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Maximum likelihood estimates of some probability
model of discrete distributions

In this work the new multivariate discrete probability model of distribution of random sums with unobserved
components is proposed.The maximum likelihood estimates for this model are determined in the case that
all the elements of the sample implementation, namely the observed sums of unobserved components have
only singular partition. In the case, that some element of the sample implementation has more then one
partition, it is not possible to establish the maximum likelihood estimates.
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1 Introduction

Models of probability distributions are a powerful and effective tool for studying diverse objects, systems
and processes in various areas of human activity. In recent years, a significant number of probabilistic models
have been developed.

Nevertheless, many unresolved problems remain, when it is possible to observe only the sums of components
that can not be detected as a result of observations. For example, due to of the increasing use of digital media,
there are failures of noise immunity, explained by randomly overlapping in one frequency band [1-3]. The use of
probabilistic and static methods, namely, probabilistic modeling, allows us to present an approach to reducing
the failures of noise immunity in information of digital media.

Also, an exclusive relevant example of the use of such a model is the advertising industry, where it is
necessary to link the distribution of consumer interests with relevant advertising in various sources. Similar
problems are very common in meteorology and in other areas. The probabilistic models describing such situations
was considered in [4-6], where unbiased estimates were presented using the Rao-Blackwell-Kolmogorov method.
Unlike the works [4-7], for these distributions in this paper we consider the maximum likelihood estimates and
the conditions for the existence of their analytic derivation.

As is known, the maximum likelihood method is one of the most effective methods in terms of ensuring a
minimum variance of the estimated parameters of probability distributions [5; 229]. The method is rigorous in
the mathematical (probability-theoretic) plan. And its application is especially justified when there are both
uncorrelated and correlated measurements in the processed information [8].

The strong consistency, the asymptotic unbiasedness, the asymptotic normality, asymptotic and the efficiency
of maximum likelihood estimates provides their advantages in applied problems. Therefore the maximum
likelihood estimates determined by the needs of practice, especially when using a large sample size.

The efficiency of the second order distinguishes this method of estimation among other asymptotically
effective ones [9]. Invariance of maximum likelihood estimation ensures successful application of this method
when estimating functions of distribution’s parameters [10].

2 The model of multivariate discrete probability distribution

Consider a following probabilistic model by the example of the urn scheme with balls. Suppose that the urn
contains balls, and each ball in the urn is marked by some value of number from the set of the random numbers

Ly, Lo, ..., Lg. Let’s the elements of the vector p = (p1,pa,...,pq) are the probabilities of retrieval from the
urn of a ball marked by corresponding numbers Ly, Lo, ..., Ly and
d
> pa=1
a=1
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By successive extraction of n balls from the urn with return we have the following situation. After the
successive removal of n balls from the urn with the return, it is not known exactly what the balls were taken
out of the urn. Only value u is known, which is the sum of the values of the numbers on the extracted balls
from the urn. To study this situation, it is necessary to construct a probability distribution w. It is obvious that
u is the realization of some random variable U.

Let's say, that V,, represents the number of possible combinations ry, Li,7r2, La,...,7q, L4, which in the
sum formed the number u, where r1, ,r2, ,...,7q, determine the possible number of removed balls that are
marked with the corresponding the random numbers Ly, Lo, ..., Ly. In other words, V,, is the number of
partitions of the w into parts Ly, Lo, ..., Lq [11; 1].

The following assertion follows from the results of [4-6]. The probability that the random variable U will
take the value u, is

Vi d  Tay,
PU=uw=> n]]2—. (1)
Ta, -
vy=1 a=1 Yu

8 Formulation of the problem

Obviously, in practice, the elements of the vector p are not known. Consequently, formula (1) does not find
actual application. In this connection, it becomes necessary to determine the probability estimate (1).

It is also Ly, Lo, ...,, Lg, which give the sum u, are not known.

