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On computable subgroups of the group of all unitriangular
matrices over a ring

The problems of existence and uniqueness of computable numberings are fundamental in theory of compu-
tably numbered groups. In connection with the development of the theory of algorithms a study of the
problems of computability of important classes of algebraic systems are currently relevant. Groups of
unitriangular matrices over the ring are a classic representative of the class of nilpotent groups and have
numerous applications both in group theory and in its applications. In this paper we obtain a criterion of
computability of subgroups of the group of all unitriangular matrices UT, (K) over a computable associative
ring with unity.
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Let w be the set of natural numbers, G a group, and v : w — G a mapping from w onto G, also called a
numbering of G. The pair (G,v) is called a constructive group if there is an algorithm which, for any triple of
natural numbers n, m and s, determines whether the equalities vn = vm and vn-vm = vs are true. A group G is
called computable (or constructivizable) if there exists a numbering v such that the pair (G, v) is a constructive
group. A subgroup H of a numbered group (G, v) is called computable (computably enumerable) in (G, v) if the
set v~ 1 H is computable (computably enumerable). If (G, v) is a constructive group, then v is called a computable
numbering of the group G. The problems of existence and uniqueness of computable numberings are fundamental
here, i.e., which groups are computable, and, if they are, how many non-equivalent computable numberings do
they admit. These problems have been investigated by A.I. Malcev, Yu.L. Ershov, S.S. Goncharov, R. Downey,
J. Knight, A.S. Morozov, V.A. Roman’kov, V.P. Dobritsa, N.G. Khisamiev, I.V. Latkin and other authors.

V. Roman’kov and N. Khisamiev proved [1] that the group UT,,(K) of all unitriangular matrices, n > 3, over
a commutative associative ring K with unity, is computable if and only if K is computable (where a computable
ring is defined in the obvious way, following the definition of a computable group). In [2] the same authors
constructed a ring K that is not computable, but the group UT>(K) is computable. Let Q be the additive group
of rational numbers. In [3] A.I. Malcev proved that a subgroup G < Q" is computable if and ounly if G is a
computably enumerable subgroup in (Q",~), where « is a standard numbering of the set of n-tuples of rational
numbers. In [4] it is obtained criteria for computability of torsion-free nilpotent groups of finite dimension and it
is proved the existence of a principal computable numbering of the class of all computable torsion-free nilpotent
groups of finite dimension. In this article we obtain a criterion of computability of subgroups of the group of all
unitriangular matrices UT,,(K) over a computable associative ring with unity.

Our basic references for models, groups and rings are respectively [5-7], of which we adopt terminology and
notations. If in a torsion-free abelian group A there is a finite maximal linearly independent system of elements,
then we say that the dimension of the group A is finite. If a nilpotent torsion-free group G has a central series
whose factors are all abelian groups of finite dimensions, then G is called a group of finite dimension.

Theorem 1. Let (G,v) be a constructive nilpotent torsion-free group of finite dimension, and let

e=Go<G1<... <Gy, =G, (1)

be a central series of G. Then each G; is a computable subgroup in (G, v), for all i < n.
Proof. By induction on i. The claim is obvious for ¢ = 0. Suppose that the claim holds of i, and

9k1,9k25 - - -y Gkmy, s

are elements of GG such that the sequence
Ik1:9k2> -+ Tkmy s
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is a maximal linearly independent system of elements of the quotient Gj, = G /Gr_1, 0 < k < n. Since (1) is a
central series of the group G, the equivalence

ge€Giy1 <= grj-9=9 gx; mod G, (2)

holds, i.e., [gkj, 9] € Gi, for all 0 < k < n, 0 < j < my.
Let my; € w be numbers such that vmy; = gi;. Then (2) yields

sez/_lGiH(:)[l/mkj,z/s] €G;, 0<k<n,0<j<my. (3)

Since, by the induction hypothesis, the subgroup G; is computable in the constructive group (G, v), the right-
hand side of (3) can be effectively verified. From this, the set v"1G;41 is computable, i.e., the subgroup G 1
is computable in (G,v). The theorem is proved.

