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On the application of mathematical methods
for the research of vibration processes in mechanics

Article represents the study of applied problems of mathematics, whose mathematical modeling leads to
boundary problems for equations in partial derivatives. Mathematical methods, applied to these models,
enable to obtain exact analytical results. Detailed result is represented for boundary problem of oscillations
of thin structures with boundary conditions in general terms. Application of spectral decomposition for
sufficiently smooth function, characterizing the membrane deviation from equilibrium state, enables to
define exact analytic representation of inflection function for studied problem. To calculate multilayer
plates, method of finite elements is applied.
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Integral instrument of mechanician, which is impossible to work without, is the wide range of mathematical
methods, applied in mechanics.

Boundary problems for equations in partial derivatives, closely related to study if mechanical problems,
became especially urgent due to developing extent of their application. Differential equations appear naturally
at study of problems of classic mechanics, mechanics of continue, acoustics, optics, hydrodynamics, etc., at
modeling of oscillatory processes, deformation processes, transportation processes, heat and weight exchange
processes, dynamics, demolition, etc.

Thus, boundary problems for equations of mathematical physics are successfully applied, for example, in
description of motion of continuum, where main equations of mechanics of continue are shown, which represent
mass conservation law, energy conservation law, impulse law and law of conservation of angular momentum,
peculiar for every physicist.

We consider the partial differential equations that describe mathematical models of mechanical and physical
phenomena. We often use the second order partial differential equations of hyperbolic type in the problems of
oscillation theory and we apply the parabolic equations in problems of mechanics, where the characteristics of
the various elements of constructions are investigated under the influence of different temperatures [1].

We consider the partial differential equations that describe mathematical models of mechanical and physical
phenomena. We often use the second order partial differential equations of hyperbolic type in the problems of
oscillation theory and we apply the parabolic equations in problems of mechanics, where the characteristics of
the various elements of constructions are investigated under the influence of different temperatures [1].

Method of Riemann functions, integral transformations, method of partition, finite elements method and
other mathematical and numeral methods are effectively applied in different spheres of exact sciences, including
problems of mechanics, such as dynamic problems for taut space, problems of fluid dynamics and its relations
with elastic bodies, problems of oscillatory processes, etc.

Equation, defining the distribution of elastic waves in prismatic bar, whose longitudinal motions of points
does not depend on coordinates in its cross section, and extension rigidity is the same that is in statics, and has
the following type [1]

pFutt — EFU;EI = Q(t, 1’),

where u — moving; F' — cross section area; ) — external axial load.
In the simplest cases, such as in problem of longitudinal oscillations of the bar, modeled by equations

Utt — a2umw = Q(ta x)a um(ta 0) = 07 'LL(O,{E) = So(x)a ut(ovx) = 1/)(95)7 0< t, x < 00,

at application of integral cos-transformation [2], result may be obtained in evident analytic form
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Plane problem on longitudinal ambulatory plate distortions is defined with the following equations [1]
Vit — Vgg — (1 - 262)wz = QO;

Wit — w,, + 3w+ 3(1 — 2¢?) v, = 0;

1
_1 e
Q02_/1Q(t7l',y)dy, C\/;v

where v,w — wave velocity in continuum; g — Lame’s constant.
Considering that axis stresses, averaged in cross-section o,z are defined with equation

Ope = Vax + (1 = 2¢%)w,

for infinite plate at

QO = 25(’1:)7
which corresponds to compression of the right part of plate (z > 0) with single force and strain of left part with

the same force (x < 0), and after application of Laplace transformation under ¢ and Fourier transformation
under z [3] and applying asymptomatic representations at reversion, we obtain

U]
1 . 1—d?
02T N —3 + /AZ(T)dT —Jo ( 6mt(t - x)),
0
n:(x—ct)[<1+62—d2 ;)} ;
E
2 _
CEaoe

where Ai(1) — Airy stress function; Jo(z) — Bessel function.
Consider the problem of vibrations of the infinite rod [1]

