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On the solvability of the boundary value problems for the elliptic
equation of high order on a plane

For the elliptic equation of 2l—th order with of constant (and only) real coefficients we consider boundary
value problem of the normal derivatives (k; —1) order, j = 1,...,1, where 1 < k; < ... < k; <2/—1. When
kj = j it moves into the Dirichlet problem, and when k; = j + 1 it moves into the Neumann problem. In
this paper, the study is carried out in space CQZ’“(E). We found the condition for Fredholm solvability of
this problem and computed the index of this problem.
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Introduction

From the viewpoint of an explicit description of the conditions of solvability of Fredholm and of index for
this problem has been studied [1] in the class

— 0%l —
21 211,
u e CH(D)NnC*"#(D), E ar,QlW € CH(D).

0<r<2l

In this paper, under the assumption that I' € C?!'# obtained in the paper [1] results extend to a standard
class C2:#(D), which no longer depends on the equation (1).

In [2-8], an explicit form of the Green function of the Dirichlet problem for a polyharmonic equation in
a multidimensional ball is constructed. The paper [9, 10| is devoted to the investigation of the solvability of
various boundary value problems for a polyharmonic equation in a multidimensional ball. In this paper we
obtain a necessary and sufficient condition for the problem to be Fredholm in terms of the original data, that
is, from the right-hand side of the inhomogeneous polyharmonic equation and from the right-hand sides of
the inhomogeneous boundary conditions. The correct restrictions of the stationary Navier-Stokes equation in a
three-dimensional cube are described in [11], and the correct boundary conditions for the pressure in the medium
are determined. In [12], initial-boundary value problems for the equations of motion of a viscous heat-conducting
gas are studied with allowance for a magnetic field with cylindrical and spherical symmetry. In this paper, we
prove theorems on the existence and uniqueness of solutions as a whole with respect to the time of initial-
boundary value problems. In [13], a brief summary of the theory of extensions and contractions of operators in
Hilbert space is given, and certain classes of well-posed boundary value problems for the bi-Laplace operator
are written out. The Green function of the Neumann problem for the Poisson equation in a multidimensional
ball is constructed in [14].

Formulation of the problem

In simply connected region D in the plane bounded by a simple smooth contour I', we consider the elliptic
equation

T _ weD
Z ark(z)m—g(z), fo'*‘lye s (1)
0<r<k<2l

with real coefficients a,, € C*(D), 0 < p < 1, constant at k = 2[. Without loss of generality we can assume
that Q21,21 = 1.
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The Generalized Dirichlet - Neumann problem for this equation is determined by the boundary conditions

oFi—1y
Onki—1

=f, j=1,...,1, (2)
r

where 1 < k1 < ky < ... < k; <2l, n =nq + ingy means the unit external normal and under normal derivative
k—th order we mean the expression

0 o\" N ;Y
<n1%+n26y) U—Z<r>n1n2 W

r=0

Fredholm solvability of the problem

As usual Fredholm property and the index of the problem are understood in relation toward its restricted
operator

l
C?#(D) — C*(D) x H Chat (). (3)

For derivatives of v € C™#(I"), 1 < r < 2] — 1, with respect to the parameter arc length we have the expression

a\" o™ n

— ) v=

ds der
where e = e +1iea = —in is the unit tangent vector to the contour I', tangential derivative of r— order 9"v/0e”
is understood as analogous (2) and the dots denote a linear differential operator of order r— 1, whose coefficients
are expressed through the function ey, e and derivatives of order » — 1 inclusive. In virtue of the assumptions

about the smoothness of the contour T' coefficients of the operator belong to the class C2~"#(I"). Therefore,
similar to [1] boundary conditions (2) can be rewritten in the equivalent form

o o 2l—k; P 9 kj—1 o o '
(elax‘f'egay) <nlax+n28y) U+Lju: jo 1§j§lﬂ (4)

with the right-hard side
=14 [ fa
r

where the symbol d;t is an element of arc length, and operators

0%u oki—1y
Lju= Z aj + dit
J J,TS — - ,
0<r<s<2l—2 Oz dy" r Onki
with some coefficients a;,s(z) € C*(T). It is clear that the operator L° = (LY,...,L?) is compact
C’zl’“(D) _)Ol,p.(]:\)'
Consider the map
an—lu

