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This study presents a computational method for the singularly perturbed parabolic differential difference
equations with small negative shifts in convection and reaction terms. To handle the small negative shifts,
the Taylor series expansion is applied. Then, the resulting asymptotically equivalent singularly perturbed
parabolic convection-diffusion-reaction problem is discretized in the time variable using the implicit Euler
technique on a uniform mesh, while the upwind method on a Shishkin mesh is used to discretize the space
variable. Almost first-order convergence was achieved by establishing the stability and parameter-uniform
convergence of the method. The Richardson extrapolation approach improved the rate of convergence to
nearly second-order. Numerical experiments have been carried out in order to support the findings from the
theory. The numerical results are presented in tables in terms of maximum absolute errors and graphs. The
present results improve the existing methods in the literature. This finding highlights the efficiency of the
method, paving the way for its application in other types of singularly perturbed parabolic problems. This
method is capable of greatly improving computing performance in a variety of scenarios, which researchers
can further explore.
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Introduction

In singularly perturbed differential equations, the highest-order derivative term in the differential
equation is multiplied by a small perturbation parameter ε (0 < ε � 1). Various numerical solutions
have been developed in the literature for a singularly perturbed parabolic problem with general shift
arguments in the space variable in [1], retarded terms in [2–4], delay and advances in both reaction
terms, differential-difference equations [5–7], functional-differential equations in [8–10]. Some numeri-
cal techniques have been devised in [11,12] to solve a singularly perturbed parabolic problem with delay
in the reaction terms. Authors in [13–16] developed the numerical solutions for singularly perturbed
parabolic differential equation with negative shifts in convection and reaction terms. Recently, au-
thors in [17] considered and solved singularly perturbed partial functional-differential equation. Some
numerical methods are devised in [18–20] to solve different types of singularly perturbed parabolic
problems.

Therefore, the main purpose of this study is to construct an improved numerical method using
implicit Euler method for time direction and upwind method on a Shishkin mesh for space direction
together with Richardson extrapolation technique to solve the following singularly perturbed parabolic
differential equation with negative shifts in convection and reaction terms

Lε,µu ≡ ut − εuxx + r(x)ux(x− µ, t) + s(x)u(x− µ, t) = f(x, t), (1)
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with the initial data
u(x, 0) = φb(x), x ∈ Ω̄, (2)

and the interval-boundary data{
u(x, t) = φl(x, t), (x, t) ∈ [−µ, 0]× Ωt,

u(1, t) = φr(1, t), t ∈ Ωt,
(3)

where (x, t) ∈ D = Ωx × Ωt = (0, 1) × (0, T ] and D̄ = Ω̄ × Ω̄t = [0, 1] × [0, T ] for some positive
number T > 0. The parameter ε is a perturbation parameter such that 0 < ε � 1, while the
positive parameter µ is a small delay parameter (or negative shift) fulfilling µ < ε. It is assumed
that r(x), s(x), φb(x), φl(x, t), φr(1, t) and f(x, t) are sufficiently smooth and bounded to ensure the
possibility of a particular solution, and that s(x) satisfies

s(x) ≥ β > 0, x ∈ Ω̄,

for some constant β. Note that (1) contains negative shifts in the convection and reaction terms. When
µ = 0, (1) would reduce to the singularly perturbed parabolic differential equation. With a small ε,
we observe layers that rely on the value of r(x). We are interested in a related class of problems where
both the convection and reaction terms have negative shifts, making it a two-parameter problem. A
regular boundary layer appears in the region of the left boundary when r(x) < 0, and a boundary layer
is located close to the right when r(x) > 0.

1 The continuous problem

It is reasonable to use the Taylor series approximation for terms involving delay in the case
µ < ε [21]. Now, approximating u(x− µ, t) and ux(x− µ, t) yields the following

u(x− µ, t) ≈ u(x, t)− µux(x, t) +
µ2

2
uxx(x, t) +O(µ3),

ux(x− µ, t) ≈ ux(x, t)− µuxx(x, t) +O(µ2).

(4)

Plugging (4) into (1)–(3), we obtain an asymptotically equivalent time-dependent singularly perturbed
convection-diffusion-reaction continuous problem of the following form

Lcεu ≡ ut − cε(x)uxx + q(x)ux + s(x)u(x, t) = f(x, t), (x, t) ∈ D, (5)

with the initial condition
u(x, 0) = φb(x) ≥ 0, x ∈ Ω̄x, (6)

and the boundary conditions

u(0, t) = φl(t), u(1, t) = φr(t) ≥ 0, t ∈ Ω̄t, (7)

where cε(x) = ε − µ2

2 s(x) + µr(x) and q(x) = r(x) − µs(x). With α and β being the lower limits
for r(x) and s(x), respectively, we assume that 0 < cε(x) ≤ ε − µ2

