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Hardy-type inequalities for matrix operators

We establish necessary and sufficient conditions the validity of the discrete Hardy-type inequality

(Z <Zai,jfj> uf) < <fovf> J={fi}i21 >0,
i=1

i=1 \j=1

with 0 < p < ¢ < co and 0 < p < 1, where the matrices (a; ;) is an arbitrary matrix and the entries of the
matrix (a;,;) > 0 such that a; ; is non-increasing in the second index. Also some further results are pointed
out on the cone of monotone sequences. Moreover, we give that the applications of the main results for the
non-negative and triangular matrices (a;,; > 0 for 1 < j <4 and a;; = 0 for @ < j).
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1. Introduction and preliminaries
Let 0 < p,q < oo. Let w; = {w; x}52, and u = {u;}{2; be are non-negative real number sequences and

v = {v;}$2; be a positive real number sequence. f = {f;}32; is a non-negative sequence.
We consider the following inequalities:

(Z (Af)?U?> <C (Z ff’vf> p

i=1

Q=

Vf >0, (1)

and

S

Sl <c (fovf), Vi >0, (2)
j=1

i=1

for the operators in the following form:

(Af); = aijf;, i>1 (3)
=1

(A*f); = Zai,jfia Jj=1, (4)
=1

respectively, where C' and C* — are positive finite constants independent of f and (a; ;) is an arbitrary non-
negative matrix.

The main aim of this paper is to investigate that the problems necessary and sufficient conditions the validity
of inequalities (1) and (2) with the case 0 < p < ¢ < 00, 0 < p < 1 and under weaker conditions on the matrices
(a; ;) in operators defined by (3) and (4) for all sequences f > 0 (see theorems 2.1-2.2). Moreover, we study
these problems on the cone of monotone sequences (see theorems 2.3-2.6). Finally, we will get the applications
of the main results.

Notation. The symbol M <« K means that there exists a > 0 such that M < aK, where « is a constant
which may depend only on parameters such as p, ¢, r. If M < K < M, then we write M ~ K.
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We also need the following well-known result (see [1]):
Lemma A. [1]. Let v > 0. Then

j T k vl
(Z ﬂk.) ~> B (Z m) , VieN, (5)
k=1 k=1 =1

for all sequences {Bi}52, of positive real numbers and

~

N N N v-1
S ~3 4 (z @») | 0
k—j k—j i—k

for all j,k € {1,2,...,N}, N € NU {oo} and for all sequences {Br}3>, of positive real numbers such that

o0
> Br < oo
k=1

The main results
2. On nonnegative sequences

Our main results read as follows.
Theorem 2.1. Let 0 < p < g < 0o and 0 < p < 1. Let the entries of the matriz (a; ;) > 0 such that a; ; is
non-increasing in the second index. Then the inequality (1) holds if and only if

1
00 q
B = sup g ai juf vj_l < 00,

i1\,

holds. Moreover, B = C, where C' is the best constant in (1).
Theorem 2.2. Let 0 < p < g < 0o and 0 < p < 1. Let the entries of the matriz (a; ;) > 0 such that a; ; is
non-decreasing in the first index. Then the inequality (2) holds if and only if

holds. Moreover, B* = C*, where C* is the best constant in (2).
Proof of Theorem 2.1. Necessity. Let the inequality (1) holds. Let us show that B < co. For 1 < j <k <,

we assume that
ra Ty .7 17 j: ka
F=thy 5={¢ 128 )

By substituting f into the inequality (1) we get that

1
oo q
q ,4q
Cu > (E aLkui) .
i=1

Therefore
B<C. (8)

The proof of necessity is complete.
Sufficiency. Let B < oo. Now, we prove the inequality (1) holds. Let f = {f;}5°, be a non-negative sequence.
Then for 1 < n < co we assume that ¢ = {fF};:

fs_ fi"—sa 1S]Sna a5 _ ai,j+57 ISJSnv
i O7 j>’ﬂ, i Q; j>7l.

where d,¢ > 0.
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Since a;, > a;j,1 < k < j, then using the (5) we find that

n n n 7 p
e 5 pe § re ) €
g a;jf; < § a; i f; = E a; i f; E a; . fr
j=1 j=1 j=1 k=1

n j p—1 %
< (S (Rn)
j=1 k=1
From (9) its follows that
n =
Z Zawfj uf <
=1
. AN
< Z Za G5 ud <
=1
n n j p—1\ %
<[ (Sers(sa) ) o«
i=1 \j=1 k=1

