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On one problem for restoring the density of sources
of the fractional heat conductivity process with respect to
initial and final temperatures

In this paper we consider inverse problems for a fractional heat equation, where the fractional time derivative
is taken into account in Riemann—Liouville sense. For the solution of this equation, we have to find an
unknown right-hand side depending only on a spatial variable. The problem modeling the process of
determining the temperature and density of sources in the process of fractional heat conductivity with
respect to given initial and final temperatures is considered. Problems with general boundary conditions
with respect to the spatial variable that are not strongly regular are investigated. The existence and
uniqueness of classical solution to the problem are proved. The problem is considered independent from
a corresponding spectral problem for an operator of multiple differentiation with not strongly regular
boundary conditions has the basis property of root functions.

Keywords: Inverse problem, heat equation, fractional heat conductivity, not strongly regular boundary
conditions, method of separation of variables.

1 Introduction

It is well-known that problems of determining coefficients or the right-hand side of a differential equation
simultaneously with its solution are called inverse problems of mathematical physics. These problems often arise
in various areas (seismology, exploration of minerals, biology, medicine, quality control of industrial products
etc.) that place them among the current problems of modern mathematics.

In this article, we consider a class of problems which model the process of determining the temperature and
density of heat sources with respect to given initial and final temperatures. Their mathematical statement leads
to the inverse problems for a fractional heat equation in which along with solving the equation we have to find
an unknown right-hand side depending only on a spatial variable.

The questions of solvability of various inverse problems for parabolic equations were studied in many articles.
The closest to the subject of this paper is [1], in which one case of regular but not strongly regular boundary
conditions was considered. The analysis was carried out by the Fourier method using a basis of eigenfunctions
and associated functions. In contrast to this (and other) article, we study the inverse problems for the fractional
heat equation with general boundary conditions with respect to the spatial variable which are regular but not
strongly regular.

Let @ = {(z,t), 0<zx <1, 0<t<T}. InQ we consider a problem of finding the right-hand side f(x) of
the fractional heat equation

D, (u(x,t) — u(x,0)) — Upe (z,8) = f(x) + F (2,1), (x,t) €Q (1)
and its solutions u (z,t) satisfying the initial and final conditions
u(z,0)=¢(z), u(@,T)=v¢ (), 0<z<1, (2)
and the boundary conditions
ajtg (0,t) + brug (1,t) + agu (0,t) + bou (1,t) = 0;

1ty (0,t) + dyug (1,t) + cou (0,t) + dou (1,¢) = 0.
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The coefficients ay, bx, cg, dp with k& = 0,1 in (3) are real numbers, Dg, stands for the Riemann-Liouville
fractional derivative of order 0 < a < 1:

o _ 1 d (" y(s)ds
DOer(t)_F(lfa)%/o (t_s)(,w
while ¢ (), ¥ (z) and F (z,t) are given functions.
Definition. By a regular solution of the inverse problem (1)—(3) we mean a pair of functions (u(z,t), f(zx))
of the class u(z,t) € C’itl (Q), f(z) € C[0,1] that inverts equation (1) and conditions (2)—(3) into an identity.
The use of the Fourier method for solving problem (1)—(3) leads to the spectral problem for the operator ¢
given by the differential expression £ (y) = —y” (z), 0 <z <1 and boundary conditions

a1y’ (0) + b1y’ (1) 4 aoy (0) + boy (1) = 0;
(4)
c1y’ (0) + diy’ (1) + coy (0) + doy (1) = 0.

These boundary conditions are called regular [2] if one of the following three conditions
1. ayd; —bjcq #0;
it. ardy —bicr =0, Jag| 4 |b1] > 0, a1dy + bicoy # 0; (5)
1. a; =by =c1 =dy =0, apdy — bgcg # 0

is satisfied. Regular boundary conditions are strongly regular in the first and third cases, while in the second
case this requires the additional condition

aico + bidy # £ [ardo + bico] . (6)

Particular cases of (1)—(3) were considered in [1] with boundary conditions (3) which are not strongly regular:
the case of conditions of Samarskii—Ionkin type

u(1,t) =0, wug(0,t) =u, (1,)
and the case of periodic boundary conditions
w(0,t) =u(l,t), u,(0,t) =u,(1,t).

However, the method of proof of [1] does not automatically carry over to problems with arbitrary not strongly
regular boundary conditions (3). This has essentially to do with the use in [1] of a basis of eigenfunctions
and generalized eigenfunctions of the corresponding problem (4) for the operator of multiple differentiation.
Unfortunately, not all problems of this type have the basis property. Therefore, in order to study the formulated
problem, regardless of the basis properties of the system of root vectors of the operator ¢, we use the method first
substantiated in our work [3]. In [3] a class of problems modeling the process of determining the temperature
and density of heat sources with respect to given initial and final temperature is considered. To solve direct
heat conductivity problems with general not strongly regular boundary conditions with respect to the spatial
variable, this method is described in detail in [4].

The solvability of various inverse problems for parabolic equations was studied in papers of Yu.E. Anikonov
and Yu.Ya. Belov, B.A. Bubnov, A.I. Prilepko and A.B. Kostin, V.N. Monakhov, A.I. Kozhanov, I.A. Kaliev,
K.B. Sabitov and many others.

