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On one problem for restoring the density of sources
of the fractional heat conductivity process with respect to

initial and final temperatures

In this paper we consider inverse problems for a fractional heat equation, where the fractional time derivative
is taken into account in Riemann–Liouville sense. For the solution of this equation, we have to find an
unknown right-hand side depending only on a spatial variable. The problem modeling the process of
determining the temperature and density of sources in the process of fractional heat conductivity with
respect to given initial and final temperatures is considered. Problems with general boundary conditions
with respect to the spatial variable that are not strongly regular are investigated. The existence and
uniqueness of classical solution to the problem are proved. The problem is considered independent from
a corresponding spectral problem for an operator of multiple differentiation with not strongly regular
boundary conditions has the basis property of root functions.

Keywords: Inverse problem, heat equation, fractional heat conductivity, not strongly regular boundary
conditions, method of separation of variables.

1 Introduction

It is well-known that problems of determining coefficients or the right-hand side of a differential equation
simultaneously with its solution are called inverse problems of mathematical physics. These problems often arise
in various areas (seismology, exploration of minerals, biology, medicine, quality control of industrial products
etc.) that place them among the current problems of modern mathematics.

In this article, we consider a class of problems which model the process of determining the temperature and
density of heat sources with respect to given initial and final temperatures. Their mathematical statement leads
to the inverse problems for a fractional heat equation in which along with solving the equation we have to find
an unknown right-hand side depending only on a spatial variable.

The questions of solvability of various inverse problems for parabolic equations were studied in many articles.
The closest to the subject of this paper is [1], in which one case of regular but not strongly regular boundary
conditions was considered. The analysis was carried out by the Fourier method using a basis of eigenfunctions
and associated functions. In contrast to this (and other) article, we study the inverse problems for the fractional
heat equation with general boundary conditions with respect to the spatial variable which are regular but not
strongly regular.

Let Ω = {(x, t) , 0 < x < 1, 0 < t < T}. In Ω we consider a problem of finding the right-hand side f(x) of
the fractional heat equation

Dα
0+ (u (x, t) − u (x, 0))− uxx (x, t) = f (x) + F (x, t) , (x, t) ∈ Ω (1)

and its solutions u (x, t) satisfying the initial and final conditions

u (x, 0) = ϕ (x) , u (x, T ) = ψ (x) , 0 ≤ x ≤ 1, (2)

and the boundary conditions a1ux (0, t) + b1ux (1, t) + a0u (0, t) + b0u (1, t) = 0;

c1ux (0, t) + d1ux (1, t) + c0u (0, t) + d0u (1, t) = 0.
(3)
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The coefficients ak, bk, ck, dk with k = 0, 1 in (3) are real numbers, Dα
0+ stands for the Riemann-Liouville

fractional derivative of order 0 < α < 1:

Dα
0+y (t) =

1

Γ(1− α)

d

dt

∫ t

0

y(s)ds

(t− s)α
,

while ϕ (x), ψ (x) and F (x, t) are given functions.
Definition. By a regular solution of the inverse problem (1)–(3) we mean a pair of functions (u(x, t), f(x))

of the class u(x, t) ∈ C2,1
x,t

(
Ω
)
, f(x) ∈ C[0, 1] that inverts equation (1) and conditions (2)–(3) into an identity.

The use of the Fourier method for solving problem (1)–(3) leads to the spectral problem for the operator `
given by the differential expression ` (y) = −y′′ (x) , 0 < x < 1 and boundary conditions a1y

′ (0) + b1y
′ (1) + a0y (0) + b0y (1) = 0;

c1y
′ (0) + d1y

′ (1) + c0y (0) + d0y (1) = 0.
(4)

These boundary conditions are called regular [2] if one of the following three conditions

i. a1d1 − b1c1 6= 0;

ii. a1d1 − b1c1 = 0, |a1|+ |b1| > 0, a1d0 + b1c0 6= 0;

iii. a1 = b1 = c1 = d1 = 0, a0d0 − b0c0 6= 0

(5)

is satisfied. Regular boundary conditions are strongly regular in the first and third cases, while in the second
case this requires the additional condition

a1c0 + b1d0 6= ± [a1d0 + b1c0] . (6)

Particular cases of (1)–(3) were considered in [1] with boundary conditions (3) which are not strongly regular:
the case of conditions of Samarskii–Ionkin type

u (1, t) = 0, ux (0, t) = ux (1, t)

and the case of periodic boundary conditions

u (0, t) = u (1, t) , ux (0, t) = ux (1, t) .

However, the method of proof of [1] does not automatically carry over to problems with arbitrary not strongly
regular boundary conditions (3). This has essentially to do with the use in [1] of a basis of eigenfunctions
and generalized eigenfunctions of the corresponding problem (4) for the operator of multiple differentiation.
Unfortunately, not all problems of this type have the basis property. Therefore, in order to study the formulated
problem, regardless of the basis properties of the system of root vectors of the operator `, we use the method first
substantiated in our work [3]. In [3] a class of problems modeling the process of determining the temperature
and density of heat sources with respect to given initial and final temperature is considered. To solve direct
heat conductivity problems with general not strongly regular boundary conditions with respect to the spatial
variable, this method is described in detail in [4].

The solvability of various inverse problems for parabolic equations was studied in papers of Yu.E. Anikonov
and Yu.Ya. Belov, B.A. Bubnov, A.I. Prilepko and A.B. Kostin, V.N. Monakhov, A.I. Kozhanov, I.A. Kaliev,
K.B. Sabitov and many others.