2 β + µα = cε. We make the
supposition that q(x) = r(x)−µs(x) ≥ γ > 0, which suggests the presence of a boundary layer close to
x = 1 with width O(ε). The compatibility condition at the corner points, along with the smoothness
of φl(t), φb(x), φr(t), can guarantee the existence and uniqueness of the solution for (1)–(3). We
now offer bounds on the derivatives of the solution of (1)–(3). To get the bounds, one needs certain
information about the solution.
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Lemma 1. The solution u(x, t) of (5)–(7) satisfies

|u(x, t)− φb(x)| ≤ Ct,
|u(x, t)− φl(t)| ≤ C(1− x), (x, t) ∈ D̄,

where C is a constant independent of cε.

Setting cε = 0 in (5)–(7) gives the reduced problem as
∂u0

∂t + q(x)∂u
0

∂x + s(x)u0(x, t) = f(x, t), (x, t) ∈ D,
u0(0, t) = φb(x), x ∈ Ω̄x,

u0(0, t) = φl(t), u0(1, t) 6= φr(t), t ∈ Ω̄t.

(8)

The solutions u(x, t) of (5)–(7) and u0(x, t) of (8) are extremely similar for small values of cε. In order
to show the bounds of the solution u(x, t) of (5)–(7), we assume φb(x) = 0 without compromising
generality. Since φb(x) is sufficiently smooth, using the property of norm, we prove the following
lemma:

Lemma 2. The bound of the solution u(x, t) to (5)–(7) is given by

|u(x, t)| ≤ C, (x, t) ∈ D̄.
Proof. From Lemma 1, we have

|u(x, t)− φb(x)| ≤ Ct.

From triangular inequality, we have

|u(x, t)| − |φb(x)| ≤ |u(x, t)− φb(x)| ≤ Ct.

This implies that
|u(x, t)| ≤ Ct+ |φb(x)|, (x, t) ∈ D̄.

Since t ∈ [0, T ] and φb(x) is bounded, we have

|u(x, t)| ≤ C,

which is the required result.

The problem (5)–(7) satisfies the following maximum principle.

Lemma 3. Let Θ be a sufficiently smooth function defined on D which satisfies Θ(x, t) ≥ 0,
∀(x, t) ∈ ∂D. Then, LcεΘ(x, t) ≥ 0, (x, t) ∈ D implies that Θ(x, t) ≥ 0, ∀(x, t) ∈ D̄.

Proof. See [16].

For the solution of (1), the above maximum principle immediately leads to the stability bound.

Lemma 4. The solution u(x, t) of the continuous (5)–(7) is bounded as

|u(x, t)| ≤ max {|φb(x)| , |φl(t)| , |φr(t)|}+
‖f‖
β
.

Proof. We define two barrier-functions $± as

$±(x, t) = max {|φb(x)| , |φl(t)| , |φr(1, t)|}+
‖f‖
β
± u(x, t).

Evaluating the barrier functions at the initial and boundary conditions, the required bound follows.
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Theorem 1. [22] For 0 ≤ l ≤ 2, 0 ≤ k ≤ 3, 0 ≤ l+ k ≤ 3, the solution u(x, t) of (5)–(7) is bounded
by ∣∣∣∣∂l+ku(x, t)

∂xl∂tk

∣∣∣∣ ≤ C (1 + c−lε e
−γ(1−x)/cε

)
.

Stronger bounds should be derived using Shishkin-type decomposition because the bounds on the
solution’s derivatives are not sufficiently sharp for the proof of uniform convergence. This can be
achieved by decomposing the solution u as

u = v + w,

v is a regular component and w is a singular component. The solution of the non-homogeneous equation
is the regular component v{

Lcεv(x, t) = f(x, t), x ∈ D,
v(0, t) = 0, t ∈ Ωt, v(x, 0) = φb(x), x ∈ Ω̄x,

and the singular component w represents the homogeneous equation’s solution
Lcεw(x, t) = 0, x ∈ D,
w(0, t) = 0, w(1, t) = u(1, t)− v(1, t), t ∈ Ωt,

w(x, 0) = 0, x ∈ Ω̄x.

We can further decompose the regular component v as

v = v0 + cεv1 + c2
εv2,

where v0 is the solution of the reduced problem and v1 and v2 are the solution of{
(v1)t + r(x)(v1)x + s(x)v1 = (v0)xx, (x, t) ∈ D,
v1(x, 0) = 0, x ∈ Ω̄x, v1(0, t) = 0, t ∈ Ω̄t,

and {
Lcε(v2)(x, t) = (v1)xx, (x, t) ∈ D,
v2(x, t) = 0, (x, t) ∈ ∂D.