These citations can be seen in our papers [3] and [5]. We note [6-28] as recent papers close to the theme of our
article. In these papers different variants of direct and inverse initial-boundary value problems for evolutionary
equations are considered, including problems with nonlocal boundary conditions and problems for equations
with fractional derivatives.

We solve the problem by the Fourier method. Some new variants for solving nonlocal boundary value
problems by the method of separation of variables were used in our papers [29-35].
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2 Case of Sturm-type boundary conditions

A particular case of strongly regular boundary conditions are Sturm-type conditions: by = by = ¢y = ¢; = 0:

ayug (0,t) + agu (0,t) = 0;

(7)
dlum (1,t) + dou (l,t) =0.

By £1 let us denote a corresponding ordinary differential operator arising when applying the method of separation
of variables to problem (1), (2), (7). Spectral problem ¢1y = Ay has the form

by)=—y'(2)=xy(z), 0<z <L ©
8
a1y (0) + apy (0) =0, diy (1) +doy (1) = 0.

Denote by Ag the eigenvalues of the operator ¢; enumerated in the increasing order of their absolute values,
and by yi (z), for k = 1, 2, ..., denote corresponding normalized eigenfunctions. It is known [2] that the
eigenvalues of these problems are real and simple, while the system of their eigenfunctions forms an orthonormal
basis in Ly(0,1). Thus, we can represent the solution u (z,t), f (x) to (1), (2), (7) as the series:

t) = Zuk )y (), f(2) = kayk (2). (9)
k=1 k=1

Substituting (9) into (1) and (2), we obtain the problems
Doy (un () — wr (0)) + Apur (6) = fr + Fi(t), uk (0) = @r, ur (T) = hx (10)

for finding the unknown functions uy (¢) and coefficients fj. Here Fy(t), ¢, and ¢y are the Fourier coefficients
of F (z,t), ¢ and ¢ with respect to the system {yx (z)}. Then we get

F(t) = (F (z,1), ye (), or = (0 (), yr (7)), and ¢ = (¢ (2), yx (2)).

The inverse problem (10) is investigated similarly, as in [1]. A solution to (10) exists, is unique, and can be
written explicitly. Without dwelling on the details, we write out its solution:

t
w= Lo OO e LA [ eten A + e b W)+, (1)
k 0

fi=T(1+a) L Uk(T)avfkea T Ak)a (12)

where Uy (t) is a solution of problem
Dg+ (Uk (t) — U (0)) + MUgk (t) = Fk(t), U (0) =0.

In (11) and (12) function e, (7, ) is expressed by the function of Mittag—Leffler:

€a (T, 1) = Eq (—p1® ZF T+ k) a € [0,+00),
k=0
T
Vi :/ (T —7)* ea(r, Ai)dr. (13)
0

The Mittag—Leffler function e, (7, p) for u > 0 and 0 < o < 1 is absolutely monotone function with respect to
7 (see [36; 268]). Since e, (0, Ax) = 1, then from (13) it is easy to see that there exists a constant 5 > 0 such
that

w>7>0,Vk=1,2,.... (14)

Inserting (11) and (12) into (9), we arrive at a formal solution to the problem. In order to complete our
study, it is necessary, as in the Fourier method, to justify the smoothness of the resulting formal solutions and
the convergence of all appearing series. Let us state the main result of this section.
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Theorem 1. If F(z,t) € C*(Q), ¢ (), ¥ (z) € C*0,1] and functions F(z,t), ¢ (), ¢ (z), ¢ (z) and
V" (x) satisfy (7), then there exists a unique classical solution u(z,t) € Cz,} (Q), f(z) € C[0,1] to the inverse

problem (1), (2), (7).

Proof. Since ¢” (z), 9" () € C?[0,1] and satisfy (7), by Steklov’s theorem [37; 41] they admit expansions
into absolutely and uniformly converging Fourier series in the eigenfunctions {y (x)}.

Thus, the series

o () == Mepwyn (2), ¥ () = =D Metow (2) (15)
k=1 k=1

converges absolutely and uniformly.
From (11), (12), taking into account (14), since

klim A = +00, |lea(T, Ak)| < My, |eq(t, k)| < Ma,
—00

it is easy to get uniform estimates with respect to k
[uk (O] < C (lprl + el +[U@)]) 5

| DEyuk ()] < C (w] + [l + [Us(O]) [ Al
el < C (opnl + [l + [UR(D) -

Hence, from the uniform and absolute convergence of series (15) there follow the convergence of series (9) and
the belonging of the solution of (1), (2), (7) to the classes u(x,t) € Citl (Q), f(z) € Cl0,1].

Let us prove the uniqueness of the solution. Suppose that there are two generalized solutions of the inverse
problem (1), (2), (7): (ui(z,t), fi(x)) and (u2(x,t), fy(z)). Denote

u(@,t) = u (,t) —ug (2,t), f(2) = fi(x) = f2(2).

Then the functions (u(x,t), f(x)) satisfy equation (1), the boundary conditions (7) and the homogeneous
conditions (2):
u(z,0)=0, uw(z,T)=0, 0<zx<1. (16)

Let us show that the inverse problem (1), (7), (16) has only zero solution. Let us introduce notations

1 1
Uk(t):/o u(z, t)yp (z) de, fk:/o f@y (@) de,  (k=1,2,...). (17)

We apply the operator Dg, to uy (t). Then, using equation (1), by integrating by parts, we obtain a problem
given by
the equation
Dy uk () + Ak (1) = fi, (18)

and the boundary conditions
ug (0) =0, ug (T) = 0. (19)

General solution of equation (18) has the form (see [1], Eq. (25)):

fra ) /Ot (t— T)aflea(ﬂ AR )dT 4+ ug (0) eq (t, Ar).

