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Hardy-type inequalities for matrix operators

We establish necessary and sufficient conditions the validity of the discrete Hardy-type inequality(
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, f = {fi}∞i=1 ≥ 0,

with 0 < p ≤ q <∞ and 0 < p ≤ 1, where the matrices (ai,j) is an arbitrary matrix and the entries of the
matrix (ai,j) ≥ 0 such that ai,j is non-increasing in the second index. Also some further results are pointed
out on the cone of monotone sequences. Moreover, we give that the applications of the main results for the
non-negative and triangular matrices (ai,j ≥ 0 for 1 ≤ j ≤ i and ai,j = 0 for i < j).
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1. Introduction and preliminaries

Let 0 < p, q < ∞. Let ωi = {ωi,k}∞k=1 and u = {ui}∞i=1 be are non-negative real number sequences and
v = {vi}∞i=1 be a positive real number sequence. f = {fi}∞i=1 is a non-negative sequence.

We consider the following inequalities:( ∞∑
i=1

(Af)
q
i u

q
i

) 1
q

≤ C

( ∞∑
i=1

fpi v
p
i

) 1
p

, ∀f ≥ 0, (1)

and  ∞∑
j=1

(A∗f)
q
j u

q
j

 1
q

≤ C∗
( ∞∑
i=1

fpi v
p
i

) 1
p

, ∀f ≥ 0, (2)

for the operators in the following form:

(Af)i :=
∞∑
j=1

ai,jfj , i ≥ 1; (3)

(A∗f)j :=

∞∑
i=1

ai,jfi, j ≥ 1, (4)

respectively, where C and C∗ — are positive finite constants independent of f and (ai,j) is an arbitrary non-
negative matrix.

The main aim of this paper is to investigate that the problems necessary and sufficient conditions the validity
of inequalities (1) and (2) with the case 0 < p ≤ q <∞, 0 < p < 1 and under weaker conditions on the matrices
(ai,j) in operators defined by (3) and (4) for all sequences f ≥ 0 (see theorems 2.1–2.2). Moreover, we study
these problems on the cone of monotone sequences (see theorems 2.3–2.6). Finally, we will get the applications
of the main results.

Notation. The symbol M � K means that there exists α > 0 such that M ≤ αK, where α is a constant
which may depend only on parameters such as p, q, r. If M � K �M , then we write M ≈ K.
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We also need the following well-known result (see [1]):
Lemma A. [1]. Let γ > 0. Then(

j∑
k=1

βk

)γ
≈

j∑
k=1

βk

(
k∑
i=1

βi

)γ−1

, ∀j ∈ N, (5)

for all sequences {βk}∞k=1 of positive real numbers and N∑
k=j

βk

γ

≈
N∑
k=j

βk

(
N∑
i=k

βi

)γ−1

, (6)

for all j, k ∈ {1, 2, ..., N}, N ∈ N ∪ {∞} and for all sequences {βk}∞k=1 of positive real numbers such that
∞∑
k=1

βk <∞.

The main results
2. On nonnegative sequences

Our main results read as follows.
Theorem 2.1. Let 0 < p ≤ q < ∞ and 0 < p ≤ 1. Let the entries of the matrix (ai,j) ≥ 0 such that ai,j is

non-increasing in the second index. Then the inequality (1) holds if and only if

B = sup
j≥1

( ∞∑
i=1

aqi,ju
q
i

) 1
q

v−1
j <∞,

holds. Moreover, B ≈ C, where C is the best constant in (1).
Theorem 2.2. Let 0 < p ≤ q < ∞ and 0 < p ≤ 1. Let the entries of the matrix (ai,j) ≥ 0 such that ai,j is

non-decreasing in the first index. Then the inequality (2) holds if and only if

B∗ = sup
i≥1

 ∞∑
j=1

aqi,ju
q
j

 1
q

v−1
i <∞,

holds. Moreover, B∗ ≈ C∗, where C∗ is the best constant in (2).
Proof of Theorem 2.1. Necessity. Let the inequality (1) holds. Let us show that B <∞. For 1 ≤ j ≤ k ≤ i,

we assume that
f̃ = {f̃j}∞j=1 : f̃j =

{
1, j = k,
0, j 6= k.

(7)

By substituting f̃ into the inequality (1) we get that

Cvk ≥

( ∞∑
i=1

aqi,ku
q
i

) 1
q

.

Therefore
B � C. (8)

The proof of necessity is complete.
Sufficiency. Let B <∞. Now, we prove the inequality (1) holds. Let f = {fi}∞i=1 be a non-negative sequence.