Du:(Ul,...,UQZ), UJZW,

that acts from C?!#(D) in the space C1#(D) of vector-functions satisfying the relations

oU; _ WUin

1<j<2l—1.
o9 5y 0 lsis2 (5)

The core of this operators ker D is the class Py;_o of all polynomials of degree at most 2] — 2, which is equal to
the dimension of /(2] — 1).
As in [1] introduce the right-hand operator D=1, so that any function v € C?#(D) uniquely represented
in the form
u=D"VU +p, p€E Py_o, (6)

where the vector-function U € C1#(D) satisfying the relations (5).
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Substituting this representation in (1) and using (4), from the elliptic equation can come to the equivalent
first order system

ou ou
— —A—= + L' DVU =g 7
oy 5. T L +p)=y (7)
with 2] x 2[— matrix
0 1 0 0
0 0 1 0
A= : y  Qr = Qr21,
0 0 0 1
—ap —a; —a2 ... —ag91-1
with the right-hand side g' = (0,...,0, g) and the operator
kv
Ll'U = (07...,07[/%11}), L%Z'U = Z arkm.

0<r<k<2l—1

Note that the operator L! is compact C?\#(D) — C*(D).
With respect to the matrix C' = (Cj;,) € C?'=1#(T), the elements of which are defined by the relations

Zi; Cin(1)2F ™1 = [e1(t) + ea(t) 2] 5 [—ea(t) +ex(t)2] 1, 1 <5 <, (8)

the boundary conditions (4) can be written in the form
CUt + LY(DVU +p) = £°, (9)

where the symbol + indicates the limit value functions. Recall that appearing here the operator LD s
compact C*#(D) — CLH(T).
We write the characteristic polynomial equation (1) in the form

21 m

ZT:O ar 2" = Hk:l[(z — )z —7p)]", Imuy >0, (10)

and with each vector-function g(z) = (¢1(2),...,9n(2)), analytic in the neighborhood of the point vy, ..., vpy,.
We introduce block n x [— matrix

Wg(yla ) Vm) = (Wg(yl)a SRR Wg(ym))v
where the matrix W,(vy) € C**! is composed of column - vectors

9(vk), g (vk), -, ﬁg(l’“_l)(yk).

We introduce block 2! x 2[— matrix

B=(B,B), B=Wy(vi,...,vy,) € C?*x
(11)

J =diag(J,J) J=diag(Ji,...,Jm),

where h(z) = (1,z,...,2%7!) and

143 1 0 0
0 Vi 1 0
Jp = . .. . e Clexl
0 0 O 1
0 0 0 vk

is a Jordan cell, corresponding to the eigenvalue vy. B
As shown in [1], the matrix B is reversible and transfers in A to Jordan form J, i.e. we have the equality

B™'AB=J.
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Obviously, the operation of multiplication by a matrix B! transforms real 2/— vector-functions U in the
complex vector-function ¢ block form (¢, ¢). Wherein

(B™'LaB)¢ = (Ls, L), (12)
where for brevity
0 0 3] 0
La=2 a2 ,=2 72
A7 By ox’ T by Jax

Recall that the operator D!, appearing in (7), (8), is defined on 2/— the vector-functions U € C'*(D),
satisfying the conditions (5). In terms of projector @, acting according to the formula

_ U, 1<y <2-1
(QU); = { 0, j =2l

these conditions can be described in the form QLU = 0. As shown in [1], there is limited to C1+#(D) projector
P with the image im P = {U € C**(D), QLU = 0}. This operator is constructed as follows [1].

We choose p so large that the closed region D is contained in the disc Dy = {|z| < p}. Then there is a
bounded operator C*(D) — C*(Dy) continuation, denoted by ¢ — @, with properties

@’D =% ‘ﬁ‘apo =0.