Uk (t) = 7F(1+oz

Using the first of conditions (19), from here we have

Jra ) /0/ (t — T)a_lea(r, A )d. (20)

ug (1) = Tlta)

Substituting this into the second condition of (19), we get

(0% T 1
1_‘<{k+a)/0 (T — 1) “eq(r, Ai)dT = 0. (21)
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Since for g > 0 and 0 < a < 1 the function e, (7, ) is absolutely monotone with respect to 7 [36] and since
eq (0, A\x) = 1, then the integral in (21) is a strictly positive value. Consequently equation (21) holds if and
only if fr = 0. But then from (20) we get uy, () = 0.

Therefore, using this result, from (17) we find

1 1
/ u (z, t)y (x) de = 0, / f(x)yg (x)dz =0, (k=1,2,...).
0 0

Further, by the completeness of system {y, (z)} in Ly (0,1) we obtain u (z,t) = 0 and f (z) = 0 for all (x,t) € Q.
The uniqueness of the generalized solution of the inverse problem (1), (2), (7) is proved. Theorem 1 is completely
proved.

8 Regular, but not strongly reqular boundary conditions

In [3] a class of regular but not strongly regular boundary conditions was described in a convenient form.
Lemma 1 [3]. If the boundary conditions (4) are regqular but not strongly regular then the boundary conditions
(8) reduce to
arug (0,t) + brug (1,t) + agu (0,) 4+ bou (1,¢) = 0;

laq| + |b1] > 0; (22)
cou (0,t) + dou (1,¢) =0,
of one of the following four types:
I. a; + by =0, Cofd()#o;
II. al—b1:0, Co—f—do#o; (23)

III. ¢cy+dyp=0, a3 —b #0;
1V. C()—d()zo7 a1+b1750.

Also in [4] the following result was proved.

Lemma 2 [4]. We can always equivalently reduce the solution of the problem (1)-(3) in the case of regular
but not strongly regular conditions to solve successively two problems with strongly regular Sturm boundary
conditions.

Using Lemma 2, we can obtain the existence of the solution of (1)—(3), as well as its uniqueness and
smoothness, from Theorem 1 for the corresponding problems with strongly regular Sturm-type boundary
conditions. In the next four sections, we will outline this method in more detail.

The method of solution, consisting in reducing the initial problem to a sequential solution of two initial-
boundary value problems with homogeneous boundary conditions of the Sturm type with respect to a spatial
variable, will be formulated separately for each of types mentioned in Lemma 1.

4 Reduction of the problem of type I to a sequential solution of two problems
with homogeneous boundary conditions of the Sturm type

Consider a problem of type L. Since a; +b; = 0, and herewith |a1| + |[b1| > 0, then without loss of generality we
can assume a; = —b; = 1. Since ¢y — dy # 0, then without loss of generality we can assume ¢y — dy = —1. To
simplify writing (omitting additional indexes) we denote ¢y = ¢. Then dy =1+ ¢.

Therefore the problem of type I can be formulated in the form:

In Q={(z,t):0<2x<1,0<t<T} find a solution u(z,t) of the fractional heat equation (1) satisfying
the initial condition (2) and boundary conditions of type I:

ug (0,) — ug (1,8) + au (0,t) + bu (1,¢) =0,

(24)
cu(0,t) + (1 +c)u(l,t) =0.
Here the coefficients a, b, ¢ of the boundary condition are arbitrary complex numbers.
To solve the problem we introduce the auxiliary functions:
U(.Z‘,t):[U(l‘,t)ﬁ*u(l*l‘,t)]/Q, (25)
w(z,t) =u(x,t) = [1— (14 2¢) 2z — )] v (x,t). (26)
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Note that if the solution has been searched in the form of the sum of even and odd parts
u(z,t) = C(x,t) + S (z,t) in the initial version of the method (see [3]), then now in a variant suggested by us:

— the function v (z,t) is even on the interval 0 < x < 1, and is the even part of the function u (z,t);

— and the function w (x,t) is not the odd part of the function u (z,t), though it is the odd function.

The last follows from the fact that w (x,t) can be represented in the form

w (z,t) :%[u(x,t)—u(l—x,t)]+(1+20) 2z — 1) v (z,t), (27)

that is, in the form of the sum of the odd part % [u (z,t) — u (1 — z,t)] of the function u (z,t) and of the summand
(14 2¢) (22 — 1) v (x,t), which (it is easy to verify) is also the odd function on the whole interval 0 < = < 1.

From (26) it is easy to see that if we find the functions v (z,t) and w (z,t), then the solution of the initial
problem can be reestablished by the formula

u(z,t) =w(x,t)+[1—(1+2c) 2z —1)]v(x,t). (28)

Thus, if in the previous variant the solution is represented in the form of the sum of even and odd parts of
the solution, then in the new variant suggested by us it is not quite so. In representation (28) the first summand
is even on the interval 0 < x < 1, and the second summand is neither even, nor odd for 1 + 2¢ # 0.