Now, we apply Minkowski’s inequality for 4 > 1 and we find that
p

S=

n i p—1 n %
5 \4
no< (s (z fz) (Z () )
j=1 k=1 i=1
From gin% af ; = @i it follows that
0%

~
<
HM:
s
L)
i
=
N~
bS]
L
N
(7=
—
&
&
N~—
<
ﬁ@
N~
Qs
ke
IN

Since (f£)7' > (i fi

p—1
> for 0 < p < 1, we drive that
k=1

s =

L<B{Y ()]
j=1
where f7 — f; as € = 0. Consequently,

8=

Since Vn € N, we have that

1
q

5 zm ) <s (S

=1
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i.e.
C < B. (10)

Thus, by combining (8) and (10) its follows that B &~ C. The proof is complete. O
The proof of the Theorem 2.2 is completely analogous to the proof of Theorem 2.1, so we leave out the
details.

2.2 On monotone sequences

Assume that

Sy
|
VE
NS
“ ~
ngE
<
JL >
8
s .
: N~ —
=}
S
o =R
N~ ~—
Q=
3
-
<
3%
~__—
S [

D

Jj=1

N
*
|
wn
=
o}
N
(]
S
e
~
Q|-
8
N
[~]e
8
<.
~—
=
S
ST
8=

i=k
Our main result for the operators defined by (3) and (4) on the cone of monotone sequences reads as follows:
Theorem 2.3. Let 0 < p < g < 00 and 0 < p < 1. Then the inequality (1) on the cone of non-negative and

non-increasing sequences f = {fr}32, holds if and only if B < oo holds. Moreover, B ~ C, where C' is the best
constant in (1).

Theorem 2.4. Let 0 < p < g < 00 and 0 < p < 1. Then the inequality (2) on the cone of non-negative and
non-decreasing sequences f = {fi}72, holds if and only if B* < oo holds. Moreover, B* =~ C*, where C* is the
best constant in (2).

Theorem 2.5. Let 1 < p < q < 0o. Then the inequality

1 1
(S} <o (Seane) )
i=1 i=1
on the cone of non-negative and non-increasing sequences f = {fx}32, holds if and only if A < oo holds.
Moreover, A~ C, where C is the best constant in (11).

Theorem 2.6. Let 1 < p < q < 0o. Then the inequality

(fou?)qéc“* S| (12)

i=1 j=1

on the cone of non-negative and non-decreasing sequences f = {fr}32, holds if and only if A* < oo holds.
Moreover, A* =~ C*, where C* is the best constant in (12).

The proof of the Theorem 2.4 and 2.6 are completely analogous to the proof of Theorem 2.3 and 2.5
respectively, so we will only prove Theorems 2.3 and 2.5.

Proof of Theorem 2.3. Necessity. Suppose that the inequality (1) holds with the best constant C' > 0. We
take a test sequence fj, = {fy};i1 such that

jof L=<k
L0, J>k,

for 1 <k < oo.
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Substituting the test sequence fk in the inequality (1) we obtain that

k b o [ k 1 v
o(32) = (3 (D) )
i=1 i=1 \ j=1
i.e.
B < C. (13)

The proof of necessity is complete.
Sufficiency. Let the inequality (1) holds. We will show that B < co. We known that for all non-negative
and non-increasing sequence f = {f; }J“;l write in the form:

fj:fjJrc, c>0,
WhereijfjJrle7 foerlandjlijéloﬂzo.

o0 o]
We consider two cases separately: » vf = oo and ) v} < oo.
k=1 k=1

Let > v? = oco. Then ¢ = 0 and f; = f; for j > 1.
k=1
We suppose that {g;}§2o : g; > 0, g; > gj+1, lim g; = 0 and f§ = fj +eg;. Then f7 > ff,, lim f7 =0.
Let a; = Af; = fj — fiz1 >0, bj = Ag; > 0, ¢; = Af; > 0. Then ¢; = a; +¢b; and f§ = chi From (6) its
=j
follows that .
0o ') p—1\ »
fi = Zci (Z cfn> . (14)
k=j m=k