Corollary 1. If G is a computable nilpotent torsion-free group of finite dimension, then the factors of any
central series of G are computable.

Let K be a computable associative ring with unity, and UT,,(K) the group of all unitriangular matrices over
K, of order n > 2. From any computable numbering 7 of the ring K one can determine a numbering -y, of the
group UT, (K), such that from a ~,-number of a matrix A one can effectively find y-numbers of the elements
of the matrix A.

Theorem 2. A subgroup G of the group UT, (K) of all unitriangular matrices over a computable associative
ring K, whose additive group is torsion-free and of finite dimension, is computable if and only if G is a computably
enumerable subgroup in (UT,,(K),~.), i.e., the set v, G is computably enumerable.

Proof. Let 1 be a computable numbering of G and let

e=Gy<G1<...<Gp, =G,

be a central series such that each quotient G; = G;/G;_1, 0 < i < m, is an abelian group of finite dimension.
By Theorem 1, the set 4~ 'G; is computable. Let

Gi1> 952> -+ Gims

be a maximal linearly independent system of elements in the quotient G;. In each class Gij» 0 < j <m;, we fix
a matrix A;;. Since there are finitely many such matrices, we can assume that y-numbers of the elements of
these matrices are known.

By induction on ¢, we prove that the subgroup G; is computably enumerable in (UT,,(K), V), and from any
number s € " 'G; one can effectively find ¢ such that us = v.t. This is obvious for i = 0. Assume that for i it
has been proved that v, !G; is a computably enumerable set of numbers, and there exists a partial computable
function f;, with domain §f; = u~1G;, such that uk = 7. f;(k), for all k € u=1G;.

By definition of the matrices A;j415, 0 < j < myy1, the following holds: For every k € w, we have that
pk € Gy if and only if there are integers s,t,71,72,...,7m,,,, with ¢t € Gy, such that

(k)" = ATty - AT -t (4)
Suppose that (4) is true. By induction, ut = 7. f;(t). By definition of the numbering . of the group UT, (K), it
follows that from the number f;(¢) we can effectively find y-numbers of the elements of the matrix B = . f;(¢).

Hence from the numbers ry,rs,...,7my,,, we can effectively find y-numbers of the elements of the matrix
Tm'i
C=A,-...- Ai+1;17;+1 - B.

Since UT,,(K) is a nilpotent torsion-free group, roots of elements when they exist are unique, see [6, Theorem
16.2.8]. So, from C we can effectively determine a unique D, and r, such that D* = C, and v.r = D. From
this and (4) it follows that there is an algorithm that lists the 7,-numbers of matrices of the subgroup G;;1,
and from a number k € u~'G;;1 one can effectively find y-numbers of the elements of the matrix pk, hence a
number s such that puk = ~.s, therefore completing the proof of the induction step.

Thus, G,,, = G is a computably enumerable subgroup in (UT, (K), ), i.e., necessity has been proved.

Sufficiency follows from the fact that a computably enumerable subgroup of a constructive group is computa-
ble. This completes the proof of the theorem.
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Let v1 and v5 be two computable numberings of the group G. Then say that vq is m-reducible to vs if there
is a computable function f such that vyn = v f(n), for all n € w. If all computable numberings are m-reducible
to each other, then the group is called computably stable.

From the proof of the previous theorem we have:

Corollary 2. If G is a computable subgroup of the group UT, (K) over a computable associative ring K
with unity, whose additive group is torsion-free and of finite dimension, then any computable numbering of the
group G is m-reducible to the numbering 7. of the group UT, (K).

Corollary 3. Any computable subgroup of the group UT, (K) over a computable associative ring K with
unity, whose additive group is torsion-free and of finite dimension, is computably stable.

Corollary 4. A subgroup G of the group UT,,(P) of all unitriangular matrices over a field P of finite degree
and of characteristic 0, is computable if and only if G is a computably enumerable subgroup in (U7, (P), V).

Corollary 5. If G is a computable subgroup of the group UT, (P) over a field P of finite degree and of
characteristic 0, then any computable numbering of G is m-reducible to the numbering ~, of the group UT,,(P).

In particular, Corollaries 4 and 5 are valid when P is the field of rational numbers.