It is easy to make sure that the functions v (x,t) and w (x,t) are solutions of the fractional heat equations,
satisfy the initial and homogeneous boundary conditions in €.

For the function v (z,t) we obtain the initial-boundary value problem which we need to solve first:

Dgy (v(z,t) — v(2,0)) = vaa (2,1) = fo (2); (
( z, ) 900( )v U(va):¢0(x) 0<z <1, (
vy (0,8) +[a(14+¢) —bc]v (0,t) =0, 0<t<T, (31
v (Lit) —[a(l+¢)—bcv(l,t)=0, 0<t<T. (
Here we use the notations

fole) =5 [f (@) + f (1 -a)],
vo(z)=3lp @)+l -2)], vo(x)=3[(x)+v(1-a).

Having the solution v (x,t) of this problem, for the function w (x,t) we get the initial-boundary value
problem which we need to solve second:

(33)

Dy, (w(x,t) — w(x,0)) — was (x,t) = fr(x) + Fi(z,t); (34)
w(az,O):gol(:r), w(va):wl(x)a 0<z <1, (35)
w(0,t) =0, 0<t<T; (36)

w(l,t)=0, 0<t<T. (37)

Here we use the notations
fi(@)=f(@)—[1-(1+2c) 2z —1)] fo(z), Fi(z,t)=—4(1+2c)vy(,1); (38)
p1(z) =¢(z) —[1—(1+2c) (22— 1)] po (2);

Y1 (2) = () = [1 = (14 2¢) (22 = 1)] o (2).

By direct checking from (33) and (39) it is easy to make sure that if the initial and final data ¢ (z) and
¥ (z) of problem (1), (2), (24) satisfy necessary (classical and well-known) consistency conditions, then the
initial and final data ¢ (x), 1 (x) and g (x), ¢ (z) also satisfy the necessary consistency conditions of their
corresponding problems.

Thus the solution of the problem of type I (1), (2), (24) is reduced to the sequential solution of two problems
with homogeneous boundary conditions of the Sturm type with respect to the spatial variable:

(39)
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— At first for the function v (z, t) we solve the initial-boundary value problem (29)—(32) with the homogeneous
boundary conditions of the Sturm type with respect to the spatial variable;

— Then, using the obtained value v (z, t), for the function w (z, t) we solve the initial-boundary value problem
(34)—(37) with the homogeneous boundary conditions of the Sturm type (in this particular case they are the
Dirichlet conditions) with respect to the spatial variable.

Therefore the main result on the existence and uniqueness of the solution of the problem of type I (1), (2),
(24) in classical and generalized senses follows from Theorem 1 on corresponding solvability of boundary value
problems with conditions of the Sturm type. We will formulate this main result at once for all the four types of
not strongly regular boundary conditions at the end of the paper.

5 Reduction of the problem of type II to a sequential solution of two problems
with homogeneous boundary conditions of the Sturm type

Consider a problem of type II. Since a; — by = 0, and herewith |a;| + |b1| > 0, then without loss of generality
we can assume a; = b; = 1. Since ¢g + dy # 0, then without loss of generality we can assume ¢y + dyp = 1. To
simplify writing (omitting additional indexes) we denote ¢y = ¢. Then dy =1 —¢.

Therefore the problem of type I can be formulated in the form:

In Q ={(x,t): 0<2z<1,0<t<T} find a solution u(x,t) of the fractional heat equation (1) satisfying
the initial condition (2) and boundary conditions of type II:

ug (0,8) + ug (1,8) + au (0,) + bu (1,t) = 0;

(40)
cu(0,t) + (1 —c)u(l,t)=0.
Here the coefficients a, b, ¢ of the boundary condition are arbitrary complex numbers.
We introduce the auxiliary functions:
1
v(‘r7t):i[u(l‘at)fu(li‘r,t)}, (41)
w(z,t) =u(x,t) —[1 —(1—2¢) 2z — D]v(x,t). (42)

Note that if the solution has been searched in the form of the sum of even and odd parts
u(z,t) = C(z,t) + S (z,t) in the initial version of the method (see [3]), then in a new variant suggested by us:

— the function v (z,t) is odd on the interval 0 < z < 1, and is the odd part of the function u (z,t);

— and the function w (x,t) is not the even part of the function u (x,t), though it is the even function.

The last follows from the fact that w (x,¢) can be represented in the form

w(z,t) == [u(x,t) +u(l—z,t)]+ (1 —2¢) 2z — 1) v(z,t), (43)

NN

that is, in the form of the sum of the even part % [u (z,t) — u (1 — z,t)] of the function u (z,t) and the summand
(1 —2¢)(2x — 1) v (x,t), which (it is easy to verify) is also the even function on the interval 0 < z < 1.

From (42) it is easy to find the functions v (z,t) and w (z,t), then the solution of the initial problem can
be reestablished by the formula

u(z,t) =w(x,t)+[1—(1—-2¢) 2z —1)]v(z,t). (44)

Thus if in the previous variant of the method the solution is represented in the form of the sum of the even
and odd parts of the solution, then in the new variant suggested by us it is not quite so. In representation (44)
the first summand is even on the interval 0 < x < 1, and the second summand is neither even, nor odd for
1—2c#0.