Let’s x = (x1,...,x)) can be interpreted as a realization of a sample X = {X7, ..., X} with size k, whose

elements have distribution (1). We denote vector r,, = (7‘1vﬁ s Ty, ), which defines vg - th solution of equation

d
> Larozvﬁ = Xp;
a=1

d (2)

T, =1,
a=1 G
where vg =1,...,V3,Vg is the number of partitions of the xg on the L, Lo, ...,, Lg. Using the
Ly, Lo, ...,, Ly, and the realization of simple x in the system of equations (2) we define for each 8 =1,...,k
the number of partitions Vs of the sum xg on Ly, Lo, ...,, Lg, and vectors ri,, ..., Ty,.
Suppose that for each j =1,..., u, where
k
p=1] Vs
B=1

there is a vector z; = (21,,...,2q,), defined as

k
2j =) Tu, (3)
B=1

and the indices on the right and left side are linked one-to-one correspondence, which is not unique. For example,
this line can be described by the following form

k
j:1}1—‘r(’Ug—l)Vl—i-(U?,—1)V1Vv2+...—|—(1}k—1)HVB. (4)
B=1
Also, it can be represented as
k
j=vr+ (Uk—l — 1)Vk + (Uk_z — I)Vka—l +...+ ('Ul) H Vg.
B=2

That is, if used (4), then (3) can be represented as the following systems of equations
Z1 =Ty, +ry, +r1, +...+7r,;

Zo =Ty +Try, +T1, +...+7Tq,;
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Zy, =T1,, +ry, +ry, +...+711;
Zy,4+1 =Ty, +I‘22 +I‘13 +...+I‘1k;

Zy, 42 = To, +I‘22 +I‘13 +...+I‘1k;

Z, =Ty, + Ty, + Ty, +... + Ty,

The following Lemma allows to determine which vectors r,,,r,,...,r,, form the vector z;. Suppose that
for some real value a the value (a) determines the integer part of a.
Lemma. If the indices in the right and left sides of the equation (3) are interconnected in form (4), then

) — 1
vk:<,3_1>+1;
[1Vi
=1

) k—1
j—(=1 [ Vi—1
Uk-—1=< = >+1;

k=2
[V
i=1
k=2 k=1
J= =) I Vi (e = 1) [TVi-1
_ =1 i=1
Vg—2 = < k_3 > + 1a
[V
i=1
k=1
j_(’Ug_l)V]_‘/Q_('U4_1)‘/1‘/2‘/3—...—('Uk_1) H V;‘—l
Vg = < 3 =1 > +1;
IV
i=1
k-1
vy =j—(v2—D)Vi = (v3— DV — (0 = DV — ... — (v = 1) [] Vi
i=1
Proof. From (4) it follows that
j—c
VE = —1 + 1, (5)
1V
i=1

where

k—2
C:’U1+(’0271)V1+(’U3*1)Vl‘/2+...+(1}k_1 71)1_[‘/1
i=1

It is obvious that the latter can be represented as follows

k—2 k—3 k—4
¢ = Up_1 H Vi— | (Vik—2 — vg—2) H Vi(Vi—g — vk—3) H Vit...+Vi—v
i=1 i=1 i=1
Since
k—3 k—4
(Viez = vk—2) [ ViVees —von—s) [[ Vi + .-+ Vi — w1 > 0,
i=1 i=1
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then
k-2 k—1
CS(vkq—l)HViS HVi
i=1 i=1

or

c—1
g <L (6)
I1 Vi
i=1
By the fact that (5), then we obtain receive
—1 c—1
Yk = 1371 — b
v IV
i=1 i=1

Since we have (6) and vy is non-negative integer, then
_ (i1
[1V;
i=1

The same way as vi has been determined in the last formula, vi_1, v5_2, ..., v1 are determined.
Lemma is proved.