Ugg — Uyy + QU + buy + cu =0, —00 < x <00, 0 <y <oo; u(x,0) = p(x), uy(z,0) = g(z).
Using the method of the Riemann function [1], we find

w(o.y) = {w(:v—y)-e‘wy+w(w+y)-e‘“§”y}_

2
z+y 5%
_%e%y / {Zjo(x/av (z—¢)2—y?) — \/ayjl(\/iv Exc)_;_) y; = } cem 2 p(qde+
B Ty
lfy 2 2 5 (z—s)
3 [ (VavE=aT =) e g,
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Applying the Laplace transformation [2] to the more general problem for the wave equation
Uy = @2 Uy + u+ fx,y), —00 < x < 00, 0 <t < o0; u(z,0) = @(x),u(z,0) = g(x),
we receive the solution in the analytic form

u(z,t) = % . / 9(s) 1o (c t2 — @;;P) de+

x+at

z+at I <c 2 (fr;)Q)
r —at)+ o(x+ at ct @
i )Qso( )+%,/@(g)

t z+a(t—T)

+% : /dt / f(s, 7)o <c\/(t —7)% - (Cca_;)j ds.

0 z—a(t—T)

The boundary value problem for the heating of the infinite rod [1]

0 2.9, ,0
a—?:%-%(:ﬂ”a—z), 0<z<o00,0<t<oo; u(0,t)=¢(t),u(co,t) =0,u(z,0) =0,

by applying the mathematical methods [3] has the following solution of this problem

" / OF <f§:>f(<? myn (‘42)) "

Among thin structures, which combine lightness with high durability, we can emphasize film-type and
membrane constructions. Thin structures (films, membranes, coatings, etc.) may be applied in all the spheres
of manufacture and human life support.

In all the spheres of human life technical and economical problems are tried to be solved on the base of
films, membranes and coatings. These are problems of friction and wearing, problems of corrosion and erosion,
problems of absorption of waves of specified range, problems of protection from high temperatures and fire,
problems of protection from viruses and bacteria, problems of mechanisms, products and water conservation,
disinfection, etc.

Creation of new films, membranes and coatings with specified operating characteristics is one of perspective
directions of mechanics development.

To create new films, membranes and coatings with specified operating characteristics and durability, it is
necessary to study temperature-time, mechanic (including oscillatory), chemical and other impacts may cause
the demolition processes in material structure, that is why necessary characteristics of films, membranes and
coatings are provided mainly by calculation of influence of such impacts on durability and material characteristics
necessary for exploitation [4].

Oscillatory process of plane thin structure (membrane) is described with the following equation in second-
order partial derivatives [5]:

Uty = % (Ugy + Uyy), (1)

where a?> = Z; T — tension on a membrane; p — membrane density.

Let us study plane uniform rectangular membrane, edge-fixed, with legs b and ¢ in plane XOY, 0 <z < b,
O<y<e

Membrane inflection function, i.e its derivations from equilibrium state in point x,y at the moment of time
t, shall be denoted with u(x,y,t).

Let us study the process when membrane oscillation is caused by specified primary deviation and specified
primary velocity.
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To find the function u(x,y,t) we have the following boundary value problem: find the solution of the
oscillation equation (1) in the region 0 < z < b, 0 <y < ¢, t > 0 under the initial conditions

u(,y,0) = ¢(z,y); (2)
ui(,9,0) = ¢ (z,y), 3)
and boundary conditions
a1u(0,y,1) + B1us(0,y,t) = 0, azu(b,y,t) + Baus (b, y, t) = 0; (4)
mu(z,0,t) + 01uy(z,0,t) =0, you(z, c,t) + Oouy(z, c,t) =0, (5)

where ¢ and 1 are given functions; aq, 5;, i, 8; are given numbers and
af + 87 £ 0,77 + 607 #£0,i=1,2.
The solution of problem (1)—(5) is founded by Fourier method in the form function, not identically zero
u(@,y,t) = v(z,y) - T(t). (6)
Substituting (6) into (1) and dividing the variables, we obtain

T  Ugz t+Uyy

AT 7 @)

where o is constant of separation of variables, which for convenience of calculations we take with a minus sign,
without assuming anything about her sign.
From (7) we obtain the differential equation for the

T +a?cT =0 (8)

and the following boundary-value problem for the function v(z,y)

Vga + Vyy + o = 0; 9)
a1v(0,y) + B1v:(0,y) = 0, agv(b,y) + Bavz (b, y) = 0; (10)
mv(z,0) + 61vy(x,0) = 0,v2v(x, ¢) + Ozvy(z,c) =0, (11)

where the boundary conditions (10), (11) are obtained by direct substitution (6) into (4), (5).
To solve problem (9)—(11), we again apply Fourier method. The solution of the boundary value problem
(9)—(11) will be sought in the form

v(z,y) = X(2) - Y(y), (12)
where the function v(z,y) # 0. We substitute (12) into (9) and divide the variables

—— —0=-n, (13)

where 7 is constant of separation of variables. From the relation (13) and from the boundary conditions (10), (11)
we obtain for the definition of the functions X (z) and Y (y) the following one-dimensional spectral eigenvalue
problems, where 7 =0 — 7

X7 +nX =0;

a1 X(0) + £1X(0) = 0;

s X (B) + BoX'(b) = 0;

Y47 =0;
7Y (0) +61Y'(0) = 0; (14)
Y (c) + 02Y'(c) = 0.