For the function v (z,t) we obtain the initial-boundary value problem which we need to solve first:

Dg—‘,- (U(.ﬁ,t) - U(Z‘,O))—wa (x7t):f0 (.13), (
( €T, ) 900( )’ U(%T)Zlbo(l‘) 0<x <1, (
vy (0,8) +[a(l—c)—be]v(0,t) =0, 0<¢t<T, (47
v (Lt) —[a(l—c)—bcv(l,t) =0, 0<t<T. (

Cepust «Maremarukas. Ne 3(91)/2018 37



A.S. Erdogan, D. Kusmangazinova et al.

Here we use the notations
fo@)=35[f(z) = f(1-=)],
po(2) =5 [p (@) —p (1 —2)], vo(x)=3[ () —¢(1-1).

Having the solution v (z,t) of this problem, for the function w (x,t) we get the initial-boundary value
problem which we need to solve second:

(49)

DS—i— (w (:L',t) - UJ(.%,O))f’LUzm (lL’,t) :f1($)+F1(CE,t), (50)
w(x,0)=¢1(z), wx,T)=19(x), 0<z<]1, (51)
w(0,t)=0, 0<t<T, (52)

w(l,t)=0, 0<t<T (53)

Here we use the notations
fi(@)=f(2)—[1-(1—-2c)2z—1)] fo(z), Fi(z,t)=—-4(1-2c)vs(x,1), (54)
p1(z) =¢(z) —[1—(1-2c) (22 —1)] po (2)

Y1 (x) =1 () —[1 = (1—2¢) (22 — 1)] o (2).

By direct checking from (49) and (55) it is easy to make sure that if the initial and final data ¢ (z) and
¥ (x) of problem (1), (2), (40) satisfy necessary (classical and well-known) consistency conditions, then the
initial and final data @ (x), @1 () and g (x), 11 (x) also satisfy the necessary consistency conditions of their
corresponding problems.

Thus the solution of the problem of type IT (1), (2), (40) is reduced to the sequential solution of two problems
with homogeneous boundary conditions of the Sturm type with respect to the spatial variable:

— At first for the function v (z,t) we solve the initial-boundary value problem (45)—(48) with the homogeneous
boundary conditions of the Sturm type (in this case they are the Dirichlet conditions) with respect to the spatial
variable;

— Then, using the obtained value v (z, t), for the function w (z, t) we solve the initial-boundary value problem
(50)—(53) with the homogeneous boundary conditions of the Sturm type (in this case with conditions of the
Dirichlet problem) with respect to the spatial variable.

Therefore the main result on the existence and uniqueness of the solution of the problem of type II (1), (2),
(40) in classical and generalized senses follows from Theorem 1 on corresponding solvability of boundary value
problems with conditions of the Sturm type. We will formulate this main result at once for all the four types of
not strongly regular boundary conditions at the end of the paper.

(55)

6 Reduction of the problem of type III to a sequential solution of two problems
with homogeneous boundary conditions of the Sturm type

Consider a problem of type III. Since ¢y + dy = 0, and herewith |co| + |dg| > 0, then without loss of generality
we can assume ¢y = —dg = 1. Since a; — by # 0, then without loss of generality we can assume a; — b; = —1.
To simplify writing (omitting additional indexes) we denote a; = ¢. Then by =1+ c.

Therefore the problem of type III can be formulated in the form:

In Q= {(z,t):0<2<1,0<t<T} find a solution u(z,t) of the fractional heat equation (1) satisfying
the initial condition (2) and the boundary condition of type III:

cuz (0,8) + (14 ¢)u, (1,t) + au (0,t) = 0;

(56)
u(0,t) —u(1,t) = 0.
Here the coefficients a, b, ¢ of the boundary condition are arbitrary complex numbers.
We introduce the auxiliary functions:
1
vz t) = 5 ulz,t) —u(l—ab)]; (57)
w(x,t) =u(x,t) —[1—(1+2c) 2z —1)]v(x,t). (58)

38 Bectnuk Kaparanmguackoro yHuBepcuTera



On one problem for restoring ...

Note that if the solution has been searched in the form of a sum of even and odd parts u(x,t) =
= C (z,t) + S (z,t) in the initial version of the method (see [3]), then in a variant suggested by us:

— the function v (x,t) is odd on the interval 0 < z < 1, and is the odd part of the function u (z,t);

— and the function w (x,t) is not the even part of the function u (z,t), though it is the even function.

The last follows from the fact that w (x,t) can be represented in the form

[u(z,t) +u(l—2a,t)]+ 1 +2c)(2z—1)v(x,t), (59)

DO =

w(z,t) =

that is, in the form of the sum of the even part § [u (z,t) + u (1 — x, )] of the function  (z,t) and the summand
(14 2¢) (22 — 1) v (x,t), which (it is easy to verify) is also the even function on the interval 0 < z < 1.

From (58) it is easy to see that if we find the functions v (z,t) and w (x,t), then the solution of the initial
problem can be reestablished by the formula

u(z,t) =w(x,t)+[1—(1+2c) 2z —1)]v(x,t). (60)

Thus if in the previous variant of the method the solution is represented in the form of the sum of the even
and odd parts of the solution, then in the new variant suggested by us it is not quite so. In representation (60)
the first summand is even on the interval 0 < x < 1, and the second summand is neither even, nor odd for
(14+2¢) #0.

