, JIEMEHTAPJIBIK SKBUBAJEHTTIIIK, Ppancce-TaiimanoB-Dpen-
boIXTBIH 9ici, 3/1eMeHTapJIbIK, eHrisiny, Tapckuit-Boor Tecti.

C.B. Cynoniaro

O reaepneCKmux CTpYKTypax, COXpaHAI0IIINnX 3JIEMEHTapHYIO
9KBMUBAJICHTHOCTDb M JJIEMEHTAapPHYIO BJIO2KMMOCTDb

B craTbe paccMoTpenbl Kpureprun 371eMeHTapPHON SKBUBAJIEHTHOCTH U 3JIEMEHTAPHOMN BIIOXKUMOCTH JIJIsl TeHe-
PUYECKHX CTPYKTYP, KOTOPhIE UCIOJIB3YIOT KJIACCHYECKUE XapaKTEPU3AIMY JJIs o0Iero ciydasi. Kpurepuit
9JIEMEHTAPHON SKBUBAJIEHTHOCTH 0A3MPOBAH HA XOPOIINO M3BECTHOM METOJIE «IIE€peKubIBaHus» Ppamcce-
TaiimanoBa-Dpendoiixra, a KpUTEPHil JIEMEHTAPHOI BJIOXKUMOCTH — Ha, u3BecTHOM Tecre Tapckoro-Boora.

Karouesoie cao6a: TeHEpUYECKHE CTPYKTYPBI, dJIeMEeHTapHas BJIOXKUMOCTh, meroj, Ppaucce-TaitmanoBa-
Opendoiixra, Tect Tapckoro-Boora.
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