Note. We consider the problem for the differential equation with a parameter v
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7 +v-X =0;
h1Z(0) + g12'(0) = 0; (15)
haZ (1) + g2 Z'(1) = 0;

where Z = Z(2);0 < z < l;¢;(i = 1,2) — given number, and define under which parameter values of v problem
has a nontrivial solution.

Under direct calculations [5] obtained that the problem (15) have nontrivial solution in following cases:
1) v = 0 under the condition
grha — hi(hal + g2) = 0; (16)

2) v <0.

In remark spectral problems (14) have eigenvalues and eigen functions, 7 = 7 = 0 if under performance of
condition (16) for matching parameters and n < 0, 7 < 0.

We introduce the notation = A2, 7 = 2, then problem (14) will take of the form

X7 4+ XX = 0;
a1 X (0) + 41.X'(0) = 0;
@ X (b) + B2 X' (b) = 0;

Y? + pu?X =0;
7Y (0) 4+ 61Y’(0) = 0; (17)
1Y (¢) + 6:Y'(c) = 0.

If spectral problems solved (17) we obtained that eigenvalues of problem (17) is A1, ...A\p, ... and g1, ...ftm, ...

equation

(a2f1 — a1 B2)A e = (7201 — 1102) 1
aras + 15202 vy — 016202

root respectively, and eigen functions is function with view as

tgA\b =

Xn(x) = Ap(B1An cos Ay — aq sin Ay ), Vi (y) = B (01 pm COSmy — V18I0 y). (18)

o =7+n =M+ pu? considering 7 = o — 7 from (14). So, we obtained that eigenvalues o, , = A2 + u2,
correspond eigen functions according to (12), (18):

Unm, (33, y) = Xn(x)Ym (y) =Anm (ﬁlAnCOS)\nx — (1 COs )\nx)(ollumcoslumy - 715inﬂmy)a (19)

where A,,, = A, - B,, — constant. Choose it in such a way as to norm of function wv,,, with weight at 1 was
total 1 that is to say function orthonormaling

b ¢ b c
//v?lmdxdy = Aim (B1An cos A\pz — ag sin )\nac)Qdm . /(Qlum COSy, Y — Y1 SiD Y )dy = 1;
00 0

0

A, = ! . (20)

b c
\/f(ﬂl An €08 A\p@ — a1 Sin A 2)2dz - [(Ogftm COSp Y — V18I0 fy ) dy
0 0

Calculation of coefficient A,,,, is time-consuming and impractical in general cases according to the formula
(20). Notably easy and rational way of calculation of coefficient A,,, is calculate in each concrete cases of
border-line conditions spectral problem, in contrast with using awkward-to-handle and difficulty-memorizing
formula, which was gotten under integral calculation in (20).

Return to original problem (1)—(5). From (19) we have

Unm (2, Y) = Apm (B1Anc0sAnz — a1 €08 Apy) (01 b COSLmY — 718N mY),
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where coefficient A,,, is ccalculated in each concrete cases of border-line conditions. Find the general solution
of equation (8) with or,, = A2 + u2

Tom (t) = Cpm €08 aV/0rmt — Dy, sinay/ o,

where Cy.pn, D,m — the arbitrary constant.
Returning to the original problem (1)—(5), we obtain that the particular solutions according to (6) will have
view

Unn (T, Y5 1) = Upn (@, Y) * T (8) = Vnn (2, Y) (Cram €08 /Tt + Do, $in ay/ 0 t).

According to the superposition solution of the equation (1) with the boundary conditions (2), (3) have view

u(z,y,t) Z Z Unn (2, Y) T i i (Chrim cos avopmt + Doy sin av/opmt) - tpm (z,y). (21)
n=1m=1

n=1m=1

Using initial conditions (4), (5), correlation between (21) and property of wy,,, function orthonormaling, we
find value of constant C,,,, and D,,.