Let K be a computable associative ring with unity, whose additive group is torsion-free and of finite
dimension, let G be a subgroup of the group of unitriangular matrices UT,, (K), and let

e=Gy<G1<...<G, =G, (5)
be a central series of it. Let us fix some maximal linearly independent system
Ait, Ainy -y Aim,
in the quotient G; = G;11/Gy, i < n. Let

Si(G) = {{vio, i+ Qi )| ovij € Z,j <my, & IB € Gy(B™" = A" ... A1)

Using this notation, we introduce the following

Definition 1. We say that a subgroup G is pure in UT,(K) with respect to the central series (5), if for
every i < n and sequence (o, i1, , Qim,) € Si(G), and for every element ¢ € G; the following is true: From
solvability of the equation z®0 = A" .. .- AZZ:” - ¢ in the group UT, (K), it follows solvability of this equation
in G.

Let v be a computable numbering of the ring K, and let . be a numbering of UT,, (K), defined through =,
so that from any number n € w we can effectively find v-numbers of the elements of the matrix «,n. Then we
have

Theorem 3. Let G be a subgroup G < UT,, (K), and let (5) be a central series of it, such that the following
are true:

a) all factors of the series (5) are computable;
b) G is pure in UT,(K) with respect to the series (5).

Then G is a computably enumerable subgroup in (UT,,(K), v« ).

Proof. By induction on i, we prove that the subgroup G; is computably enumerable in (UT,,(K),~.). The
claim is obvious for 7 = 0.

Assume that G; is a computably enumerable subgroup in (UT,,(K),7.). Since the dimension of the quotient
Gi11/G; is finite, then there is a finite sequence of matrices

Ai17Ai27"')Aim1,)

such that the cosets . _
A, Aigs o A, (6)

form a linearly independent system in the quotient G; = G;41/G5, i < n. Since G; is computable, then the set
of all sequences of integers
Q1

S; = {(aio,ai1,~ .- ,aimi>|3§ S éi(Eaio = Ail S -Z?,;T’i),aij €Z,j < mi}

is computably enumerable. We prove that the following equivalence is true:
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S € ’7:1Gi+1 = (UTn(K),’y*) ': E|<Ozio, .. .,aimiﬁlr (S ’7;1Gi;

({0, i1y -+, Qi) € S & (748)¥0 = A - ... AZ;:? SYaT)- (7)

(=.) Let s € v, 'Gij1 and B = 4,s. Since (6) is a maximal linearly independent system of elements of the
quotient G, then there are a sequence of integers (a;o, i1, -+ , Qim,;) and a matrix C' € G; such that

B0 = A%t AL C (8)

Hence, it follows that the right-hand side of (7) is true.

(«.) Assume, now, the right-hand side of (7), and suppose that B = 7.s, v« = C € G;. Then we have (8).
Hence, by purity of the subgroup G in UT, (K) with respect to (5), and uniqueness of roots in UT, (K), we
have that B € G, and therefore B € G;41, as desired.

We show that by the equation (8) the elements of the matrix B can be effectively identified. Indeed, from a
number r, we can effectively determine y-numbers of the elements of the matrix v, = C. Since the number of
matrices A;; is finite, we can assume that y-numbers of the elements of these matrices are known. From this,
we find effectively v-numbers of the elements of the matrix in the right-hand side of (8). By uniqueness of roots
in UT,(K), we can find y-numbers of the elements of the matrix B such that (8) holds, and therefore we can
find also a 7,-number of the matrix B.

From this and (7), by the induction hypothesis we get that G;;1 is a computably enumerable subgroup in
the group (UT,,(K),7«). The induction step, and thus the sufficiency of the theorem, has been proved.

Corollary 6. Suppose that G < UT,,(K) is pure in UT, (K) with respect to the central series (5). Then the
group G is computable if and only if the factors of the series (5) are computable.

Corollary 7. If G is pure in UT,,(K), then it is pure with respect to any central series of it.

From this and Corollary 6, it follows.