Then for 1 ≤ n <∞ we assume that fε = {fεi }∞i=1:

fεj =

{
fi + ε, 1 ≤ j ≤ n,
0, j > n,

aδi,j =

{
ai,j + δ, 1 ≤ j ≤ n,
ai,j , j > n.

where δ, ε > 0.

64 Вестник Карагандинского университета



Hardy-type inequalities ...

Since ai,k ≥ ai,j , 1 ≤ k ≤ j, then using the (5) we find that

n∑
j=1

ai,jf
ε
j ≤
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j=1

aδi,jf
ε
j ≈

 n∑
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)p
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1
p

. (9)

From (9) its follows that
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q
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uqi
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1
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.

Now, we apply Minkowski’s inequality for
q

p
≥ 1 and we find that

In ≤

 n∑
j=1

fεj

(
j∑

k=1

fεk

)p−1(
n∑
i=1

(
aδi,j
)q
uqi

) p
q


1
p

.

From lim
δ→0

aδi,j = ai,j it follows that

In ≤

 n∑
j=1

fεj

(
j∑

k=1

fεk

)p−1(
n∑
i=1

(ai,j)
q
uqi

) p
q


1
p

≤

≤ B

 n∑
j=1

fεj

(
j∑

k=1

fεk

)p−1

vpj


1
p

.

Since
(
fεj
)p−1 ≥

(
j∑

k=1

fεk

)p−1

for 0 < p ≤ 1, we drive that

In ≤ B

 n∑
j=1

(
fεj
)p
vpj

 1
p

,

where fεj → fj as ε→ 0. Consequently,

In ≤ B

 n∑
j=1

fpj v
p
j

 1
p

.

Since ∀n ∈ N , we have that  ∞∑
i=1

 ∞∑
j=1

ai,jfj

q

uqi


1
q

≤ B

 ∞∑
j=1

fpj v
p
i

 1
p

,

Серия «Математика». № 4(88)/2017 65



S.Shaimardan, S.Shalgynbaeva

i.e.
C � B. (10)

Thus, by combining (8) and (10) its follows that B ≈ C. The proof is complete. �
The proof of the Theorem 2.2 is completely analogous to the proof of Theorem 2.1, so we leave out the

details.

2.2 On monotone sequences

Assume that

B = sup
k≥1

 ∞∑
i=1

 k∑
j=1

ai,j

q

uqi


1
q (

k∑
m=1

vpm

)− 1
p

;

B∗ = sup
k≥1

 ∞∑
j=1

( ∞∑
i=k

ai,j

)q
uqj

 1
q ( ∞∑

m=k

vpm

)− 1
p

;

A := sup
k≥1

(
k∑
i=1

uqi

) 1
q

 ∞∑
j=1

 k∑
j=1

ai,j

p

vpj

−
1
p

;

A∗ := sup
k≥1

( ∞∑
i=k

uqi

) 1
q

 ∞∑
j=1

( ∞∑
i=k

ai,j

)p
vpj

− 1
p

.

Our main result for the operators defined by (3) and (4) on the cone of monotone sequences reads as follows:
Theorem 2.3. Let 0 < p ≤ q < ∞ and 0 < p ≤ 1. Then the inequality (1) on the cone of non-negative and

non-increasing sequences f = {fk}∞k=1 holds if and only if B <∞ holds. Moreover, B ≈ C, where C is the best
constant in (1).

Theorem 2.4. Let 0 < p ≤ q < ∞ and 0 < p ≤ 1. Then the inequality (2) on the cone of non-negative and
non-decreasing sequences f = {fk}∞k=1 holds if and only if B∗ <∞ holds. Moreover, B∗ ≈ C∗, where C∗ is the
best constant in (2).

Theorem 2.5. Let 1 < p ≤ q <∞. Then the inequality( ∞∑
i=1

fqi u
q
i

) 1
q

≤ C

( ∞∑
i=1

(Af)
p
i v

p
i

) 1
p

, (11)

on the cone of non-negative and non-increasing sequences f = {fk}∞k=1 holds if and only if A < ∞ holds.
Moreover, A ≈ C, where C is the best constant in (11).

Theorem 2.6. Let 1 < p ≤ q <∞. Then the inequality( ∞∑
i=1

fqi u
q
i

) 1
q

≤ C∗
 ∞∑
j=1

(A∗f)
p
j u

p
j

 1
p

, (12)

on the cone of non-negative and non-decreasing sequences f = {fk}∞k=1 holds if and only if A∗ < ∞ holds.
Moreover, A∗ ≈ C∗, where C∗ is the best constant in (12).