These citations can be seen in our papers [3] and [5]. We note [6–28] as recent papers close to the theme of our
article. In these papers different variants of direct and inverse initial-boundary value problems for evolutionary
equations are considered, including problems with nonlocal boundary conditions and problems for equations
with fractional derivatives.

We solve the problem by the Fourier method. Some new variants for solving nonlocal boundary value
problems by the method of separation of variables were used in our papers [29–35].
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2 Case of Sturm-type boundary conditions

A particular case of strongly regular boundary conditions are Sturm-type conditions: b0 = b1 = c0 = c1 = 0: a1ux (0, t) + a0u (0, t) = 0;

d1ux (1, t) + d0u (1, t) = 0.
(7)

By `1 let us denote a corresponding ordinary differential operator arising when applying the method of separation
of variables to problem (1), (2), (7). Spectral problem `1y = λy has the form

`1 (y) ≡ −y′′ (x) = λy (x) , 0 < x < 1;

a1y (0) + a0y (0) = 0, d1y (1) + d0y (1) = 0.
(8)

Denote by λk the eigenvalues of the operator `1 enumerated in the increasing order of their absolute values,
and by yk (x), for k = 1, 2, . . . , denote corresponding normalized eigenfunctions. It is known [2] that the
eigenvalues of these problems are real and simple, while the system of their eigenfunctions forms an orthonormal
basis in L2(0, 1). Thus, we can represent the solution u (x, t), f (x) to (1), (2), (7) as the series:

u (x, t) =

∞∑
k=1

uk (t) yk (x) , f (x) =

∞∑
k=1

fkyk (x). (9)

Substituting (9) into (1) and (2), we obtain the problems

Dα
0+ (uk (t)− uk (0)) + λkuk (t) = fk + Fk(t), uk (0) = ϕk, uk (T ) = ψk (10)

for finding the unknown functions uk (t) and coefficients fk. Here Fk(t), ϕk and ψk are the Fourier coefficients
of F (x, t), ϕ and ψ with respect to the system {yk (x)}. Then we get

Fk(t) = (F (x, t) , yk (x)) , ϕk = (ϕ (x) , yk (x)) , and ψk = (ψ (x) , yk (x)) .

The inverse problem (10) is investigated similarly, as in [1]. A solution to (10) exists, is unique, and can be
written explicitly. Without dwelling on the details, we write out its solution:

uk =
ψk − Uk(T )− ϕkeα (T, λk)

γk

∫ t

0

(t− τ)
α−1

eα(τ, λk)dτ + ϕkeα (t, λk) + Uk(t), (11)

fk = Γ (1 + α)
ψk − Uk(T )− ϕkeα (T, λk)

αγk
, (12)

where Uk(t) is a solution of problem

Dα
0+ (Uk (t)− Uk (0)) + λkUk (t) = Fk(t), Uk (0) = 0.

In (11) and (12) function eα (τ, µ) is expressed by the function of Mittag–Leffler:

eα (τ, µ) := Eα (−µτα) , Eα (z) =

∞∑
k=0

zk

Γ (1 + αk)
, α ∈ [0,+∞) ,

γk =

∫ T

0

(T − τ)
α−1

eα(τ, λk)dτ. (13)

The Mittag–Leffler function eα(τ, µ) for µ > 0 and 0 < α ≤ 1 is absolutely monotone function with respect to
τ (see [36; 268]). Since eα (0, λk) = 1, then from (13) it is easy to see that there exists a constant γ̂ > 0 such
that

γk ≥ γ̂ > 0, ∀ k = 1, 2, . . . . (14)

Inserting (11) and (12) into (9), we arrive at a formal solution to the problem. In order to complete our
study, it is necessary, as in the Fourier method, to justify the smoothness of the resulting formal solutions and
the convergence of all appearing series. Let us state the main result of this section.
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Theorem 1. If F (x, t) ∈ C2
(
Ω
)
, ϕ (x) , ψ (x) ∈ C4[0, 1] and functions F (x, t), ϕ (x), ψ (x), ϕ′′ (x) and

ψ′′ (x) satisfy (7), then there exists a unique classical solution u(x, t) ∈ C2,1
x,t

(
Ω
)
, f(x) ∈ C[0, 1] to the inverse

problem (1), (2), (7).
Proof. Since ϕ′′ (x) , ψ′′ (x) ∈ C2[0, 1] and satisfy (7), by Steklov’s theorem [37; 41] they admit expansions

into absolutely and uniformly converging Fourier series in the eigenfunctions {yk (x)}.
Thus, the series

ϕ′′ (x) = −
∞∑
k=1

λkϕkyk (x), ψ′′ (x) = −
∞∑
k=1

λkψkyk (x) (15)

converges absolutely and uniformly.
From (11), (12), taking into account (14), since

lim
k→∞

λk = +∞, |eα(T, λk)| ≤M1, |eα(t, λk)| ≤M2,

it is easy to get uniform estimates with respect to k

|uk (t)| ≤ C (|ϕk|+ |ψk|+ |Uk(t)|) ;∣∣Dα
0+uk (t)

∣∣ ≤ C (|ϕk|+ |ψk|+ |Uk(t)|) |λk| ;

|fk| ≤ C (|ϕk|+ |ψk|+ |Uk(T )|) .