Now, we state the bounds for regular and singular components.

Theorem 2. Let v be a regular solution. Then v and its derivative satisfy the bound∣∣∣∣∂i+jv(x, t)

∂xi∂tj

∣∣∣∣ ≤ C(1 + c2−k
ε ), k = 0, 1, 2.

The derivative of regular solution generally bounded as∣∣∣∣∂i+jv(x, t)

∂xi∂tj

∣∣∣∣ ≤ C, k = 0, 1, 2, 3.

Proof. See the proof in [22].

Theorem 3. Let w be the solution of (5)–(7). The bound of w is given by

|w(x, t)| ≤ Ce−γ(1−x)/cε , (x, t) ∈ D.
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Proof. Considering the barrier functions Ψ±(x, t) = C
(
e−γ(1−x)/cε

)
et ± w(x, t), (x, t) ∈ D̄ and

evaluating at the boundaries yields the required result.

Theorem 4. Solution of the singular component w and it derivatives satisfies the bound∣∣∣∣∂i+jw(x, t)

∂xi∂tj

∣∣∣∣ ≤ Cc−iε e−γ(1−x)/cε , k = 0, 1, 2, 3.

Proof. The proof follows from Theorem 3 and [22].

2 The discrete problem

We use a Shishkin mesh for the space direction and a uniform mesh for the time direction to
discretize the problem. The space domain [0, 1] is divided into two sub-domains [0, 1−σ] and (1−σ, 1],
to construct the Shishkin mesh. The transition parameter 1 − σ, which divides the coarse and fine
regions of the mesh, is determined by taking

σ = min

{
1

2
,
σ0cε
γ

lnN

}
,

where σ0 denotes a constant that represents the order of the method. We denote the space mesh points
by

ΩN
x =

{
0 = x0, x1, ...xN/2 = 1− σ, ..., xN = 1

}
,

where

xi =

{
iH, i = 0, ...N2 ,

1− σ +
(
i− N

2

)
h, i = N

2 + 1, .....N,

and let N ≥ 4 be a positive even integer. Furthermore, we denote the space mesh size hi as follows

hi =

{
H = 2(1−σ)

N , i = 1, ...., N2 ,

h = 2σ
N , i = N

2 + 1, ..., N.

To do the analysis, it was assumed that σ = σ0cε
γ lnN ; if not, N is exponentially larger than ε. It is

clear from the above equation that N−1 ≤ H ≤ 2N−1, h = 2σ0cε
γ N−1 lnN , and the uniform mesh can

be obtained by choosing σ = 1/2. A uniform mesh with a time step of ∆t will be used for the time
domain [0, T ] so that

ΩM
t =

{
tn = n∆t, n = 0, .....M, ∆t =

T

M

}
,

where M is the number of mesh intervals in the time variable over the interval [0, T ]. We define the
discretized domain DN,∆t = ΩN

x × ΩM
t . Before formulating the numerical method, we introduce the

difference operators for a given mesh function v(xi, tn) = vni as follows

δ+
x v

n
i =

vni+1 − vni
hi+1

, δ−x v
n
i =

vni − vni−1

hi
,

δ2
xv
n
i =

2(δ+
x v

n
i − δ−x vni )

h̃i
and δ−t v

n
i =

vni − v
n−1
i

∆t
,

where h̃i is defined by h̃i = hi + hi+1, i = 1, ....N − 1. We now use the upwind method for the
space derivative and the implicit Euler method for the time derivative to approximate (5)–(7). The
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discretisation of (5)–(7) thus assumes the following form:
(δ−t + LN,∆tcε )Un+1

i = fn+1
i , i = 1, ...N − 1, n = 0, ...,M − 1,

Un+1
0 = φl(tn+1), Un+1

N = φr(tn+1), n = 0, ...,M − 1,

U0
i = φb(xi), i = 1, ...N − 1,

(9)

where
LN,∆tcε Un+1

i = −cεδ2
xU

n+1
i + riδ

−
x U

n+1
i + siU

n+1
i .

The system of equations that follows is obtained by rearranging the terms in (9)
r−i U

n+1
i−1 + r0

iU
n+1
i + r+

i U
n+1
i+1 = gni , i = 1, .....N − 1, n = 0, ....M − 1,

Un+1
0 = φl(tn+1), Un+1

N = φr(tn+1),

U0
i = φb(xi), i = 1, ...N − 1,

where the coefficients are given byr−i = ∆t

(
− 2cε

h̃ihi
− ri
hi

)
, r+

i = ∆t

(
− 2cε

h̃ihi+1

)
, r0

i = 1 + ∆tsi − r−i − r
+
i ,

ri = r(xi), si = s(xi), gni = Uni + ∆tfn+1
i .