By using (14) and apply Minkowski’s inequality for zl) > 1, we find that

S =

IN

00 00 o) 00 p—1
€~ - £ £

E :ai,jfj ~ E :“m E :Ck E Cm

j=1 j=1 k=3

m=k

%) %) p—1 k P %
<(Xa(Xa) (e
k=1 m=k j=1
and s
I(f) = <Z(Af8)?u?> <
=1

Q=

aq
[eS) o0 [e%S) p—1 k P\ P
q
< (] (e |
k=1 j=1

i=1 o= m=k

Next, apply Minkowski’s inequality for % > 1 and using (6), we get that

I(f) < I(f) <

<3
=

00 oo p—1 0o k 4
£ £ q
< § Ck E Cm E Qi | Uy <
k=1 m=Fk i=1 \j=1
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Y
(]2
o
3o
N———
T
=
Q

i=1

~ B (Z o (ff)”) gy (15)

Since I(f) = I(f) and lim f¢ = lim VJ +eg;| = f we have that
e—0 e—0

B (Z o W’) |

Therefore,
C <« B. (16)
&)
Let Y v} < oo. Then
k=1
> i 0o o 1 a
0= (Sunt) =13 (S|
i=1 i=1 j=1
a 3 1
Since (Z (Z aw> uf) (Z vf) " < B, then from (15) we obtain that
=1 =1 =1
’ - 1 - 1
I(f)<B <va ij> + B <Zcpvp> R
i=1 i=1
- 1
- p\”
<5 (S (i+e)) -
i=1
- 1
=B (Z v f) (17)
i=1
Therefore,
C < B, (18)
and (1) holds. According to (14) and (18), we have that B ~ C, where C' is the best constant for which (1)
holds. The proof is complete. O

Proof of Theorem 2.5. The Necessity part in the same way as to proof of Theorem 2.3. Therefore,

A< C. (19)

o0
To prove sufficiency we proceed as follows. We assume that ) v} = co. By using (14) and apply Minkowski’s
k=1

= (Z (ff)%?>
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By using

<Z> <ay zam

=1 =

%APZ(Za”f> vl

Since J(f) = J(f) and hm fe= hm [fj +eg;

[Em—

= f we get that

) < A” Z awfj ol

Therefore,
C < A.

Let > v} < oo. From (20) and (21) its follows that
k=1
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p

= APZ Zai,jfj U?.
i=1 \j=1
Therefore,
A< C, (23)
and (11) holds. According to (19), (22) and (23), we have that A ~ C, where C' is the best constant for which
(11) holds. The proof is complete. ]

3. Applications

The inequalities (1) and (2) have been investigated for the case 0 < p,q < oo with a triangular matrix
(aij > 0for 1 < j <ianda;; =0 for i < j)in [2-5] and the references given therein. However, these
inequalities have not been studied for the case 0 < p < ¢ < oo and p < 1. Only, in 1991 G. Bennett [3] studied
the inequality (1) for the this case with the identity matrix. He proved that the inequality (1) holds if and only if

00 a
sup (Z uZ) v, P < o0,
neN P

holds for this case.

The continuous case it is known that the Hardy inequality is not holds for arbitrary non-negative measurable
functions in L,-spaces with 0 < p < 1, but it is able to found the sharp constant in the Hardy-type inequality
for non-negative monotone functions. Moreover,we can get the more informations about the direction in [7-11]
and the references given therein. Therefore the investigation of the Hardy inequalities for matrix operators one
of the big important question.

The corresponding results for the non-negative and triangular matrices (ai’j >0forl1<j<ianda;; =0
for i < j) could have the following.

Corollary 3.1. Let 0 < p < q < 0o and 0 < p < 1. Let the entries of the matriz (a; ;) such that a;; is
non-increasing in the second index. Then the inequality (1) holds if and only if

1

(oo}
— o \4,,9 -1
By = sup g (aig)'ui | v <oo
21 \i5;

holds. Moreover, By = C, where C' is the best constant in (2).
Corollary 3.2. Let 0 < p < g < 0o and 0 < p < 1. Let the entries of the matriz (a; ;) such that a;; is
non-decreasing in the first index. Then the inequality (2) holds if and only if

7 q

x q,4 -1
B 1—sl>1[1) E (aig) uj | vy <oo,
7 N
= j=1

holds. Moreover, B*y = C*, where C* is the best constant in (2).