Corollary 8. Let G < UT,,(K) be pure in UT,,(K). Then the group G is computable if and only if all factors
of some central series of it are computable.
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P.K. Trosrobeprenes

CakmHaJJarbl 0apJIBIK YHUYIIOYPBHINTHEI MaTPUIIAJIAP TOOBIHBIH,
ecenTeJIiHEeTiH iMTONTaphl TyPaJIbl

Maxkasasia Herisri Mmocesesep perinze Kaugaii ma 6ip TonTap KaacTapbl YIIiH KOHCTPYKTUBU3AIIUSAHBIH, 6ap
GOJIYbI, XKAJIFBI3BIFBI YKOHE YKAJFachl KAPACTBIPBUIILI. AJINOPUTMIED TEOPUSICHIHBIH, JaMybiHa OailjaHbIC-
THI aJITe0PAJIBIK, YKYHeIep i MaHbI3/IbI KIACTAPBIHBIH €CENTETIMIITIK MoceIe/IepiH eyl 3epTTey O3eKTi
Mocesesnepiy Gipine aitHanapl. CakuHAIAFbl YHUYHIOYPBIIITE MATPHUIAJIAD TOOBI HUJIBIIOTEHTTI TOITAD
KJIACTAPBIHBIH, KJIACCUKAJIBIK, OKI1JII OOJIBIIT TaOBLIa bl KOHE KOITEreH KOJIIAHBLIBIMIAPhl TeK KaHa TOITap
TEOPUSACHIHIA FAHA €MEC, OHBIH KOCBIMIIAJIAPHI YIIIH JIe MAaHbI3/Ibl OPLIH ajfaH. ABTOD ecenTesiHeTiH acco-
aTuBTl cakuHaIarsl 6ipiiknen UT, (K) 6apsblk, yHRYIOYPBIITH MATPUIIAIAD TOOBIHAAFHl €CEITE ML
imronTapplH 00JIy KPUTEPHIliH ajraH.

Kiam ceadep: Homipiiey, yHUYIIOYPBIIITHl MATPHUIAIAD TOObI, KOHCTPYKTUBTI TOII, HUJIBIIOTEHTTI TOI, aJl-
TOPUTM TEOPUACHL.

P.K. Tromobeprenes

O BBIYMCJUMBIX MOATPYNNAX I'PYIIIHI BCEX YHUTPEYTOJbHBIX
MaTpUILl HAaJ| KOJIBIIOM

OcHoBHBIMY NIPOGJIEMAMU CTATBU SIBJISIIOTCS IPOOGJIEMBI CYIIECTBOBAHUS, €IMHCTBEHHOCTH ¥ IIPOJIOJIXKEHUS
KOHCTPYKTHUBU3AIUHU JIJII TeX WA WHBIX KJIACCOB I'PYHIl. B CcBaA3M ¢ pasBuTHEM TEOpUH AJTOPUTMOB aKTY-
AJbHBIM SABJISIETCS MCCJIEIOBAHNE TPOOJIEM BBIYUCINMOCTH BAXKHBIX KJIACCOB aarebpamvdecKux cucreM. I pyri-
Il YHATPEYTOJIbHBIX MaTPUI] HaJ[ KOJIbIIOM COCTABJIAIOT BarKHbBII KJIaCC HUJIBIOTEHTHBIX I'PYIII, IMEIOIIni
MHOTOYUCJ/IEHHbIE TPUMEHEHUsI KaK B CAMOI TE€OpUHU T'PYII, TaK U B €€ MPUJIOXKEHUSIX. ABTOPOM IOJIyYeH
KPHUTEPHH BLIYUCIUMOCTHU TOArPYIIILI IPYIIBI BCEX YHUTPEYToabHbIX Marpur, UT, (K) Haj BBIYUCIAMbIM
aCcCOIMATUBHBIM KOJBIIOM C €IUHUIIEH.

Karouesvie caosa: HyMepalys, 'pylla YHUTPEeYTOJIbHBIX MaTPUIl, KOHCTPYKTUBHaA I'PYIIIa, HUJIBIIOTEHTHAas
noArpyiIia, IOArpymnia, paruoHaJbHOE YUCJI0, TEOPUA aJrOpuTMOB.
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