For the function v (z,t) we obtain the initial-boundary value problem which we need to solve first:

Dg, (v(z,t) — v(2,0)) — Vs (z,t) = fo ()3 (61)
v (z,0) = (x), v(z,T)=1vp(x) 0<z<1; (62)
v(0,) =0, 0<t<T; (63)
v(1,6)=0, 0<t<T. (64)

Here we use the notations
fo(@)=35[f(z) = f(1—2)];
po(2) =5lp (@) =91 —-2)], vo(z)=3(z)—¢(1-1).

Having the solution v (z,t) of this problem, for the function w (x,t) we get the initial-boundary value
problem which we need to solve second:

(65)

Dy, (w(x,t) — w(x,0)) — was (x,t) = fr(x) + Fi(z,1); (66)
w(IvO):QM(x)a ’LU(Q?,T):l/)l(I), 0<z<1, (67)
wy (0,t) —aw (0,t) =0, 0<t<Ty (68)
wy (1,8) +aw(1,t) =0, 0<t<T. (69)
Here we use the notations
fi@)=f(z) =1 = (1+2c) 2z -1)] fo(z), Fi(z,t)=—4(1+2c)v,(z,1); (70)

p1 () =@ (x) = [1 = (14 2¢) (22 — D] po (z) ;

P (2) = ¢ (2) = [1 = (14 2¢) (22 — 1)] o (z) -

By direct checking from (65) and (71) it is easy to make sure that if the initial and final data ¢ (z) and
¥ (z) of problem (1), (2), (56) satisfy necessary (classical and well-known) consistency conditions, then the
initial and final data @ (x), @1 () and 1o (x), 11 (x) also satisfy the necessary consistency conditions of their
corresponding problems.

Thus the solution of the problem of type III (1), (2), (56) is reduced to the sequential solution of two
problems with homogeneous boundary conditions of the Sturm type with respect to the spatial variable:

(71)
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— At first for the function v (z, t) we solve the initial-boundary value problem (61)—(94) with the homogeneous
boundary conditions of the Sturm type (in this case with conditions of the Dirichlet problem) with respect to
the spatial variable;

— Then, using the obtained value v (z, t), for the function w (z, t) we solve the initial-boundary value problem
(66)—(69) with the homogeneous boundary conditions of the Sturm type with respect to the spatial variable.

Therefore the main result on the existence and uniqueness of the solution of the problem of type III (1), (2),
(56) in classical and generalized senses follows from the Theorem 1 on corresponding solvability of boundary
value problems with conditions of the Sturm type. We will formulate this main result at once for all the four
types of not strongly regular conditions at the end of the paper.

7 Reduction of the problem of type IV to a sequential solution of two problems
with homogeneous boundary conditions of the Sturm type

Consider a problem of type IV. Since ¢ — dy = 0, and herewith |¢o| + |dp| > 0, then without loss of generality
we can assume ¢y = dg = 1. Since a; + by # 0, then without loss of generality we can assume a; + b = 1. To
simplify writing (omitting additional indexes) we denote a; = ¢. Then by =1 —c.

Therefore the problem of type IV can be formulated in the form:

InQ ={(z,t),0<x <1,0<t<T} find a solution u (x,t) of the fractional heat equation (1) satisfying the
initial condition (2) and the boundary conditions of type IV:

cug (0,t) + (1 —c)u, (1,t) + au (0,t) = 0;

(72)
w(0,t) +u(l,t) =0.
Here the coefficients a, b, ¢ of the boundary condition are arbitrary complex numbers.
We introduce the auxiliary functions:
1
v(z,t) = 5 fulz,t) +u(l -z b)]; (73)
w(z,t) =u(x,t) —[1—(1—-2c) 2z —1)]v(x,t). (74)

Note that if the solution has been searched in the form of the sum of the even and odd parts
u(z,t) = C (z,t) + S (z,%) in the initial version of the method (see [3]), then in the variant suggested by us:

— the function v (z,t) is even on the interval 0 < « < 1, and is the even part of the function u (z,t);

— and the function w (x,t) is not the odd part of the function u (z,t), though it is the odd function.

The last follows from the fact that w (x,¢) can be represented in the form

w(z,t) == [u(zx,t) —u(l—z,t)]+ (1 —2¢) 2z — 1) v (z,t), (75)

NN

that is, in the form of the sum of the odd part % [u (z,t) — u (1 — z,t)] of the function u (z,¢) and the summand
(1 —2¢)(2x — 1) v (x,t), which (it is easy to verify) is also the odd function on the interval 0 < < 1.

From (74) it is easy to see that if we find the functions v (z,t) and w (z,t), then the solution of the initial
problem can be reestablished by the formula

u(z,t) =w(x,t)+[1—(1-2c) 2z —1)]v(z,t). (76)

Thus if in the previous variant of the method the solution is represented in the form of the sum of the even
and odd parts of the solution, then in the new variant suggested by us it is not quite so. In representation (76)
the first summand is odd on the interval 0 < x < 1, and the second summand is neither even, nor odd for

(1 =2¢)#£0.
For the function v (z,t) we obtain the initial-boundary value problem which we need to solve first:
Dg+(11(.13,t) - U(x70))_U.L.L(x7t):f0(x)7 (
v(z,0) =¢o(z), v(@T)=1o(z) 0<z <L (
(0,6) =0, 0<¢t<T, (79
(L,t) =0, 0<¢t<T. (

v

v
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Here we use the notations
fo@)=35[f () + (1 —2)],
po(x)=3lp@)+e(l—2)], vo(z)=5[(2)+¢(1-2).