Hence, from the uniform and absolute convergence of series (15) there follow the convergence of series (9) and
the belonging of the solution of (1), (2), (7) to the classes u(x, t) ∈ C2,1

x,t

(
Ω
)
, f(x) ∈ C[0, 1].

Let us prove the uniqueness of the solution. Suppose that there are two generalized solutions of the inverse
problem (1), (2), (7): (u1(x, t), f1(x)) and (u2(x, t), f2(x)). Denote

u (x, t) = u1 (x, t)− u2 (x, t) , f (x) = f1 (x)− f2 (x) .

Then the functions (u(x, t), f(x)) satisfy equation (1), the boundary conditions (7) and the homogeneous
conditions (2):

u (x, 0) = 0, u (x, T ) = 0, 0 ≤ x ≤ 1. (16)

Let us show that the inverse problem (1), (7), (16) has only zero solution. Let us introduce notations

uk (t) =

∫ 1

0

u (x, t)yk (x) dx, fk =

∫ 1

0

f (x)yk (x) dx, (k = 1, 2, . . . ) . (17)

We apply the operator Dα
0+ to uk (t). Then, using equation (1), by integrating by parts, we obtain a problem

given by
the equation

Dα
0+uk (t) + λkuk (t) = fk, (18)

and the boundary conditions
uk (0) = 0, uk (T ) = 0. (19)

General solution of equation (18) has the form (see [1], Eq. (25)):

uk (t) =
fkα

Γ(1 + α)

∫ t

0

(t− τ)
α−1

eα(τ, λk)dτ + uk (0) eα (t, λk) .

Using the first of conditions (19), from here we have

uk (t) =
fkα

Γ(1 + α)

∫ t

0

(t− τ)
α−1

eα(τ, λk)dτ. (20)

Substituting this into the second condition of (19), we get

fkα

Γ(1 + α)

∫ T

0

(T − τ)
α−1

eα(τ, λk)dτ = 0. (21)
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Since for µ > 0 and 0 < α ≤ 1 the function eα(τ, µ) is absolutely monotone with respect to τ [36] and since
eα (0, λk) = 1, then the integral in (21) is a strictly positive value. Consequently equation (21) holds if and
only if fk = 0. But then from (20) we get uk (t) ≡ 0.

Therefore, using this result, from (17) we find∫ 1

0

u (x, t)yk (x) dx ≡ 0,

∫ 1

0

f (x)yk (x) dx = 0, (k = 1, 2, . . . ) .

Further, by the completeness of system {yk (x)} in L2 (0, 1) we obtain u (x, t) ≡ 0 and f (x) ≡ 0 for all (x, t) ∈ Ω.
The uniqueness of the generalized solution of the inverse problem (1), (2), (7) is proved. Theorem 1 is completely
proved.

3 Regular, but not strongly regular boundary conditions

In [3] a class of regular but not strongly regular boundary conditions was described in a convenient form.
Lemma 1 [3]. If the boundary conditions (4) are regular but not strongly regular then the boundary conditions

(3) reduce to  a1ux (0, t) + b1ux (1, t) + a0u (0, t) + b0u (1, t) = 0;

c0u (0, t) + d0u (1, t) = 0,
|a1|+ |b1| > 0; (22)

of one of the following four types:

I. a1 + b1 = 0, c0 − d0 6= 0;
II. a1 − b1 = 0, c0 + d0 6= 0;
III. c0 + d0 = 0, a1 − b1 6= 0;
IV. c0 − d0 = 0, a1 + b1 6= 0.

(23)

Also in [4] the following result was proved.
Lemma 2 [4]. We can always equivalently reduce the solution of the problem (1)–(3) in the case of regular

but not strongly regular conditions to solve successively two problems with strongly regular Sturm boundary
conditions.

Using Lemma 2, we can obtain the existence of the solution of (1)–(3), as well as its uniqueness and
smoothness, from Theorem 1 for the corresponding problems with strongly regular Sturm-type boundary
conditions. In the next four sections, we will outline this method in more detail.

The method of solution, consisting in reducing the initial problem to a sequential solution of two initial-
boundary value problems with homogeneous boundary conditions of the Sturm type with respect to a spatial
variable, will be formulated separately for each of types mentioned in Lemma 1.

4 Reduction of the problem of type I to a sequential solution of two problems
with homogeneous boundary conditions of the Sturm type

Consider a problem of type I. Since a1 + b1 = 0, and herewith |a1|+ |b1| > 0, then without loss of generality we
can assume a1 = −b1 = 1. Since c0 − d0 6= 0, then without loss of generality we can assume c0 − d0 = −1. To
simplify writing (omitting additional indexes) we denote c0 = c. Then d0 = 1 + c.