The coefficient matrix of the discrete scheme in (9) gives an (N − 1) × (N − 1) linear equation that
can be solved uniquely using the Thomas algorithm for the unknowns U1, · · · , UN−1.

3 Convergence analysis

It can be shown that the discrete maximum principle, which gives the difference operator
(δ−t + LN,∆tcε ) ε−uniform stability, is satisfied by the finite difference operator (δ−t + LN,∆tcε ) defined
in (9).

Lemma 5. Assume that the mesh function Ψ(xi, tn) satisfies Ψ(xi, tn) ≥ 0 on (xi, tn) ∈ DN,∆t. Then,
(δ−t +LN,∆tcε )Ψ(xi, tn) ≥ 0, (xi, tn) ∈ DN,∆t implies that Ψ(xi, tn) ≥ 0 at each point of (xi, tn) ∈ D̄N,∆t.

The proposed method described in (9) converges ε-uniformly with first-order accuracy in both space
and time variables as stated in the following theorem.

Theorem 5. Let U be the numerical solution in (9) and u be the continuous solution in (5)–(7).
Therefore, the discrete solution’s error UN,∆t fulfills the bound

|u(xi, tn)− Uni | ≤ C(N−1 lnN + ∆t), 1 ≤ i ≤ N − 1.

Proof. Readers who are interested may read the proof’s details in [23].

The objective of this study was to obtain second-order ε-uniform convergence with respect to both the
space and time directions by using the Richardson extrapolation technique to the discrete solution Uni
of (9). Before introducing this technique, some lemmas are presented as follows:

Lemma 6. On D̄N
x = {xi}N0 , define the following mesh functions

Si =
i∏

k=1

(
1 +

αhk
cε

)−1

, 1 ≤ i ≤ N,

with the usual convention that S0 = 1 for i = 0. Then, there exists a positive constant C1 such that
for i = 1, · · · , N − 1, we have

(δ−t + LN,Mcε )Si ≥
C1

cε + αhi
Si. (10)
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Moreover, for N/2 + 1 ≤ i ≤ N − 1 and constant C2, we have

(δ−t + LN,Mcε )Si ≥ C2c
−1
ε Si. (11)

Proof. Now, Si − Si−1 = αhi
cε
Si−1. So, we have

(δ−t + LN,Mcε )Si = − 2α

(hi + hi+1)
(Si − Si−1) + α

α

cε
Si−1 + βSi

≥ α

cε
Si−1

[
ri −

2αhi
(hi + hi+1)

]
≥ Cα

cε + αhi
Si, 1 ≤ i ≤ N − 1.

As a result, since h/cε < 4/γ, (10) is proven, and (11) is a straightforward consequence of it.

Lemma 7. The following inequality is satisfied by the mesh function Si

e−γ(1−xi)/cε ≤
N∏

k=i+1

(
1 +

αhk
cε

)−1

= Si, 0 ≤ i ≤ N, (12)

and on Shishkin mesh, the mesh function Scε,i also satisfies the following inequality

N∏
k=i+1

(
1 +

αhk
cε

)−1

≤ CN−4(1−i/N), N/2 ≤ i ≤ N − 1. (13)

We solve the discrete scheme in (9) on the fine mesh D2N,∆t/2 = Ω̄2N
x × Ω̄

∆t/2
t with 2N mesh intervals

in the space direction and 2M mesh intervals in the time direction, where Ω̄2N
x is a piecewise uniform

Shishkin mesh with the same transition point 1−σ as ΩN
x . This improves the accuracy of the numerical

solution UN,∆t using the Richardson extrapolation technique. Actually, by dividing each mesh interval
of ΩN

x in half, the discrete domain Ω̄2N
x may be produced. It is evident from this construction that

DN,∆t = (xi, tn) ⊂ D2N,∆t/2 =
{

(x̃i, t̃n)
}
. Thus, the suitable mesh widths inD2N,∆t/2 may be obtained

using

x̃i − x̃i−1 =

{
H/2, for x̃i ∈ Ω̄2N

x ∩ [0, 1− σ],

h/2, for x̃i ∈ Ω̄2N
x ∩ [1− σ, 1],

and t̃n − t̃n−1 = ∆t/2, t̃n ∈ Ω̄
∆t/2
t . On the mesh DN,∆t, let U(xi, tn) represent the numerical solution

of the discrete scheme in (9). Thus, using Theorem 5, one may write on (xi, tn) ∈ DN,∆t

UN,∆t(xi, tn)− u(xi, tn) = C(N−1 lnN + ∆t) +RN,∆t(xi, tn)

= C(N−1(γσ/σ0cε) + ∆t) +RN,∆t(xi, tn),
(14)

where C is fixed constant and the remainder term RN,∆t(xi, tn) is o(N−1 lnN + ∆t). Similarly, if
Ũ2N,∆t/2 is the solution of the discrete (14) for (x̃i, t̃n) ∈ D2N,∆t/2, then