To every non-zero complex number z = = + ¢y we associate an invertible matrix z; = x1 4+ yJ, where 1 is a
single [ X [— matrix. We introduce the integral operator

(I'e)(2) = = [ (t—2)7'@(t)dat, =€ D,

where dot is the area element. This expression is the bounded mapping C*(D) — C1#(D) and is a right-hard
inverse of Ly, i.e.
LiI'o=¢. (13)

Taking into account
(BTUB)g=(T'¢, I'p), ¢=(09),

obtain an operator I, acting in the space C*(D) of real 21— vector-functions, which in view of (12) has a similar
property in relation to L4. In our notation the desired projector P is defined by P =1 — IQL 4.
As in [1] via this projector from (7), (8) we can move on to the problem

LaU + L"(D"VPU +p)=g', CUT +LY(D"VPU +p) = f°, (14)

which is already considered in the whole space C1#(D). Since QL° = 0, from the first equation of this problem
it follows QL AU = Qf". Therefore, if the right side f' has the property Qf' =0, i.e. fj1 =0,1<j<2[—-1,
then any solution U problems (14) satisfies the condition (5). In other words, for the given right-hand side f!
problem (14) is equivalent to (7), (8).
We use further substitution L
U=B¢, ¢=(40), (15)
according to which we introduce the operators L) : C1#(D) x Py_5 — C*(D) and L(®) : C#(D) x Py_o —
— CH(T"), acting according to the formulas
(LD(,p), LO(¢,p) = B'L(D"VPB +p), L(6,p) = L*(D"VPBG +p).
Then, taking into account (11), (12) the substitution of (15) leads (14) to the following equivalent problem
Lyp+ LW (6,p) = f'. 2Re(CBe) + LO(g,p) = f°, (16)

where we put B~1g' = (f!, fT), which is considered in the class C'#(D) I— complex vector-functions ¢.
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So far all reviews have been carried out in the same way as [1] with the difference that in this work problem
(16) is considered in the class of functions ¢ € C*(D) N CY(D), for which L;¢ € C*(D). Following [2], we
introduce the generalized Cauchy type integrals

() = o [ (=27 dw(0, =€ D,
2w Jp
with a density ¢ € C1#(T"), where witch respect to the point ¢ = t; + ity on the curve dt; is a complex matrix
differential dt;1 + dtoJ and contour I' positively oriented with respect to D. It is important to note that it has
the property

LyI%" = 0. (17)

The Cauchy type integrals answer corresponding singular integral

(S%)(to) = — / (t —to); dtsut), to el
i Jp

which is understood in the sense of the Cauchy principal value. Note that in the case of a scalar matrix J =i
the operator S° becomes classic singular Cauchy operator, denoted by S. As shown in [3], operators S and S°
are bounded in the spaces C#(I"), C1#(T), and the difference S — S is a compact operator. In addition, by the
differentiation formulas given in [3] the operator LY is bounded C1#(I") — C1#(D) and just corresponds to an
analogue of Sokhotskii - Plemelj
(I'e)* = (¢ +5'9)/2. (18)
Based on these results, similarly to the classical theory of singular operators [4] we show that under the
assumption of

det[C(t)B] #£0, teTl, (19)
the operator
N% = Re[CB(y + 5%)], (20)
acting in the space of real [— of vector-functions ¢ € C1#(T'), is Fredholm and its index is given by
1
ind N? = ——[arg det(CB)]| .. (21)
0

Further arguments are similar to those given in [1]. As this paper shows any function ¢ € C**(D) can by
uniquely represented in the form

p=TI"0" +1°%° +i¢, ¢eR,
with some complex [— vector-function ¢! € C*(D) and real ¢ € C*#(T). The substitution of this representation
in (16) given (13), (17), (18) reduces the problem to an equivalent system of integral equations

o+ Ly (1% +i€) + LO (I + 1990 + i€, p) = [
Re [CB(¢° + S%)] + 2Re [CB(I'¢! +i€)] + LO(I'p* + i€, p) = f°.
In the notation (20) we write it briefly in the operator form
N+ MO" + MOt +T0p,6) = [7, ' + MO + Mol + T (p,€) = f, (22)
with the relevant operators T and
MOO 0 _ L(O)IOQDO, MOlgﬁl = 9Re (CBIlwl) +L(0)I1Q01,
MlO 0 _ L(I)IOQOO7 M11Q01 _ L(l)Ilng.