Therefore the problem of type I can be formulated in the form:
In Ω = {(x, t) : 0 < x < 1, 0 < t < T} find a solution u (x, t) of the fractional heat equation (1) satisfying

the initial condition (2) and boundary conditions of type I: ux (0, t)− ux (1, t) + au (0, t) + bu (1, t) = 0,

cu (0, t) + (1 + c)u (1, t) = 0.
(24)

Here the coefficients a, b, c of the boundary condition are arbitrary complex numbers.
To solve the problem we introduce the auxiliary functions:

v (x, t) = [u (x, t) + u (1− x, t)] /2, (25)

w (x, t) = u (x, t)− [1− (1 + 2c) (2x− 1)] v (x, t) . (26)
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Note that if the solution has been searched in the form of the sum of even and odd parts
u (x, t) = C (x, t) + S (x, t) in the initial version of the method (see [3]), then now in a variant suggested by us:

– the function v (x, t) is even on the interval 0 < x < 1, and is the even part of the function u (x, t);
– and the function w (x, t) is not the odd part of the function u (x, t), though it is the odd function.
The last follows from the fact that w (x, t) can be represented in the form

w (x, t) =
1

2
[u (x, t)− u (1− x, t)] + (1 + 2c) (2x− 1) v (x, t) , (27)

that is, in the form of the sum of the odd part 1
2 [u (x, t)− u (1− x, t)] of the function u (x, t) and of the summand

(1 + 2c) (2x− 1) v (x, t), which (it is easy to verify) is also the odd function on the whole interval 0 < x < 1.
From (26) it is easy to see that if we find the functions v (x, t) and w (x, t), then the solution of the initial

problem can be reestablished by the formula

u (x, t) = w (x, t) + [1− (1 + 2c) (2x− 1)] v (x, t) . (28)

Thus, if in the previous variant the solution is represented in the form of the sum of even and odd parts of
the solution, then in the new variant suggested by us it is not quite so. In representation (28) the first summand
is even on the interval 0 < x < 1, and the second summand is neither even, nor odd for 1 + 2c 6= 0.

It is easy to make sure that the functions v (x, t) and w (x, t) are solutions of the fractional heat equations,
satisfy the initial and homogeneous boundary conditions in Ω.

For the function v (x, t) we obtain the initial-boundary value problem which we need to solve first:

Dα
0+ (v (x, t) − v (x, 0))− vxx (x, t) = f0 (x) ; (29)

v (x, 0) = ϕ0 (x) , v (x, T ) = ψ0 (x) 0 ≤ x ≤ 1; (30)

vx (0, t) + [a (1 + c)− bc] v (0, t) = 0, 0 ≤ t ≤ T ; (31)

vx (1, t)− [a (1 + c)− bc] v (1, t) = 0, 0 ≤ t ≤ T. (32)

Here we use the notations

f0 (x) = 1
2 [f (x) + f (1− x)] ,

ϕ0 (x) = 1
2 [ϕ (x) + ϕ (1− x)] , ψ0 (x) = 1

2 [ψ (x) + ψ (1− x)] .
(33)

Having the solution v (x, t) of this problem, for the function w (x, t) we get the initial-boundary value
problem which we need to solve second:

Dα
0+ (w (x, t) − w (x, 0))− wxx (x, t) = f1(x) + F1(x, t); (34)

w (x, 0) = ϕ1 (x) , w (x, T ) = ψ1 (x) , 0 ≤ x ≤ 1; (35)

w (0, t) = 0, 0 ≤ t ≤ T ; (36)

w (1, t) = 0, 0 ≤ t ≤ T. (37)

Here we use the notations

f1 (x) = f (x)− [1− (1 + 2c) (2x− 1)] f0 (x) , F1(x, t) = −4 (1 + 2c) vx(x, t); (38)

ϕ1 (x) = ϕ (x)− [1− (1 + 2c) (2x− 1)]ϕ0 (x) ;

ψ1 (x) = ψ (x)− [1− (1 + 2c) (2x− 1)]ψ0 (x) .
(39)

By direct checking from (33) and (39) it is easy to make sure that if the initial and final data ϕ (x) and
ψ (x) of problem (1), (2), (24) satisfy necessary (classical and well-known) consistency conditions, then the
initial and final data ϕ0 (x), ϕ1 (x) and ψ0 (x), ψ1 (x) also satisfy the necessary consistency conditions of their
corresponding problems.

Thus the solution of the problem of type I (1), (2), (24) is reduced to the sequential solution of two problems
with homogeneous boundary conditions of the Sturm type with respect to the spatial variable:
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– At first for the function v (x, t) we solve the initial-boundary value problem (29)–(32) with the homogeneous
boundary conditions of the Sturm type with respect to the spatial variable;

– Then, using the obtained value v (x, t), for the function w (x, t) we solve the initial-boundary value problem
(34)–(37) with the homogeneous boundary conditions of the Sturm type (in this particular case they are the
Dirichlet conditions) with respect to the spatial variable.

Therefore the main result on the existence and uniqueness of the solution of the problem of type I (1), (2),
(24) in classical and generalized senses follows from Theorem 1 on corresponding solvability of boundary value
problems with conditions of the Sturm type. We will formulate this main result at once for all the four types of
not strongly regular boundary conditions at the end of the paper.

5 Reduction of the problem of type II to a sequential solution of two problems
with homogeneous boundary conditions of the Sturm type

Consider a problem of type II. Since a1 − b1 = 0, and herewith |a1| + |b1| > 0, then without loss of generality
we can assume a1 = b1 = 1. Since c0 + d0 6= 0, then without loss of generality we can assume c0 + d0 = 1. To
simplify writing (omitting additional indexes) we denote c0 = c. Then d0 = 1− c.