The proof of the Theorem 2.4 and 2.6 are completely analogous to the proof of Theorem 2.3 and 2.5
respectively, so we will only prove Theorems 2.3 and 2.5.

Proof of Theorem 2.3. Necessity. Suppose that the inequality (1) holds with the best constant C > 0. We
take a test sequence f̂k = {f̂j}∞j=1 such that

f̂j =

{
1, 1 ≤ j ≤ k,
0, j > k,

for 1 ≤ k <∞.
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Substituting the test sequence f̂k in the inequality (1) we obtain that

C

(
k∑
i=1

vpi

) 1
p

≥

 ∞∑
i=1

 k∑
j=1

ai,j

q

uqi


1
q

,

i.e.
B � C. (13)

The proof of necessity is complete.
Sufficiency. Let the inequality (1) holds. We will show that B < ∞. We known that for all non-negative

and non-increasing sequence f = {fj}∞j=1 write in the form:

fj = f̃j + c, c ≥ 0,

where f̃j ≥ f̃j+1 ≥ 0, for j ≥ 1 and lim
j→∞

f̃j = 0.

We consider two cases separately:
∞∑
k=1

vpk =∞ and
∞∑
k=1

vpk <∞.

Let
∞∑
k=1

vpk =∞. Then c = 0 and fj = f̃j for j ≥ 1.

We suppose that {gj}∞j=0 : gj > 0, gj > gj+1, lim
j→∞

gj = 0 and fεj = f̃j + εgj . Then fεj > fεj+1, lim
j→∞

fεj = 0.

Let aj = ∆f̃j = f̃j − f̃j+1 ≥ 0, bj = ∆gj > 0, cεj = ∆fεj > 0. Then cεj = aj + εbj and fεj =
∞∑
k=j

cεk. From (6) its

follows that

fεi ≈

 ∞∑
k=j

cεk

( ∞∑
m=k

cεm

)p−1
 1

p

. (14)

By using (14) and apply Minkowski’s inequality for 1
p ≥ 1, we find that

∞∑
j=1

ai,jf
ε
j ≈

∞∑
j=1

ai,j

 ∞∑
k=j

cεk

( ∞∑
m=k

cεm

)p−1
 1

p

≤

≤

 ∞∑
k=1

cεk

( ∞∑
m=k

cεm

)p−1
 k∑
j=1

ai,j

p
1
p

and

I(fε) :=

( ∞∑
i=1

(Afε)
q
i u

q
i

) 1
q

≤

≤

 ∞∑
i=1

 ∞∑
k=1

cεk

( ∞∑
m=k

cεm

)p−1
 k∑
j=1

ai,j

p
q
p

uqi


1
q

.

Next, apply Minkowski’s inequality for q
p ≥ 1 and using (6), we get that

I(f̃) < I(fε) ≤

≤

 ∞∑
k=1

cεk

( ∞∑
m=k

cεm

)p−1
 ∞∑
i=1

 k∑
j=1

ai,j

q

uqi


p
q


1
p

≤
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≤ B

 ∞∑
k=1

cεk

( ∞∑
m=k

cεm

)p−1 k∑
i=1

vpi

 1
p

=

= B

 ∞∑
i=1

vpi

∞∑
k=i

cεk

( ∞∑
m=k

cεm

)p−1
 1

p

≈

≈ B

( ∞∑
i=1

vpi (fεi )
p

) 1
p

. (15)

Since I(f) = I(f̃) and lim
ε→0

fεi = lim
ε→0

[
f̃j + εgj

]
= f we have that

I(f) < B

( ∞∑
i=1

vpi (fi)
p

) 1
p

.

Therefore,

C � B. (16)

Let
∞∑
k=1

vpk <∞. Then

I(f) =

( ∞∑
i=1

(Af)
q
i u

q
i

) 1
q

≈ I(f̃) + c

 ∞∑
i=1

 ∞∑
j=1

ai,j

q

uqi


1
q

.