4 Construction of maximum likelihood estimates for the distribution
parameters of the model investigated

Find maximum likelihood estimates for the parameters p, ..., pq of distribution (1). The likelihood function
of distribution (1) has form

™
Il
—
™
Il
—
<
)
Il
-
Q
Il
iR
<
Q
<
LY

which can present in form

™
Il
-
™
I,
N\
=
bS]
Q
N——
3
o=

Accordingly, the log-likelihood for the parameters py, ..., pq of distribution (1) is

k Vs d Tavﬂ d nVg
lnL(X;p):k‘lnn!—l—Zan Hl;a  —nnln (ZPa) )
a=1

B=1 vg=1a=1 g *
k
where n = > V3.
p=1

It follows that for any a® =1,...,d we have

Vs Ta*uyg -1 d Tavg

Z P, H Pa

vg=1 (Ta*vﬁ _1>! a=1 ravﬂ !
0ln L(x;p) _ Z oo oy
apa* —1 Ve d revs 7
= 2 I Fe
vg=la=1 "8
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or

v,

Oln L(x; p) Tar,,

— = —ni, (7)
6pa* ;:1 vgz—:l pa*Av[s

where for B =1,...,k,vg=1,...,V3

Ay=1+ > I T“”* pa? (8)

w[; =1
wg # g
As it is known, the maximum likelihood estimations p = (p1,...,Pq) for vector of parameters
p = (p1,.-.,paq) satisfy the following condition for any a =1, ..., d
dln L(x;
9pa p=p
It follows that In L(x,p) reaches a local maximum at the point p = (p1,...,04), for any az,as = 1,...,s,
s =2,...,d carried the following conditions
det ‘ w >0, if sis even;
2IialL(paz) e (10)
0“In L(x,p .
det Hi@pqlapaz s < 0, otherwise.
From (7) and(9) it follows that for o =1,...,d
k Vﬂ Tay
[521 1 A”f
A~ = vg=
nn

Since

a=1
then in conformity with (11)
d k Vs Ta
d PO DED I v
. a=1pB=1vg=1 "#
D pa= =1
a=1 il
Hence, we have
d k Vs o
PIDIDIE w2 (12)
Ay,

B=
From (8) it is evident that for any 8 =1,...,k, vg =1,..., Vg Ay, > 1. And A,, = 1, if V5 = 1, otherwise
Ay, > 1. Thus, we have

That is

if for some 8 = 1,...,k A, > 1. So (12) is satisfied if for all 3 = 1,...,k V3 = 1. Consequently, the construction
of maximum likelihood estimates for the distribution parameters p = (p1,...,pq) of this model (1) is possible
only when all elements of realization of sample have no more than one partition on the submitted L1, Lo, ..., Lg.
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In other words, if for all 8 =1, ..., k Vg = 1, then from (8) it implies A,, = 1, and by (11) for a = 1,...,d
we have
ko Vs k
> 2 Tay, > Tas
. B=lug=l _ B=1
“ nn - nk
That is
k
le Tay
po = — ) 13
b oy (13)
From (7) and (13) it’s following that for any o, a1, ae =1, ..., d if a1 # ag
0?In L(x,p)
—_ =0
apoq 3pa1 p=p
and i
9 In L(x, p) Z Ta
—_— =— —L <0.
9z p=b B=1 d
So for any s = 2,...,d we have the following
9*InL v 0?InL
det ’ 1 (Xa p) — H n gxap)
Opa, OPa, sXs 1 op? R
p=p
or
2InL >
o) ()
apoqapozg SXS§ a=1 pa

Consequently, if for all 3 =1,...,k Vg =1, then the elements of the vector

pP= (pla"'vﬁd)v

defined in (12) satisfy (8)—(9) and they are the maximum likelihood estimates for the parameters p = (p1,...,pq)
of disrtibution (1). Thus, the following Theorem holds.

Theorem. If all elements of realization of sample x = (x1,...,2%) of distibution (1) have no more than
one partition on the on the submitted L, Ls,...,Lq, then there are maximum likelihood estimates for the
parameters of the distribution (1), which is defined in (12).

Consequence. If some element from realization of sample x = (x1,...,x) of distibution (1) have more than
one partition on the on the submitted Ly, Ls,...,Lg, then there not are maximum likelihood estimates for
the parameters of the distribution (1).

Thus, it can not always possible to construct maximum likelihood estimators for the parameters of the
distribution (1).

5 Conclusion

The analysis conducted in this paper studies allows us to formulate the following conclusion: Found that for
this model maximum likelihood estimates exist if all the elements of observations have no more than one part
by partition.