Therefore the problem of type I can be formulated in the form:
In Ω = {(x, t) : 0 < x < 1, 0 < t < T} find a solution u (x, t) of the fractional heat equation (1) satisfying

the initial condition (2) and boundary conditions of type II: ux (0, t) + ux (1, t) + au (0, t) + bu (1, t) = 0;

cu (0, t) + (1− c)u (1, t) = 0.
(40)

Here the coefficients a, b, c of the boundary condition are arbitrary complex numbers.
We introduce the auxiliary functions:

v (x, t) =
1

2
[u (x, t)− u (1− x, t)] , (41)

w (x, t) = u (x, t)− [1− (1− 2c) (2x− 1)] v (x, t) . (42)

Note that if the solution has been searched in the form of the sum of even and odd parts
u (x, t) = C (x, t) + S (x, t) in the initial version of the method (see [3]), then in a new variant suggested by us:

– the function v (x, t) is odd on the interval 0 < x < 1, and is the odd part of the function u (x, t);
– and the function w (x, t) is not the even part of the function u (x, t), though it is the even function.
The last follows from the fact that w (x, t) can be represented in the form

w (x, t) =
1

2
[u (x, t) + u (1− x, t)] + (1− 2c) (2x− 1) v (x, t) , (43)

that is, in the form of the sum of the even part 1
2 [u (x, t)− u (1− x, t)] of the function u (x, t) and the summand

(1− 2c) (2x− 1) v (x, t), which (it is easy to verify) is also the even function on the interval 0 < x < 1.
From (42) it is easy to find the functions v (x, t) and w (x, t), then the solution of the initial problem can

be reestablished by the formula

u (x, t) = w (x, t) + [1− (1− 2c) (2x− 1)] v (x, t) . (44)

Thus if in the previous variant of the method the solution is represented in the form of the sum of the even
and odd parts of the solution, then in the new variant suggested by us it is not quite so. In representation (44)
the first summand is even on the interval 0 < x < 1, and the second summand is neither even, nor odd for
1− 2c 6= 0.

For the function v (x, t) we obtain the initial-boundary value problem which we need to solve first:

Dα
0+ (v (x, t) − v (x, 0))− vxx (x, t) = f0 (x) , (45)

v (x, 0) = ϕ0 (x) , v (x, T ) = ψ0 (x) 0 ≤ x ≤ 1, (46)

vx (0, t) + [a (1− c)− bc] v (0, t) = 0, 0 ≤ t ≤ T, (47)

vx (1, t)− [a (1− c)− bc] v (1, t) = 0, 0 ≤ t ≤ T. (48)
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Here we use the notations

f0 (x) = 1
2 [f (x)− f (1− x)] ,

ϕ0 (x) = 1
2 [ϕ (x)− ϕ (1− x)] , ψ0 (x) = 1

2 [ψ (x)− ψ (1− x)] .
(49)

Having the solution v (x, t) of this problem, for the function w (x, t) we get the initial-boundary value
problem which we need to solve second:

Dα
0+ (w (x, t) − w (x, 0))− wxx (x, t) = f1(x) + F1(x, t), (50)

w (x, 0) = ϕ1 (x) , w (x, T ) = ψ1 (x) , 0 ≤ x ≤ 1, (51)

w (0, t) = 0, 0 ≤ t ≤ T, (52)

w (1, t) = 0, 0 ≤ t ≤ T. (53)

Here we use the notations

f1 (x) = f (x)− [1− (1− 2c) (2x− 1)] f0 (x) , F1(x, t) = −4 (1− 2c) vx(x, t), (54)

ϕ1 (x) = ϕ (x)− [1− (1− 2c) (2x− 1)]ϕ0 (x)

ψ1 (x) = ψ (x)− [1− (1− 2c) (2x− 1)]ψ0 (x) .
(55)

By direct checking from (49) and (55) it is easy to make sure that if the initial and final data ϕ (x) and
ψ (x) of problem (1), (2), (40) satisfy necessary (classical and well-known) consistency conditions, then the
initial and final data ϕ0 (x), ϕ1 (x) and ψ0 (x), ψ1 (x) also satisfy the necessary consistency conditions of their
corresponding problems.

Thus the solution of the problem of type II (1), (2), (40) is reduced to the sequential solution of two problems
with homogeneous boundary conditions of the Sturm type with respect to the spatial variable:

– At first for the function v (x, t) we solve the initial-boundary value problem (45)–(48) with the homogeneous
boundary conditions of the Sturm type (in this case they are the Dirichlet conditions) with respect to the spatial
variable;

– Then, using the obtained value v (x, t), for the function w (x, t) we solve the initial-boundary value problem
(50)–(53) with the homogeneous boundary conditions of the Sturm type (in this case with conditions of the
Dirichlet problem) with respect to the spatial variable.

Therefore the main result on the existence and uniqueness of the solution of the problem of type II (1), (2),
(40) in classical and generalized senses follows from Theorem 1 on corresponding solvability of boundary value
problems with conditions of the Sturm type. We will formulate this main result at once for all the four types of
not strongly regular boundary conditions at the end of the paper.

6 Reduction of the problem of type III to a sequential solution of two problems
with homogeneous boundary conditions of the Sturm type

Consider a problem of type III. Since c0 + d0 = 0, and herewith |c0|+ |d0| > 0, then without loss of generality
we can assume c0 = −d0 = 1. Since a1 − b1 6= 0, then without loss of generality we can assume a1 − b1 = −1.
To simplify writing (omitting additional indexes) we denote a1 = c. Then b1 = 1 + c.