Since

(
∞∑
i=1

(
∞∑
j=1

ai,j

)q
uqi

) 1
q ( ∞∑

i=1

vpi

)− 1
p

≤ B, then from (15) we obtain that

I(f) ≤ B

( ∞∑
i=1

vpi f̃
p
j

) 1
p

+B

( ∞∑
i=1

cpvpi

) 1
p

≈

≈ B

( ∞∑
i=1

vpi

(
f̃j + c

)p) 1
p

=

= B

( ∞∑
i=1

vpi f
p
j

) 1
p

. (17)

Therefore,

C � B, (18)

and (1) holds. According to (14) and (18), we have that B ≈ C, where C is the best constant for which (1)
holds. The proof is complete. �

Proof of Theorem 2.5. The Necessity part in the same way as to proof of Theorem 2.3. Therefore,

A� C. (19)

To prove sufficiency we proceed as follows. We assume that
∞∑
k=1

vpk =∞. By using (14) and apply Minkowski’s

inequality for q
p ≥ 1, we find that

J(fε) :=

( ∞∑
i=1

(fεi )
q
uqi

) p
q

≈
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≈

 ∞∑
i=1

 ∞∑
m=i

cεm

( ∞∑
k=m

cεk

)p−1


q
p

uqi


p
q

≤

≤
∞∑
m=1

cεm

( ∞∑
k=m

cεk

)p−1( m∑
i=1

uqi

) p
q

.

By using (
m∑
i=1

uqi

) p
q

≤ Ap
∞∑
i=1

 m∑
j=1

ai,j

p

vpi (20)

and applying Minkowski’s inequality for p > 1 and (6) we have that

J(f̃) < J(fε) ≤ Ap
∞∑
m=1

cεm

( ∞∑
k=m

cεk

)p−1 ∞∑
i=1

 m∑
j=1

ai,j

p

vpi =

= Ap
∞∑
i=1


 ∞∑
m=1

cεm

( ∞∑
k=m

cεk

)p−1
 m∑
j=1

ai,j

p
1
p


p

vpi ≤

≤ Ap
∞∑
i=1

 ∞∑
j=1

ai,j

 ∞∑
m=j

cεm

( ∞∑
k=m

cεk

)p−1
 1

p


p

vpi ≈

≈ Ap
∞∑
i=1

 ∞∑
j=1

ai,jf
ε
j

p

vpi . (21)

Since J(f) = J(f̃) and lim
ε→0

fεi = lim
ε→0

[
f̃j + εgj

]
= f we get that

J(f) < Ap
∞∑
i=1

 ∞∑
j=1

ai,jfj

p

vpi .

Therefore,
C � A. (22)

Let
∞∑
k=1

vpk <∞. From (20) and (21) its follows that

J(f) =

( ∞∑
i=1

(c+ gi)
q
p uqi

) p
q

≈

≈ cp
( ∞∑
i=1

uqi

) p
q

+ J(f̃) ≤

≤ Ap
∞∑
i=1

 ∞∑
j=1

ai,jc

p

vpi +Ap
∞∑
i=1

 ∞∑
j=1

ai,j f̃j

p

vpi ≈

≈ Ap
∞∑
i=1

 ∞∑
j=1

ai,j

(
c+ f̃

)p

vpi =
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= Ap
∞∑
i=1

 ∞∑
j=1

ai,jfj

p

vpi .

Therefore,

A� C, (23)

and (11) holds. According to (19), (22) and (23), we have that A ≈ C, where C is the best constant for which
(11) holds. The proof is complete. �

3. Applications

The inequalities (1) and (2) have been investigated for the case 0 < p, q < ∞ with a triangular matrix
(ai,j ≥ 0 for 1 ≤ j ≤ i and ai,j = 0 for i < j) in [2-5] and the references given therein. However, these
inequalities have not been studied for the case 0 < p ≤ q <∞ and p ≤ 1. Only, in 1991 G. Bennett [3] studied
the inequality (1) for the this case with the identity matrix. He proved that the inequality (1) holds if and only if

sup
n∈N

( ∞∑
k=n

uqk

) 1
q

v−pn <∞,

holds for this case.
The continuous case it is known that the Hardy inequality is not holds for arbitrary non-negative measurable

functions in Lp-spaces with 0 < p < 1, but it is able to found the sharp constant in the Hardy-type inequality
for non-negative monotone functions. Moreover,we can get the more informations about the direction in [7-11]
and the references given therein. Therefore the investigation of the Hardy inequalities for matrix operators one
of the big important question.

The corresponding results for the non-negative and triangular matrices (ai,j ≥ 0 for 1 ≤ j ≤ i and ai,j = 0
for i < j) could have the following.