Ũ2N,∆t/2(x̃i, t̃n)− ũ(x̃i, t̃n) = C

(
(2N)−1(σγ/σ0cε) + ∆t/2

)
+R2N,∆t/2(xi, tn), (15)

by considering the fact that Ũ(x̃i, t̃n) is obtained using the same transition point 1−σ and the remainder
term R2N,∆t/2(xi, tn) is o(N−1 lnN + ∆t). Now, eliminating the terms O(N−1) and O(∆t) from (14)
and (15) leads to the following approximation

uni −
(

2Ũ2N,∆t/2(xi, tn)− UN,∆t(xi, tn)

)
= −2R2N,∆t/2(xi, tn) +RN,∆t(xi, tn)

= o(N−1 lnN + ∆t), (xi, tn) ∈ D̄N,∆t.
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Therefore, we will utilize the following extrapolation formula:

UN,∆textp (xi, tn) = 2Ũ2N,∆t/2(xi, tn)− UN,∆t(xi, tn), (xi, tn) ∈ D̄N,M , (16)

to get a more accurate predicted numerical solution for u(x, t). After extrapolating UN,∆t, we obtain
the estimate of the nodal error |u(xi, tn)− UN,∆ttextp (xi, tn)| by splitting the solution UN,∆t on the mesh
D̄N,M
σ into the sum

UN,∆t = V N,∆t +WN,∆t,

where the following discrete problems are solved by the regular component V N,∆t and the singular
component WN,∆t, respectively{

LN,∆tcε V N,∆t = f, DN,∆t, V N,∆t = v, ∂DN,∆t,

LN,∆tcε WN,∆t = 0, DN,∆t, WN,∆t = w, ∂DN,∆t.
(17)

Likewise, on the fine mesh D̄2N,∆t/2, we decomposed the solution Ũ2N,∆t/2 into the regular component
Ṽ 2N,∆t/2 and the singular component W̃ 2N,∆t/2 given by

Ũ2N,∆t/2 = Ṽ 2N,∆t/2 + W̃ 2N,∆t/2.

The error can then be expressed using the form given below.

UN,∆t − u =
(
V N,∆t − v

)
+
(
WN,∆t − w

)
,

Ũ2N,∆t/2 − u =
(
Ṽ 2N,∆t/2 − v

)
+
(
W̃ 2N,∆t/2 − w

)
.

Lemma 8. Let cε ≤ N−1. Then, the error associated with the smooth component V N,∆t after
extrapolation fulfills the bound

|v(xi, tn)− V N,∆t
extp (xi, tn)| ≤ C

(
N−2 + ∆t2

)
, 1 ≤ i ≤ N − 1.

Proof. It may be deduced from the extrapolation formula (15), Lemma 7, and (17) that

v(xi, tn)− V N,∆t
extp (xi, tn) = v(xi, tn)−

(
2Ṽ 2N,∆t/2(xi, tn)− V N,∆t(xi, tn)

)
= −2

(
Ṽ 2N,∆t/2 − v

)
(xi, tn) +

(
V N,∆t − v

)
(xi, tn)

= O
(
N−2 + ∆t2

)
,

from which the expected result is obtained.

Lemma 9. The extrapolated error for the layer component WN,∆t satisfies

|w(xi, tn)−WN,∆t
extp (xi, tn)| ≤ C(N−2 + ∆t2), 1 ≤ i ≤ N/2.

Proof. Assume 1 ≤ i ≤ N/2. This allows us to demonstrate, using (13) and the argument provided
in [24] over D̄N,M , that

|WN,∆t(xi, tn)| ≤ C
N∏

j=i+1

(
1 +

αhj
cε

)−1

≤ CN−2.

We then derive |w(xi, tn)| ≤ CN−2 from (12) and Theorem 3. So, we have

|WN,∆t − w(xi, tn)| ≤ C(N−2 + ∆t2).

In the same way, |W̃N,∆t − w(xi, tn)| ≤ C(N−2 + ∆t2). The extrapolation formula (16) is used to
acquire a required extrapolated error bound.
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Lemma 10. Once the layer component WN,∆t has been extrapolated, the error associated with it
satisfy ∣∣∣w(xi, tn)−WN,∆t

extp (xi, tn)
∣∣∣ ≤ C (N−2 ln2N + ∆t2

)
, N/2 < i < N.

Proof. See [23].

The following theorem is the main finding of this study.