As is known, in practice, often some element of the implementation of the sample has more than one
partition. That is, the method for determining the likelihood estimation is not actually applicable to this model.
Of course, it is possible to use modified likelihood estimates by means of the apparatus of numerical methods, for
example, to solve the system of maximum likelihood equations by the iterative method [12] or directly maximize
the likelihood function of the type [13].

Obviously, the application of numerical methods generates numerous problems. Namely, the convergence of
iterative methods requires justification [14; 202], the likelihood function can has a several local maxima [15], the
choice of the moment of termination of calculations in connection with the achievement of the required accuracy
requires justification [16], also the accuracy of the computation depends to the sample size [17].
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Thus, if any element of the sampling of the given distribution model has more than one decomposition, then
when finding the maximum likelihood estimates, we have a number of computational problems that call into
question the practicality of using maximum likelihood estimates.

There is no need to absolutize the maximum likelihood estimates. In addition to these, there are other
types of estimates that have good asymptotic properties. An example is the most suitable unbiased estimates
presented in [4-6].
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A Uckakona, I".2KakceibaeBa

JuckperTi yiecripiMaepaiH 0ip BIKTUMAJIILIK MOJEJiHIH,
IIBIHABIKKA YKCAC MaKCUMaJiabl OaraJjiapbl

MakaJsraga 6akblIaHATBIH KOMIIOHEHTTEPIMEH OepijireH Ke3efCOK KOCBHIHIbLIAD YJ/IeCTipiMiHiH KaHa KOIl-
OJIIIIEMII JTUCKPETTI BIKTUMAJIIBIK, MOJIe/i yChIHBLIFaH. OChl MOJE/b VIINiH IIBIHIBIKKA YKcac Oarajiapbl
aHBIKTAJIFAH, OHBIH IIIHIE erep TaHIAMAHBI XKY3€re achIpyAarbl 6APJIBIK, SJIEMEHTTEDI, JI9JI OChI OAKBIIAH-
GaliTHIH KOMIIOHEHTTEP/IIH 6aKbIJIaHATHIH KOCBIH/IBLIAPHI TEK YKAJIFbI3 OeJlikTeyTe ne 6osca. COHbIMEH KaTap
TaHJAMAaHbBI YKY3€re achIPYyJIaFbl 9JIEMEHT XKaJFbI3 OOIKTeyTe ne 6oIMaca, MaKCUMAJIIbI MIBIHIBIKKA YKCAC
Garaylappl ajay MYMKIH eMec.

Kiam cesdep: BIKTUMAJIIBIK, KOIOJIIIEM I VIECTIpiM, MAKCHUMAJIIBI IIBIHIBIKKA YKcac HGarasiap.

A Nckakosa, I'.2Kakcribaesa

OneHKNn MaKCHUMAaJIbHOI'O IIPABIOIIOA00MsI OJHOI BEPOSITHOCTHOM
MOJeJIn JUCKPETHBIX PacIlipeesIeHnuin

B crarbe npencraBiieHa HOBasi MHOTOMEpHAs JIUCKPETHAs BEPOSATHOCTHAS MOJEIb PACIPEICTICHUST CIIydaii-
HBIX CYMM C HEHaOJII0JaeMbIMu KOMIIOHeHTaMu. ONpeaeieHbl OEeHKN MaKCUMAJIBLHOTO MIPaBIOIOn00us 11t
9TOM MOJEJIN B TOM CJIydae, €CJI BCEe IJIEMEHTHI peasin3alluyl BBIOOPKU, a UMEHHO HaOJII0/IaeMble CYMMBbI
HeHabJTIOTaeMbIX KOMIIOHEHTOB, UMEIOT TOJIPKO €INHCTBEHHBbIE pa3bueHus. B ciydae eciim Kakoi-HuOYIH
JIEMEHT Peaju3allii BLIOOPKU MMEET He eJUHCTBEHHOe pa30ueHue, TO ONEHKH MAKCHUMAaJLHOTO IIPaBIOIO0-
1001sT HEBO3MOXKHO YCTaHOBUTD.

Karouesvie caro6a: BEPOATHOCTDH, MHOTOMEPHBIE PACIIPE/IEIEHNsI, OIIEHKH MAaKCHMAJILHOTO IPABIOIOA00MS.
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