Since the operators L(®) and L(1) are compact, in the operator matrix

MOO MOI
M = ( M 1 ) )

acting in the space C**(T") x C*(D), all elements except M°! are compact. Therefore, by the general theory of
Fredholm operators [5] the operators N = diag (N, 1) and N + M are Fredholm equivalent and their indices
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coincide. Recalling that dim Py_o = (2] — 1) and ¢ € R!, taking into account (20) and the corresponding
properties of Fredholm operators we conclude that the next theorem is proved.
Theorem. Suppose that condition
det[C(t)B] #£0, teTl
is satisfied. Then the problem (1), (2) is Fredholm in the class C?#(D), and its index @ is calculated by the

formula )
_ 2
= ——larg det(CB)]| . + 217,

where the increment of a continuous branch of the argument on the contour I is taken in the counterclockwise
direction.
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B.J1. Komanos, A.Il. Conmaros

X(aBbIKTI:IK,Ta. 2Korapnbl ,z;apeme.ni AJIJINIITUKAJIBIK TE€HAeYJIeP
VIIiH IIeTTiK ecenTepAiH, MIEeITiMIIIr TypaJbl
Maxkasaia TypakThl (TeK KOFapbl gppexkesepi) HaKTbl Koddbdummentri 2[-mppexeni, mekapaga (k; — 1)-
JoperKesi HOpMaJI TYyBIHIBLIAPHI OepiireH IIeTTiK ecenTep KapacTeipbuiral, j = 1,...,0[, 1 < k1 < ... <

< k; <20 —1. Byn ecen k; = j 6onran ke3ne — upuxite ecebi, an k; = j+ 1 ke3ne Heitman ecebi 6omapl.
AgTopJiap ocbl ecenTiH (ppeAroabM Il MeniMIIriHiH IapThIH Taybll, MHIEKCIH eCernTerex.

Kiam cesdep: sTANITUKAJIBIK TEHIEYIED, TETTIK ecenrrep, lupuxiie ecebi, Heliman ecebi, meTTik ecenTepmiy,
TITeTTTi MTiTiT.
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O Pa3peIInmMoOCT KpaeBbIX 3aJa4 AJId 3JIJIMIITUIECKOI'O
YpaBHE€HHN: BBICOKOI'O ITOPA/JKa Ha IIJIOCKOCTH

B crarbe sl 9/IMIITHYECKOrO ypaBHEHUSA 2 [-T0 TOPs/IKA C HOCTOSHHBIMU (M TOJIBKO CTAPIIMMH) BEIIE-
CTBEHHBIMU KO3 DUIMEHTAaMI PACCMOTPEHA KpaeBas 3aJ1ada, 3aKJ/II0Yaloasics B 3a/IaHUM HOPMAJIbHBIX
npousBoaubix (k; —1)—ro nopsinka, j =1,...,01,tne 1 <k; < ... <k, <20—1. Ilpu k; = j ona nepexonur
B 3aja4y Jupuxie, a npu k; = j + 1 — B 3amaay Heilimana. ABropamu HaiiieHO ycsioBre (hpearobMOBOit
Pa3peIIMMOCTH TON 3a/[a9i U BBHIYUCJIEH UHIIEKC.

Karouesvie ca06a: 3JLITUIITHIECKOE YpaBHEHHE, KpaeBble 3a/la11, 3a/ia49a ,ZLI/IpI/IXJIe, 3aiavda HeﬁMaHa, pa3pe-
OINMOCTDb KPa€BbIX 3a1a9.
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