Theorem 6. Let cε ≤ N−1. Suppose u be the continuous problem solution and UN,∆ttextp be the
solution that was obtained by solving the discrete problem using the Richardson extrapolation strategy.
Consequently, the error connected to the solution UN,∆ttextp meets∣∣∣u(xi, tn)− UN,∆textp (xi, tn)

∣∣∣ ≤ C (N−2 ln2N + ∆t2
)
, 1 ≤ i ≤ N − 1. (18)

Proof. For each (xi, tn) ∈ D̄N,∆t, we have

u(xi, tn)− UN,∆textp =
(
v(xi, tn)− V N,∆t

extp

)
+
(
w(xi, tn)−WN,∆t

extp

)
.

Thus, when Lemma 8 for the regular component and Lemmas 9 and 10 for the singular component are
combined, the result (18) is obtained immediately.

4 Numerical computations and discussions

In order to verify the performance of the present method with the theoretical findings discussed in
the preceding parts, we do numerical calculations in this section.

Example 1. Consider a singularly perturbed parabolic problem [16]:
∂u
∂t − ε

∂2u
∂x2 + (2− x2)∂u∂x + (x2 + 1 + cos(πx))u = 10t2x(1− x)e−t, (x, t) ∈ [0, 1]× [0, 1],{

u(x, 0) = 0, 0 ≤ x ≤ 1,

u(0, t) = 0, u(1, t) = 0, 0 ≤ t ≤ 1.

Example 2. Consider a singularly perturbed parabolic problem [16]:
∂u
∂t − ε

∂2u
∂x2 + (2− x2)∂u(x−µ,t)

∂x + (x2 + 1 + cos(πx))u(x− µ, t) = 10t2(1− x)e−t, (x, t) ∈ [0, 1]× [0, 1],{
u(x, 0) = 0, 0 ≤ x ≤ 1,

u(x, t) = 0, µ ≤ x ≤ 0, 0 ≤ t ≤ 1, u(1, t) = 0, 0 ≤ t ≤ 1.

Example 3. Consider a singularly perturbed parabolic problem [22]:
∂u
∂t − ε

∂2u
∂x2 + ∂u

∂x + (1 + x2)u = 50(x(1− x))3,

(x, t) ∈ [0, 1]× [0, 2],{
u(x, 0) = 0, 0 ≤ x ≤ 1,

u(0, t) = 0, u(1, t) = 0, 0 ≤ t ≤ 2.

Since there are no exact solutions for the examples, we estimate the maximum absolute errors for each
(ε, µ) using the double mesh principle via the following formula:

eN,∆tε,µ = max
0≤i≤N ;0≤j≤M

∣∣UN,∆t(xi, tn)− U2N,∆t/2(xi, tn)
∣∣,
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before extrapolation and after extrapolation, we use the formula

(eN,∆tε,µ )extr = max
0≤i≤N ;0≤j≤M

∣∣(UN,∆t)extr(xi, tn)− (U2N,∆t/2)extr(xi, tn)
∣∣,

where UN,∆t(xi, tn) is the numerical solution with (N,∆t) mesh points and U2N,∆t/2(xi, tn) is the
numerical solution at the finer mesh with (2N,∆t/2) mesh points before extrapolation. The numerical
solutions after extrapolation are (UN,∆t)extr(xi, tn) using the mesh points (N,∆t) with mesh sizes hi
and ∆t and (U2N,∆t/2)extr(xi, tn) using the mesh points (2N,∆t/2) with mesh sizes hi

2 and ∆t
2 . The

(ε, µ)-maximum errors before and after extrapolations were calculated using the following formulas,
respectively

eN,∆t = max
ε,µ

eN,∆tε,µ and (eN,∆t)extr = max
ε,µ

(eN,∆tε,µ )extr.

Furthermore, we compute the numerical rate of convergence before and after extrapolation with the
following formulas, respectively

ρN,∆tε,µ = log2

(
eN,∆tε,µ

e
2N,∆t/2
ε,µ

)
and (ρN,∆tε,µ )extr = log2

(
(eN,∆tε,µ )extr

(e
2N,∆t/2
ε,µ )extr

)
.

The (ε, µ)-maximum rates of convergence before and after extrapolations were calculated using the
following formulas, respectively

ρN,∆t = max
ε,µ

ρN,∆tε,µ and ρN,∆textr = max
ε,µ

(ρN,∆tε,µ )extr.