Therefore the problem of type III can be formulated in the form:
In Ω = {(x, t) : 0 < x < 1, 0 < t < T} find a solution u (x, t) of the fractional heat equation (1) satisfying

the initial condition (2) and the boundary condition of type III: cux (0, t) + (1 + c)ux (1, t) + au (0, t) = 0;

u (0, t)− u (1, t) = 0.
(56)

Here the coefficients a, b, c of the boundary condition are arbitrary complex numbers.
We introduce the auxiliary functions:

v (x, t) =
1

2
[u (x, t)− u (1− x, t)] ; (57)

w (x, t) = u (x, t)− [1− (1 + 2c) (2x− 1)] v (x, t) . (58)
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Note that if the solution has been searched in the form of a sum of even and odd parts u (x, t) =
= C (x, t) + S (x, t) in the initial version of the method (see [3]), then in a variant suggested by us:

– the function v (x, t) is odd on the interval 0 < x < 1, and is the odd part of the function u (x, t);
– and the function w (x, t) is not the even part of the function u (x, t), though it is the even function.
The last follows from the fact that w (x, t) can be represented in the form

w (x, t) =
1

2
[u (x, t) + u (1− x, t)] + (1 + 2c) (2x− 1) v (x, t) , (59)

that is, in the form of the sum of the even part 1
2 [u (x, t) + u (1− x, t)] of the function u (x, t) and the summand

(1 + 2c) (2x− 1) v (x, t), which (it is easy to verify) is also the even function on the interval 0 < x < 1.
From (58) it is easy to see that if we find the functions v (x, t) and w (x, t), then the solution of the initial

problem can be reestablished by the formula

u (x, t) = w (x, t) + [1− (1 + 2c) (2x− 1)] v (x, t) . (60)

Thus if in the previous variant of the method the solution is represented in the form of the sum of the even
and odd parts of the solution, then in the new variant suggested by us it is not quite so. In representation (60)
the first summand is even on the interval 0 < x < 1, and the second summand is neither even, nor odd for
(1 + 2c) 6= 0.

For the function v (x, t) we obtain the initial-boundary value problem which we need to solve first:

Dα
0+ (v (x, t) − v (x, 0))− vxx (x, t) = f0 (x) ; (61)

v (x, 0) = ϕ0 (x) , v (x, T ) = ψ0 (x) 0 ≤ x ≤ 1; (62)

v (0, t) = 0, 0 ≤ t ≤ T ; (63)

v (1, t) = 0, 0 ≤ t ≤ T. (64)

Here we use the notations

f0 (x) = 1
2 [f (x)− f (1− x)] ;

ϕ0 (x) = 1
2 [ϕ (x)− ϕ (1− x)] , ψ0 (x) = 1

2 [ψ (x)− ψ (1− x)] .
(65)

Having the solution v (x, t) of this problem, for the function w (x, t) we get the initial-boundary value
problem which we need to solve second:

Dα
0+ (w (x, t) − w (x, 0))− wxx (x, t) = f1(x) + F1(x, t); (66)

w (x, 0) = ϕ1 (x) , w (x, T ) = ψ1 (x) , 0 ≤ x ≤ 1; (67)

wx (0, t)− aw (0, t) = 0, 0 ≤ t ≤ T ; (68)

wx (1, t) + aw (1, t) = 0, 0 ≤ t ≤ T. (69)

Here we use the notations

f1 (x) = f (x)− [1− (1 + 2c) (2x− 1)] f0 (x) , F1(x, t) = −4(1 + 2c)vx(x, t); (70)

ϕ1 (x) = ϕ (x)− [1− (1 + 2c) (2x− 1)]ϕ0 (x) ;

ψ1 (x) = ψ (x)− [1− (1 + 2c) (2x− 1)]ψ0 (x) .
(71)

By direct checking from (65) and (71) it is easy to make sure that if the initial and final data ϕ (x) and
ψ (x) of problem (1), (2), (56) satisfy necessary (classical and well-known) consistency conditions, then the
initial and final data ϕ0 (x), ϕ1 (x) and ψ0 (x), ψ1 (x) also satisfy the necessary consistency conditions of their
corresponding problems.

Thus the solution of the problem of type III (1), (2), (56) is reduced to the sequential solution of two
problems with homogeneous boundary conditions of the Sturm type with respect to the spatial variable:
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– At first for the function v (x, t) we solve the initial-boundary value problem (61)–(94) with the homogeneous
boundary conditions of the Sturm type (in this case with conditions of the Dirichlet problem) with respect to
the spatial variable;

– Then, using the obtained value v (x, t), for the function w (x, t) we solve the initial-boundary value problem
(66)–(69) with the homogeneous boundary conditions of the Sturm type with respect to the spatial variable.

Therefore the main result on the existence and uniqueness of the solution of the problem of type III (1), (2),
(56) in classical and generalized senses follows from the Theorem 1 on corresponding solvability of boundary
value problems with conditions of the Sturm type. We will formulate this main result at once for all the four
types of not strongly regular conditions at the end of the paper.

7 Reduction of the problem of type IV to a sequential solution of two problems
with homogeneous boundary conditions of the Sturm type

Consider a problem of type IV. Since c0 − d0 = 0, and herewith |c0|+ |d0| > 0, then without loss of generality
we can assume c0 = d0 = 1. Since a1 + b1 6= 0, then without loss of generality we can assume a1 + b1 = 1. To
simplify writing (omitting additional indexes) we denote a1 = c. Then b1 = 1− c.