Having the solution v (x,t) of this problem, for the function w (x,t) we get the initial-boundary value
problem which we need to solve second:

(81)

Dy, (w(x,t) — w(x,0)) — was (x,t) = fr(x) + Fi(z,1); (82)
w(x,0)=¢1 (), wx,T)=19(x), 0<z<1; (83)
wy (0,8) +aw (0,t) =0, 0<t<T; (84)

wy (1,8) —aw (1,t) =0, 0<t<T. (85)

Here we use the notations
fi(@)=f(@)=[1-(1-2c)2z—1)] fo(x), Fi(z,t) =—4(1—2c)ve(x,1); (86)
p1(z) =¢(z) —[1—(1-2¢) (22— 1)] po (2);

P (2) = ¢ (2) = [1 = (1= 2¢) (22 = 1)] o (z).-

By direct checking from (81) and (87) it is easy to make sure that if the initial and final data ¢ (x) and
¥ (z) of problem (1), (2), (72) satisfy necessary (classical and well-known) consistency conditions, then the
initial and final data @ (x), @1 () and g (x), 11 (x) also satisfy the necessary consistency conditions of their
corresponding problems.

Thus the solution of the problem of type IV (1), (2), (72) is reduced to the sequential solution of two
problems with homogeneous boundary conditions of the Sturm type with respect to the spatial variable:

— At first for the function v (z,t) we solve the initial-boundary value problem (77)—(80) with the homogeneous
boundary conditions of the Sturm type (in this case with boundary conditions of Dirichlet) with respect to the
spatial variable;

— Then using the obtained value v (z, t), for the function w (z, t) we solve the initial-boundary value problem
(82)—(85) with the homogeneous boundary conditions of the Sturm type with respect to the spatial variable.

Therefore the main result on the existence and uniqueness of the solution of the problem of type IV (1), (2),
(72) in classical and generalized senses follows from the Theorem 1 on corresponding solvability of boundary
value problems with conditions of the Sturm type. We will formulate this result as well as the results of sections
4, 5 and 6 at once for all the four types of not strongly regular boundary conditions in the next section.

(87)

8 Formulation of the main result on solvability of the fractional heat equation
with not strongly reqular boundary conditions

For completeness of exposition we once again formulate the problem under consideration:
In Q={(x,t),0<2<1,0<t<T} find a right-hand side f(x) of the fractional heat equation

Dgy (u(z,t) — u(2,0)) = uge (2,t) = f (2) + F(a,t), (88)
and its solutions u (x,t) satisfying the initial and final conditions
u(z,0)=¢ (), u(@T)=¢(=), 0<z<1, (89)
and not strongly regular boundary conditions of the general form
AUy (O, t) + blum (17 t) “+ apu (0, t) + bo’u (l,t) = 0,
(90)
cou (0,t) + dou (1,t) = 0.

The coefficients ag, b, ck, di (k = 0,1) of the boundary condition (90) are arbitrary real numbers, and
p(x), ¥ (x) and F (x,t) are given functions.
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We consider boundary conditions which are regular, but not strongly regular, that is, cases when one of the
conditions holds:

1. a1+b1:0, Co—d()?éo;
II. a1 —b1 =0, co+dy#0;
III. ¢y—dy=0, ay+b #0;
1V. co+dy =0, al—blyéO.

(91)

As shown in sections 4 — 8, the solution to the problem with the not strongly regular boundary conditions of
all the four types has been reduced to the sequential solution of two problems with the homogeneous boundary
conditions of the Sturm type with respect to the spatial variable. Herewith one of these problems has the
Dirichlet boundary conditions with respect to the spatial variable, that is, it is a classical first initial-boundary
value problem.

On the basis of this fact, using the results from Theorem 1, now we can easily formulate a theorem on
well-posedness of the general problem with the not strongly regular boundary conditions with respect to the
spatial variable.

Theorem 2. Let one of conditions (91) hold. That is, the boundary conditions (90) are regular, but not
strongly regular. If F(z,t) € C*(Q), ¢ (2), ¢ (x) € C*0,1] and the functions F(z,t), ¢ (z), ¥ (z),¢" ()
and V" (z) satisfy (4) then there exists the unique classical solution u(x,t) € Cﬁtl (Q), f(z) € C[0,1] to the
inverse problem (1), (2), (90).

Note that by this method, problem (1), (2), (90) has been solved regardless whether the corresponding
spectral problem for the operator of twofold differentiation with the not strongly regular boundary conditions
(4) has the basis property of root functions.