T a b l e 1

Computation of maximum point-wise errors and rate of convergence for N = 1
∆t
, µ = 0, Example 1

ε ↓ Extrapolation N = 32 64 128 256 512
Before Extrapolation 8.5069e-03 5.1386e-03 2.8624e-03 1.5340e-03 8.0921e-04

Rate 0.7273 0.8442 0.8999 0.9227
10−6 After Extrapolation 6.4391e-04 2.1982e-04 6.5090e-05 1.8622e-05 5.8390e-06

Rate 1.5505 1.7558 1.8054 1.6732
Before Extrapolation 8.5068e-03 5.1384e-03 2.8621e-03 1.5337e-03 8.0896e-04

Rate 0.7273 0.8442 0.9001 0.9229
10−8 After Extrapolation 6.4325e-04 2.1923e-04 6.4592e-05 1.8006e-05 5.2361e-06

Rate 1.5529 1.7630 1.8429 1.7819
Before Extrapolation 8.5068e-03 5.1384e-03 2.8621e-03 1.5337e-03 8.0896e-04

Rate 0.7273 0.8442 0.9001 0.9229
10−10 After Extrapolation 6.4325e-04 2.1923e-04 6.4584e-05 1.8001e-05 5.2298e-06

Rate 1.5529 1.7632 1.8431 1.7832
Before Extrapolation 8.5068e-03 5.1384e-03 2.8621e-03 1.5337e-03 8.0896e-04

Rate 0.7273 0.8442 0.9001 0.9229
10−12 After Extrapolation 6.4325e-04 2.1923e-04 6.4584e-05 1.8001e-05 5.2298e-06

Rate 1.5529 1.7632 1.8431 1.7832
eN,∆t Before Extrapolation 8.5069e-03 5.1386e-03 2.8624e-03 1.5340e-03 8.0921e-04
ρN,∆t Rate 0.7273 0.8442 0.8999 0.9227
eN,∆t
extr After Extrapolation 6.4391e-04 2.1982e-04 6.5090e-05 1.8622e-05 5.8390e-06
ρN,∆t
extr Rate 1.5505 1.7558 1.8054 1.6732
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T a b l e 2

Computation of maximum point-wise errors and rate of convergence for N = 1
∆t

, µ = 0.3ε, Example 2

ε ↓ Extrapolation N = 32 64 128 256 512
Before Extrapolation 1.9445e-02 1.0633e-02 6.0314e-03 3.2579e-03 1.7222e-03

Rate 0.8709 0.8180 0.8886 0.9197
10−6 After Extrapolation 1.6756e-03 6.1162e-04 1.9601e-04 7.6087e-05 2.8981e-05

Rate 1.4540 1.6417 1.3652 1.3925
Before Extrapolation 1.9445e-02 1.0633e-02 6.0307e-03 3.2572e-03 1.7215e-03

Rate 0.8709 0.8182 0.8887 0.9200
10−8 After Extrapolation 1.6737e-03 6.0967e-04 1.9661e-04 7.6346e-05 2.8879e-05

Rate 1.4569 1.6327 1.3647 1.4025
Before Extrapolation 1.9445e-02 1.0633e-02 6.0307e-03 3.2572e-03 1.7215e-03

Rate 0.8709 0.8182 0.8887 0.9200
10−10 After Extrapolation 1.6737e-03 6.0965e-04 1.9662e-04 7.6352e-05 2.8886e-05

Rate 1.4570 1.6326 1.3647 1.4023
Before Extrapolation 1.9445e-02 1.0633e-02 6.0307e-03 3.2572e-03 1.7215e-03

Rate 0.8709 0.8182 0.8887 0.9200
10−12 After Extrapolation 1.6737e-03 6.0965e-04 1.9662e-04 7.6352e-05 2.8886e-05

Rate 1.4570 1.6326 1.3647 1.4023
eN,∆t Before Extrapolation 1.9445e-02 1.0633e-02 6.0314e-03 3.2579e-03 1.7222e-03
ρN,∆t Rate 0.8709 0.8180 0.8886 0.9197
eN,∆t
extr After Extrapolation 1.6756e-03 6.1162e-04 1.9662e-04 7.6352e-05 2.8981e-05
ρN,∆t
extr Rate 1.4540 1.6372 1.3647 1.3976

T a b l e 3

Comparison using N = 1
∆t

, µ = 0.3ε for Example 2

Extrapolation N = 16 32 64 128
Present method

Before Extrapolation 3.4791e-02 1.9445e-02 1.0633e-02 6.0314e-03
Rate 0.8393 0.8709 0.8180

After Extrapolation 4.0244e-03 1.6756e-03 6.1162e-04 1.9662e-04
Rate 1.2641 1.4540 1.6372

Result in [16]
Before Extrapolation 1.3567e-02 7.7535e-03 4.1434e-03 2.5115e-03

Rate 0.8072 0.9040 0.7223
After Extrapolation 7.5907e-03 2.3678e-03 8.2018e-04 2.5398e-04

Rate 1.6807 1.5295 1.6912
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T a b l e 4

Computation of maximum point-wise errors and rate of convergenceat µ = 0 for Example 3 with [22]