Therefore the problem of type IV can be formulated in the form:
InΩ = {(x, t) , 0 < x < 1, 0 < t < T} find a solution u (x, t) of the fractional heat equation (1) satisfying the

initial condition (2) and the boundary conditions of type IV: cux (0, t) + (1− c)ux (1, t) + au (0, t) = 0;

u (0, t) + u (1, t) = 0.
(72)

Here the coefficients a, b, c of the boundary condition are arbitrary complex numbers.
We introduce the auxiliary functions:

v (x, t) =
1

2
[u (x, t) + u (1− x, t)] ; (73)

w (x, t) = u (x, t)− [1− (1− 2c) (2x− 1)] v (x, t) . (74)

Note that if the solution has been searched in the form of the sum of the even and odd parts
u (x, t) = C (x, t) + S (x, t) in the initial version of the method (see [3]), then in the variant suggested by us:

– the function v (x, t) is even on the interval 0 < x < 1, and is the even part of the function u (x, t);
– and the function w (x, t) is not the odd part of the function u (x, t), though it is the odd function.
The last follows from the fact that w (x, t) can be represented in the form

w (x, t) =
1

2
[u (x, t)− u (1− x, t)] + (1− 2c) (2x− 1) v (x, t) , (75)

that is, in the form of the sum of the odd part 1
2 [u (x, t)− u (1− x, t)] of the function u (x, t) and the summand

(1− 2c) (2x− 1) v (x, t), which (it is easy to verify) is also the odd function on the interval 0 < x < 1.
From (74) it is easy to see that if we find the functions v (x, t) and w (x, t), then the solution of the initial

problem can be reestablished by the formula

u (x, t) = w (x, t) + [1− (1− 2c) (2x− 1)] v (x, t) . (76)

Thus if in the previous variant of the method the solution is represented in the form of the sum of the even
and odd parts of the solution, then in the new variant suggested by us it is not quite so. In representation (76)
the first summand is odd on the interval 0 < x < 1, and the second summand is neither even, nor odd for
(1− 2c) 6= 0.

For the function v (x, t) we obtain the initial-boundary value problem which we need to solve first:

Dα
0+ (v (x, t) − v (x, 0))− vxx (x, t) = f0 (x) ; (77)

v (x, 0) = ϕ0 (x) , v (x, T ) = ψ0 (x) 0 ≤ x ≤ 1; (78)

v (0, t) = 0, 0 ≤ t ≤ T, (79)

v (1, t) = 0, 0 ≤ t ≤ T. (80)
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Here we use the notations

f0 (x) = 1
2 [f (x) + f (1− x)] ,

ϕ0 (x) = 1
2 [ϕ (x) + ϕ (1− x)] , ψ0 (x) = 1

2 [ψ (x) + ψ (1− x)] .
(81)

Having the solution v (x, t) of this problem, for the function w (x, t) we get the initial-boundary value
problem which we need to solve second:

Dα
0+ (w (x, t) − w (x, 0))− wxx (x, t) = f1(x) + F1(x, t); (82)

w (x, 0) = ϕ1 (x) , w (x, T ) = ψ1 (x) , 0 ≤ x ≤ 1; (83)

wx (0, t) + aw (0, t) = 0, 0 ≤ t ≤ T ; (84)

wx (1, t)− aw (1, t) = 0, 0 ≤ t ≤ T. (85)

Here we use the notations

f1 (x) = f (x)− [1− (1− 2c) (2x− 1)] f0 (x) , F1(x, t) = −4(1− 2c)vx(x, t); (86)

ϕ1 (x) = ϕ (x)− [1− (1− 2c) (2x− 1)]ϕ0 (x) ;

ψ1 (x) = ψ (x)− [1− (1− 2c) (2x− 1)]ψ0 (x) .
(87)

By direct checking from (81) and (87) it is easy to make sure that if the initial and final data ϕ (x) and
ψ (x) of problem (1), (2), (72) satisfy necessary (classical and well-known) consistency conditions, then the
initial and final data ϕ0 (x), ϕ1 (x) and ψ0 (x), ψ1 (x) also satisfy the necessary consistency conditions of their
corresponding problems.

Thus the solution of the problem of type IV (1), (2), (72) is reduced to the sequential solution of two
problems with homogeneous boundary conditions of the Sturm type with respect to the spatial variable:

– At first for the function v (x, t) we solve the initial-boundary value problem (77)–(80) with the homogeneous
boundary conditions of the Sturm type (in this case with boundary conditions of Dirichlet) with respect to the
spatial variable;

– Then using the obtained value v (x, t), for the function w (x, t) we solve the initial-boundary value problem
(82)–(85) with the homogeneous boundary conditions of the Sturm type with respect to the spatial variable.

Therefore the main result on the existence and uniqueness of the solution of the problem of type IV (1), (2),
(72) in classical and generalized senses follows from the Theorem 1 on corresponding solvability of boundary
value problems with conditions of the Sturm type. We will formulate this result as well as the results of sections
4, 5 and 6 at once for all the four types of not strongly regular boundary conditions in the next section.