This research is financially supported by a grant AP05133271 and by the target program BR05236656 from
the Science Committee from the Ministry of Science and Education of the Republic of Kazakhstan.
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A.C. Dpmoran, /1. Kycmanrasunosa, 1. Opazos, M.A. Caipibekon

Beuaniek >KbLITyOTKI3TIINTIK YP/Aici KO3iHIH THIFBI3ABIFbIH OACTAITKbI
2K9He aKbIPFbI TeMIlepaTypaJjiapbl OONBIHIIIA
KaJIIILIHA KeJITipy ecebi TypaJibl

Maxkamama KyMbIcTa GOJIIITEK KBUIYOTKI3TIIMITIK TEHAEY1 YIITiH Kepi ecenTep KapaCThIPhLIFAH. YaKbIT OOii-
piama PuMan-JInyBusin MarsiHaCHIHAAFBI OOJIIIIEK PETTI TYBIHAbLIAD HalIaIaHblIAbl. Bepiiren TeHaeyain
mernriMiMeH KaTtap, TEHIEY/IiH OH, KaFbIHIaFbl 6eJIrici3 GOJIbII OTBIpFaH (DYHKIMSHBI AHBIKTAY MOCeJIeCi IIre-
miMiH TankaH. Bysr xKepjie TeHEyMiH OH YKaFbIHIAFBI Oe/rici3 MYHKINS YaKbIT afHBIMAJIBICHIHAH TOYEJICI3
Oostaibl. Bacrankpbl »KoHe aKbIPFBI TEMIIEpaTypajiapra KATBICTBI OOJIIIEK >KbIIYyOTKIBMIINTIK ypIici Ke3iHiH
TBIFBI3/IBIFBIH XKOHE TEMIIEPATYPAChIH aHBIKTay MOCEJIECIH MO/JIEJIBIEHTIH ecell 3epTTesred. Karay perysisp-
JIBI GOJIMANTHIH KEHICTIKTET1 affHbIMAJIBIIAp OONBIHINA YKAJIBI TYP/Eri MIETTIK eCcenTepre KATBICThI MoCe-
JleJiep KapacThIpblIraH. EcenTiH KacCUKaJbIK MIENMiHiH 6ap »KoHe »KaJIFbI3 00JIATBIHIBIFBI KOPCETIITEH.
Ecenke karbicThl ecesien quddepeHnmaiay onepaTopbl YIIiH MIETTIK MAPTTapbl KATAH PEryJspibl eMec
CITIEKTPAJIZIBIK, €CENTIH, MEHITIKTI (hyHKIMsTapbl 6a3nc 60IMaiThIH 60JICa /1a, eCenTiy merriMi TabbLIFaH.
Kiam ce3dep: Kepi ecem, KBUTYOTKI3TIMITIK TeH €Y, OOJIIEK KBUIYOTKI3TIMITIK, KaTaH PEryyspibl eMecC
MIETTIK MAapTTap, alfHbIMAJIbLIAPIbI AUbIPY TOCLI.

A.C. Dpmoran, /1. Kycmanrasunosa, . Opazos, M.A. Capioekon

OO0 omHOIT 3a1a1e BOCCTAHOBJIEHNUS IIJIOTHOCTH MCTOYHUKOB
mporiecca ApoOHOIT TEeIJIONPOBOHOCTH IO HAYAJILHON 1
KOHEYHOII TeMmnepaTypaM

B crarnpe paccmorpensr obpaTHbie 3a1a49n s APOOHOTO yPABHEHUST TEILIOIPOBOIHOCTH, T APOOHAT TPO-
M3BOJIHAS IO BPEMEHM IOHMMaeTcs B cMbiciie Pumana-JIuysusuis. Bmecre ¢ pemennem sroro ypaBHeHUst
HEOOXOMMO HANTH HEW3BECTHYIO MPABYI YACTh, 3ABUCSIIYI0 TOJHKO OT MPOCTPAHCTBEHHOW MEPEMEHHOIA.
Paccmorpena 3amaga, Momemmpyoias mporecc OmpeIeeHnst TEMIIEPATYPhI U IVIOTHOCTH UCTOYHUKOB B IIPO-
1ecce JPOOHOI TENJIONPOBOAHOCTH OTHOCUTEILHO 3a/IaHHBIX HAYAJIbHBIX M KOHEYHBIX TeMieparyp. Vccie-
JIOBAHBI IIPOOJIEMBI C OOIIMMHU IPAHUIHBIMU YCJIOBUSIME OTHOCUTEBHO MIPOCTPAHCTBEHHOM MEPEMEHHOIt, KO-
TOpBIE HE SIBJISIOTCS] YCUJIEHHO PEryJIsIpHBIME. /{0Ka3aHbl CyNIeCTBOBAHNE U €IMHCTBEHHOCTH KJIACCHIECKOTO
pelenust 3aa49u. 3a/1ada Peraercs: He3aBUCHMO OT TOI0, YTO COOTBETCTBYIOIIAsI CIIEKTPAIbHAs 3a,1a4a J1JIs1
omepaTropa KpaTHOro audEepeHIpOBaHUs ¢ HEYCUJIEHHO PETYASPHBIMUA TPAHUIHBIMU YCJIOBUSIMU MOYKET
HE UMEeTh CBOMCTBa GA3MCHOCTH KOPHEBBIX (DYHKITHIA.

Kmouesvie caosa: obpaTHas 3amada, ypaBHEHNE TEIJIOMPOBOIHOCTH, APOOHAS TEIJIONPOBOIHOCTD, HEYCH-
JIEHHO DeryJisipHble IDaHUYHbIE YCJIOBUS, METOJ, Pa3/esIeHus IIePEeMEHHBIX.
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