From Theorems 2.3-2.6 we obtain immediately the validity of the following statements:

Corollary 3.3. Let 0 < p < ¢ < 00 and 0 < p < 1. Then the inequality (1) on the cone of non-negative and
non-increasing sequences f = {fr}%>, holds if and only if B, < oo holds. where

1
= 1
w [ k& 1 [V ~%
B = sup E a;j | ul E vb < 00.
1

k21 i=j \j= m=1

Moreover, B ~ C, where C is the best constant in (1).
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Corollary 8.4. Let 0 < p < ¢ < 00 and 0 < p < 1. Then the inequality (2) on the cone of non-negative and
non-decreasing sequences f = {fx}32, holds if and only if Bf < co holds. Where

1
i %) q q 00 _%
B = sup Z <Z am-) uf (Z vfn> < 00.
m=k

k21 \ 521 \i=k

Moreover, B* = C*. C* is the best constant in (2).
Corollary 8.5. Let 1 < p < g < oo. Then the inequality (11) on the cone of non-negative and non-increasing
sequences f = {fx}32, holds if and only if A < oo holds. Where

k A k P v
A :=sup <Z uf) Z (Z am) o? :
i=1

k21 j=1 \i=1

Moreover, A~ C. C is the best constant in (11).
Corollary 3.6. Let 1 < p < q < 0o. Then the inequality (12) on the cone of non-negative and non-decreasing
sequences f = {fx}32, holds if and only if A* < co holds. Where

1 P -2
oo q (oo} o0
A* = sup <Z uf) Z Z a;j | of
k21 \izk i=j \j=k
Moreover, A* = C*. C* is the best constant in (12).
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C.IMTaiimapman, C.IMlanrunbaesa

MaTtpunaJiblK onepaTopJap YIOiH Xapay THUITEeC TEeHCI3IIKTep

Maxkamama Xapan TunTec QUCKPETTI TEHCI3AIKTIH KAaXKeTTi YKoHe YKEeTKIJIKTI MmapTTapbl aJbIHFaH

(Z <Zai,jfj> uf) < <Zflpvf> J=A{fi}21 >0,
i=1

i=1 \j=1

0<p<g<oo 0<p<1, myaga (a;,;) — epkin marpuna, an (a; ;) > 0 xKoHe ai,j — EKIHNI WHIEK-
cre ecimciz. CoHpaif-ak >KyMbBICTa MOHOTOHJBI Ti30€KTEp/iH KOHYCHIHIA KeHbip HOTHMXKeJep KOPCETiJIreH.
CoHBIMEH KaTap Tepic eMec KoHe YIIOYPHIIITHl MaTPHUIaJIap YIIH HEri3ri KOCHIMINA HOTHUXKEeJIep Gepiaren
(a;; >0,1<j<ixonea;;=0,1i<j).

Kiam cesdep: TeHCI3mIK, Ti30eKTEP, MATPHUITAJIBIK, OTIEPATOPJIAD, HHTErPAJ.

C.ITaitmapman, C.IIanrunbaesa

HepaBenctBa tnna Xapau Jijis MAaTPUIHBIX OIIEPATOPOB

B crarbe ycranoBiIeHBI HEOOXOAUMbBIE U AOCTATOYHBIE YCIOBHUS NUCKPETHOTO HEPABEHCTBA TUIA XapIu

(Z < ai,jfj) Uf) < <Z fipvf> S ={fi}21 >0,
Jj=1

i=1 j= =1

0<p<gqg<oo0<p<1rue (a;,;) — upousBosbHag Marpuna, a Marpuna (a;;) > 0 Takas, 9TO
ai,j He BO3pacTaeT BO BTOPOM uHjekce. TakyKe yKazaHbl HEKOTOPBIE Pe3yJIbTaThl Ha KOHYCe MOHOTOHHBIX
ocyeToBaTeIbHOCTEH. KpoMe TOro, MaHBI MPUJIOXKEHNs] OCHOBHBIX PE3yJILTATOB JJIT HEOTPUIATEIHHBIX U
TpeyroibHbIx MaTpul (a;; > 0unl<j<ima;; =0ui<j).

Karouesvie caosa: HEpaBE€HCTBO, B3BEIIECHHDbIE I10CJ/IEOBATE/IbHOCTU, MaTPUYIHbIE OllepaTOpPbl, UHTErpaJl.
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