SIS b c
I y’ Z Z "mu"m T y) (p(xay)7 = Cn7n//§0(93,y)unmd17dy7
00

n=1m=1

u(z,y,0 Z Z Do/ Crmtinm (2, y) = ¥(z,y), =

n=1m=1
b ¢
// (@, y)unm (x, y)dxdy.
0

So then we get analytical form of problem solving (1)—(5):

:>Dnm:

(o) o)
u(z,y,t) Z Z (C — nmcosar/Tnmt + Dpmsina/o,mt) - upm (2, y),

n=1m=1

where
Unm (2, Y, ) = Apm (B1Ancos Az — a1 cos Ay @) (01 fbm COS by — Y1510 fmY);

My oy Ans oon - is equation root tg\b = @2fi=af2)x,

ajaz+PB162A2 7
) . — (r201i—mby)p
U1y ooy by --. - 1S €quation root tguc = 172+ 01O
1
Anm =

b c ’
\/f(ﬂl)\n o8 \p@ — ay sin Ay )2dx - [(01 ftm COSpy y — Y1 8I0 iy )dy
0 0

b ¢ b ¢
1
— / / (&)t (. )y, Do =~ / / D@, Y i (2, y)derdy.
0 0 0 0

So then we get analytical solution of boundary-value problem, which describe fluctuation of beamless plate
structure for general cases of border-line conditions. Boundary-value problems and equation in partial derivative
is ubiquitous in mechanics of continua, liquid mixture, beamless plate structure, introduction to fracture
mechanics, shape memory alloy mechanics, differential modeltheory of viscoelasticity, theory of hereditary
elasticity, flow theory and in other mechanic fields [1].

The remarkable thing is that the similar boundary-value problem as investigating problem above, can
describe different processes in varied fields of knowledge such as mechanic, physics, chemistry, biology, economics
etc, insomuch as mathematical modeling various processes lead to the same tasks under using basic conservation
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law (energy, mass, particle number). Analytical solution could be used in applied problem of variety science,
which have result as represented boundary-value problem under mathematical modeling, in adding number with
border-line conditions in general view.

Finite elements method be able used for calculating multilayer plates under inability getting accurate
analytical solution [6]. Following calculation formula as a result of using basic classical correlation for displacement,
voltage, balance equation for multilayer plates, is [7]:

— for contact conditions in stratum boundary, for voluntary constant

uiTt =i, Heioi(ai-1) = Hei(ai-1);

0 0 0 0 0.
Cioi—ai1 =01 —ai—1, Gy =CF =C7;

Tli??l = ngv EOH2¢i71(ai71) = EOHQz/Ji(ai,l);

a?_ a2
Air = bia (G - 2 L) =AY = Bi(COaiy — 2 -)i

oy ' =03, EgH%0i1(aim1) = EoH’0(ai—1);

2 3 2 3
BY .y — AL+ Bina (O, =2 =) = BY — A + (P22,
— for voluntary constant
. Bn =Y (Br— Br-10i_1) ; L
0 = 3 k:nQ , AV =" Z(ﬂk — Br—1)ap—1 — B} Z(ﬁk — Br—1)az_y;
Bn — Z(ﬁk — Br—1ak-1 h=2 h=2
k=2
0 i 0 0 0 g 2 1 ¢ 3
B; = Z(Ak —Apq) — o Z(ﬁk — Br-1)ap_1 + A Z(ﬁk — Br—1)@_1;
k=2 k=2 k=2

— for internal effort

" W EoH?

M = t2zdz = -DCg——5, D= ;
/ Ta T
a;—1
Cr =123 { Do (2~ at ) - goutat - i)}
i=1
n W
Q=> / Tiadz = DAg—— (22)
i=1 !
Qi —1

N d*w D*W
o} =q= EgH?5,(1) e = DBBTx%;

B =126,(1), Cs = Ag.
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Calculation of multilayer plates under given algorithm|[7], where resolving equation have view:

d*W
DBg—— =
B dlel q,
introduce proportion 7; = gé ; were Dy — basic plate modulus one of layer, which is chosen the first from below;

D; — plate modulus of other layers.

Then integral parameters C;, and A, adding as multiplierin basic formula of finite elements, which calculated

by formula (22), but with an allowance instead.

F=C,K-V, M=-C,B-V, Q=—A,C-V, [3].