Corollary 3.1. Let 0 < p ≤ q < ∞ and 0 < p ≤ 1. Let the entries of the matrix (ai,j) such that ai,j is
non-increasing in the second index. Then the inequality (1) holds if and only if

B1 = sup
j≥1

 ∞∑
i=j

(ai,j)
q
uqi

 1
q

v−1
j <∞

holds. Moreover, B1 ≈ C, where C is the best constant in (2).
Corollary 3.2. Let 0 < p ≤ q < ∞ and 0 < p ≤ 1. Let the entries of the matrix (ai,j) such that ai,j is

non-decreasing in the first index. Then the inequality (2) holds if and only if

B∗1 = sup
i≥1

 i∑
j=1

(ai,j)
q
uqj

 1
q

v−1
i <∞,

holds. Moreover, B∗1 ≈ C∗, where C∗ is the best constant in (2).
From Theorems 2.3-2.6 we obtain immediately the validity of the following statements:
Corollary 3.3. Let 0 < p ≤ q < ∞ and 0 < p ≤ 1. Then the inequality (1) on the cone of non-negative and

non-increasing sequences f = {fk}∞k=1 holds if and only if B̂1 <∞ holds. where

B̂1 = sup
k≥1

 ∞∑
i=j

 k∑
j=1

ai,j

q

uqi


1
q (

k∑
m=1

vpm

)− 1
p

<∞.

Moreover, B̂ ≈ C, where C is the best constant in (1).
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Corollary 3.4. Let 0 < p ≤ q < ∞ and 0 < p ≤ 1. Then the inequality (2) on the cone of non-negative and
non-decreasing sequences f = {fk}∞k=1 holds if and only if B̂∗1 <∞ holds. Where

B̂∗1 = sup
k≥1

 i∑
j=1

( ∞∑
i=k

ai,j

)q
uqj

 1
q ( ∞∑

m=k

vpm

)− 1
p

<∞.

Moreover, B̂∗ ≈ C∗. C∗ is the best constant in (2).
Corollary 3.5. Let 1 < p ≤ q <∞. Then the inequality (11) on the cone of non-negative and non-increasing

sequences f = {fk}∞k=1 holds if and only if A <∞ holds. Where

A := sup
k≥1

(
k∑
i=1

uqi

) 1
q

 i∑
j=1

(
k∑
i=1

ai,j

)p
vpi

− 1
p

.

Moreover, A ≈ C. C is the best constant in (11).
Corollary 3.6. Let 1 < p ≤ q <∞. Then the inequality (12) on the cone of non-negative and non-decreasing

sequences f = {fk}∞k=1 holds if and only if A∗ <∞ holds. Where

A∗ := sup
k≥1

( ∞∑
i=k

uqi

) 1
q

 ∞∑
i=j

 ∞∑
j=k

ai,j

p

vpi

−
1
p

.

Moreover, A∗ ≈ C∗. C∗ is the best constant in (12).
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С.Шаймардан, С.Шалгинбаева

Матрицалық операторлар үшiн Харди типтес теңсiздiктер

Мақалада Харди типтес дискреттi теңсiздiктiң қажеттi және жеткiлiктi шарттары алынған(
∞∑
i=1

(
∞∑
j=1

ai,jfj

)q

uq
i

) 1
q

≤

(
∞∑
i=1

fp
i v

p
i

) 1
p

, f = {fi}∞i=1 ≥ 0,

0 < p ≤ q < ∞, 0 < p ≤ 1, мұнда (ai,j) — еркiн матрица, ал (ai,j) ≥ 0 және ai, j — екiншi индек-
сте өсiмсiз. Сондай-ақ жұмыста монотонды тiзбектердiң конусында кейбiр нәтижелер көрсетiлген.
Сонымен қатар терiс емес және үшбұрышты матрицалар үшiн негiзгi қосымша нәтижелер берiлген
(ai,j ≥ 0, 1 ≤ j ≤ i және ai,j = 0, i < j).

Кiлт сөздер: теңсiздiк, тiзбектер, матрицалық операторлар, интеграл.

С.Шаймардан, С.Шалгинбаева

Неравенства типа Харди для матричных операторов

В статье установлены необходимые и достаточные условия дискретного неравенства типа Харди(
∞∑
i=1

(
∞∑
j=1

ai,jfj

)q

uq
i

) 1
q

≤

(
∞∑
i=1

fp
i v

p
i

) 1
p

, f = {fi}∞i=1 ≥ 0,

0 < p ≤ q < ∞, 0 < p ≤ 1 где (ai,j) — произвольная матрица, а матрица (ai,j) ≥ 0 такая, что
ai, j не возрастает во втором индексе. Также указаны некоторые результаты на конусе монотонных
последовательностей. Кроме того, даны приложения основных результатов для неотрицательных и
треугольных матриц (ai,j ≥ 0 и 1 ≤ j ≤ i и ai,j = 0 и i < j).

Ключевые слова: неравенство, взвешенные последовательности, матричные операторы, интеграл.
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