8 Formulation of the main result on solvability of the fractional heat equation
with not strongly regular boundary conditions

For completeness of exposition we once again formulate the problem under consideration:
In Ω = {(x, t) , 0 < x < 1, 0 < t < T} find a right-hand side f(x) of the fractional heat equation

Dα
0+ (u (x, t) − u (x, 0))− uxx (x, t) = f (x) + F (x, t) , (88)

and its solutions u (x, t) satisfying the initial and final conditions

u (x, 0) = ϕ (x) , u (x, T ) = ψ (x) , 0 ≤ x ≤ 1, (89)

and not strongly regular boundary conditions of the general form a1ux (0, t) + b1ux (1, t) + a0u (0, t) + b0u (1, t) = 0;

c0u (0, t) + d0u (1, t) = 0.
(90)

The coefficients ak, bk, ck, dk (k = 0, 1) of the boundary condition (90) are arbitrary real numbers, and
ϕ (x), ψ (x) and F (x, t) are given functions.
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We consider boundary conditions which are regular, but not strongly regular, that is, cases when one of the
conditions holds:

I. a1 + b1 = 0, c0 − d0 6= 0;
II. a1 − b1 = 0, c0 + d0 6= 0;
III. c0 − d0 = 0, a1 + b1 6= 0;
IV. c0 + d0 = 0, a1 − b1 6= 0.

(91)

As shown in sections 4 – 8, the solution to the problem with the not strongly regular boundary conditions of
all the four types has been reduced to the sequential solution of two problems with the homogeneous boundary
conditions of the Sturm type with respect to the spatial variable. Herewith one of these problems has the
Dirichlet boundary conditions with respect to the spatial variable, that is, it is a classical first initial-boundary
value problem.

On the basis of this fact, using the results from Theorem 1, now we can easily formulate a theorem on
well-posedness of the general problem with the not strongly regular boundary conditions with respect to the
spatial variable.

Theorem 2. Let one of conditions (91) hold. That is, the boundary conditions (90) are regular, but not
strongly regular. If F (x, t) ∈ C2

(
Ω
)
, ϕ (x) , ψ (x) ∈ C4[0, 1] and the functions F (x, t), ϕ (x) , ψ (x) , ϕ′′ (x)

and ψ′′ (x) satisfy (4) then there exists the unique classical solution u(x, t) ∈ C2,1
x,t

(
Ω
)
, f(x) ∈ C[0, 1] to the

inverse problem (1), (2), (90).
Note that by this method, problem (1), (2), (90) has been solved regardless whether the corresponding

spectral problem for the operator of twofold differentiation with the not strongly regular boundary conditions
(4) has the basis property of root functions.
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А.С. Эрдоган, Д. Кусмангазинова, И. Оразов, M.A. Садыбеков

Бөлшек жылуөткiзгiштiк үрдiсi көзiнiң тығыздығын бастапқы
және ақырғы температуралары бойынша

қалпына келтiру есебi туралы

Мақалада жұмыста бөлшек жылуөткiзгiштiк теңдеуi үшiн керi есептер қарастырылған. Уақыт бой-
ынша Риман-Лиувилл мағынасындағы бөлшек реттi туындылар пайдаланылды. Берiлген теңдеудiң
шешiмiмен қатар, теңдеудiң оң жағындағы белгiсiз болып отырған функцияны анықтау мәселесi ше-
шiмiн тапқан. Бұл жерде теңдеудiң оң жағындағы белгiсiз функция уақыт айнымалысынан тәуелсiз
болады. Бастапқы және ақырғы температураларға қатысты бөлшек жылуөткiзгiштiк үрдiсi көзiнiң
тығыздығын және температурасын анықтау мәселесiн модельдейтiн есеп зерттелген. Қатаң регуляр-
лы болмайтын кеңiстiктегi айнымалылар бойынша жалпы түрдегi шеттiк есептерге қатысты мәсе-
лелер қарастырылған. Есептiң классикалық шешiмiнiң бар және жалғыз болатындығы көрсетiлген.
Есепке қатысты еселеп дифференциалдау операторы үшiн шеттiк шарттары қатаң регулярлы емес
спектралдық есептiң меншiктi функциялары базис болмайтын болса да, есептiң шешiмi табылған.
Кiлт сөздер: керi есеп, жылуөткiзгiштiк теңдеуi, бөлшек жылуөткiзгiштiк, қатаң регулярлы емес
шеттiк шарттар, айнымалыларды айыру тәсiлi.

А.С. Эрдоган, Д. Кусмангазинова, И. Оразов, M.A. Садыбеков

Об одной задаче восстановления плотности источников
процесса дробной теплопроводности по начальной и

конечной температурам

В статье рассмотрены обратные задачи для дробного уравнения теплопроводности, где дробная про-
изводная по времени понимается в смысле Римана-Лиувилля. Вместе с решением этого уравнения
необходимо найти неизвестную правую часть, зависящую только от пространственной переменной.
Рассмотрена задача, моделирующая процесс определения температуры и плотности источников в про-
цессе дробной теплопроводности относительно заданных начальных и конечных температур. Иссле-
дованы проблемы с общими граничными условиями относительно пространственной переменной, ко-
торые не являются усиленно регулярными. Доказаны существование и единственность классического
решения задачи. Задача решается независимо от того, что соответствующая спектральная задача для
оператора кратного дифференцирования с неусиленно регулярными граничными условиями может
не иметь свойства базисности корневых функций.
Ключевые слова: обратная задача, уравнение теплопроводности, дробная теплопроводность, неуси-
ленно регулярные граничные условия, метод разделения переменных.
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