Cooperative using analytical (for example,integral transformation) and numerical methods is quite often

effective for solution multidimensional problems of mechanic, under this possible take results where any one of
them in separateway are practically powerless.
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["'A. Ecenbaena, K.C. Kyrumos, 2K.P. Caxunosa, O.2K.Copcenbex

MexaHuKaJarbl TepOeMelti IIporecTepil 3epTTey Ke3iHie
MaTeMATUKAJIBIK, 9JIicTep/Al KOJJAaHy KOCBIMIIIACHI TYPAJIbI

Maxkanana Kommanba bl MEXAHUKA €CeTePi MEH TaIChIPMAJIAPBIH 3ePTTEY KYMBICTAPBI KOPCETLITEH, OIap-
JIbl MATEMAaTUKAJIBIK, MOJIEJIbIEY JepOec TybIHAbLIAD TeHJIEYJIepiHe MEKTIK ecenrepre 9Kesedi. ApHaibl MO-
Jesbiepre Koca OepijireH MaTeMaTHKAJIBbIK TOCIIIep 63 Ke3eTriHae aHAJTUTUKAJIBIK, HAKTHI IIeITiMIEPI] aJIyFa
MYMKIHIIK 6epemi. 2Kaamer Typze ImeKTec mapTTapMeH Koca KYKabyHip/ai KypblIbIMIap TepOestici meTki
ecebi yIIiH HAKTHI IIemnM ajiyra 6osiazbl. Teric dyHKIMS YIIIH CIIEKTPAJIbI bIABIPAY/Ibl KOJIAHY Tere-
TeHJIK JKarJailylapblHia MeMOpaHasIapblH aybITKYbl CHIATTAJIIbI, OJI 3€PTTEJIETIH ecell YIIH (QpyHKIHA-
JIapJBIH, ULy Ke3iHJe HAKThlI KYHiH aHbIKTayFa MYMKIHIIK Gepemi. KenmkabarThl maacTHHAJIAPILI €CEIITEY
YIIIiH MIEKTIK 3JIeMEHTTED TOCLI NaliJaHblIFaH.

Kiam cesdep: Tepbemnicrep, *KyKaOyiip/i KypbLIBIMIAP, OPTOHOPMAaJIaHFaH QYHKIUs Kyiieci, niny dyHK-
[USICHI, KOMTKAOATTHI IJIACTUHAJIAP.
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["'A. Ecenbaena, K.C. Kytumos, 2K.P. Caxunona, A.ZK. Capcerbex

O IIPMJIO2KEHN MaTeMaThn4YeCKNX METOJ0B K MCCJIeJJOBAHUIO
KoJiebaTeJIbHbIX IIponeccoB B MexXaHUuKe

B crarpe mpeacraBieno mcciemoBaHMe MPUKIAIHBIX 33739 MEXAHUKH, MATEMATHIECKOEe MOJIEIMPOBAHUE
KOTOPBIX IIPUBOJUT K KPAEBbIM 33/1a49aM ISl YPaBHEHHII B YACTHBIX IIPON3BOAHBIX. MaTemaTnyeckne MeTo-
JTbI, TIPUJIOYKEHHbIE K JAHHBIM MOJIEJISIM, TTO3BOJISIIOT MOJIYYUTh TOYHbIE aHAJUTHYECKHE pemrenusi. [1oapoo-
HOE DeIlleHre MPeJCTABICHO /I KPAeBOi 3aJa9Yu KOJIEOAHN TOHKOCTEHHBIX KOHCTPYKIUN C TPAHUIHBIMU
yciaoBusiMu B o0mieM Buze. Vcrnosnb30oBaHne CIIEKTPAJIBHOIO PA3JIOXKEHHS IS JIOCTATOYHO IVIAJIKON (PYyHK-
MY, XapaKTEePU3YIOIIell OTKJIOHEHNE MEMOPAHBI OT MOJIOYKEHHsI PABHOBECH S, TIO3BOJISIET OTPEIETUTh TOTHOE
AHAJIMTUYIECKOE TIPeJCTaBIeHne MYHKINNA Tporuda Ijist uccaemayeMoil 3agaqun. s pacaera MHOTOCTIOMHBIX
MJIACTUH UCIOJIb30BaH METOJl KOHEYHBIX 3JI€MEHTOB.

Karoweswie crosa: kosiebanmsi, TOHKOCTEHHbIE KOHCTPYKIIMN, ODTOHOPMHUPOBaHHAs cucTeMa (pyHKIWuil, DyHK-
ust Iporuba, MHOIOCTOWHDIE IJIACTHHEL.
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