ε ↓ Extrapolation N = 32 64 128 256 512
∆t = 0.05 0.05

2
0.05
22

0.05
23

0.05
24

Before Extrapolation 1.2677e-2 7.4327e-3 4.0929e-3 2.1883e-3 1.1609e-3
Rate 0.7703 0.8608 0.9033 0.9146

2−6 After Extrapolation 2.4529e-3 8.7923e-4 2.7423e-4 8.0145e-5 2.2686e-5
Rate 1.4802 1.6809 1.7747 1.8208

Before Extrapolation 1.4598e-2 8.9967e-3 5.1615e-3 2.8253e-3 1.5371e-3
Rate 0.6983 0.8016 0.8694 0.8782

2−10 After Extrapolation 3.8898e-3 1.6408e-3 5.8963e-4 1.8545e-4 5.3233e-5
Rate 1.2453 1.4765 1.6688 1.8006

Before Extrapolation 1.5433e-2 9.6028e-3 5.5900e-3 3.0789e-3 1.6913e-3
Rate 0.6845 0.7806 0.8604 0.8643

2−14 After Extrapolation 4.0459e-3 1.7118e-3 6.2066e-4 1.9732e-4 5.6955e-5
Rate 1.2409 1.4636 1.6533 1.7926

Before Extrapolation 1.5485e-2 9.6442e-3 5.6179e-3 3.0960e-3 1.7018e-3
Rate 0.6831 0.7796 0.8596 0.8633

2−18 After Extrapolation 4.0560e-3 1.7174e-3 6.2226e-4 1.9783e-4 5.7064e-5
Rate 1.2398 1.4646 1.6533 1.7936

Before Extrapolation 1.5488e-2 9.6468e-3 5.6198e-3 3.0970e-3 1.7025e-3
Rate 0.6830 0.7795 0.8597 0.8632

2−20 After Extrapolation 4.0565e-3 1.7177e-3 6.2234e-4 1.9785e-4 5.7068e-5
Rate 1.2398 1.4647 1.6533 1.7937

eN,∆t Before Extrapolation 1.5488e-2 9.6470e-3 5.6199e-3 3.0971e-3 1.7025e-3
ρN,∆t Rate 0.6830 0.7795 0.8596 0.8633
eN,∆t
extr After Extrapolation 4.0566e-3 1.7178e-3 6.2237e-4 1.9786e-4 5.7069e-5
ρN,∆t
extr Rate 1.2398 1.4647 1.6533 1.7937

Result in [22]
eN,∆t 1.021e-2 3.225e-3 1.066e-3 3.479e-4 1.111e-4
ρN,∆t 1.663 1.598 1.615 1.646 -

The computed maximum point-wise errors and the rate of convergence for Examples 1 and 2 are
given in Tables 1 and 2, respectively. From these results, it is clear that the present method gives an
ε-uniform convergence for Examples 1 and 2 before and after extrapolation. Comparison of Example 2
is given in Table 3. The computed maximum point-wise errors and the rate of convergence for Example
3 are given in Table 4 with its comparison. Numerical simulations for Examples 1 and 2 are plotted
in Figure 1 and Example 3 in Figure 2. The maximum point-wise errors for Examples 1, 2, and
3 are plotted using log-log scale, as can be seen in Figures 3, 4, and 5, respectively. These figures
clearly show that Richardson extrapolation increases the rate of convergence of the upwind scheme
from O(N−1 lnN + ∆t) to O(N−2 ln2N + ∆t2). Figures 6 and 7 show the effect of the perturbation
parameter ε in terms of line graphs for Examples 1, 2, and 3. The effect of the singular perturbation
parameter on the boundary layer of the solution for all Examples is shown in Figures 6 and 7. As
observed in these Figures, as ε → 0 strong boundary layer is formed near x = 1. The effect of the
time level t in terms of line graphs for Examples 1, 2, and 3 is given in Figures 8 and 9. As observed
from Figures 8 and 9, a strong boundary layer is formed near x = 1, and as the size of the time level
increases, the thickness of the layer increases.
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(a) Example 1 when µ = 0 (b) Example 2 when µ = 0.3ε

Figure 1. Surface plot of the numerical solution for N = 64 = M and ε = 10−6

(a) At N = 64,M = 80 and ε = 2−6 (b) At N = 64,M = 80 and ε = 2−16

Figure 2. Surface plot of the numerical solution for Example 3 for µ = 0
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Figure 3. Log-log plot of the maximum point-wise errors at µ = 0 for Example 1
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Figure 4. Log-log plot of the maximum point-wise errors at µ = 0.3ε for Example 2
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Figure 5. Log-log plot of the maximum point-wise errors at µ = 0 for Example 3
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(a) Example 1 at N = 64 = M , µ = 0
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Figure 6. Effect of the perturbation parameter ε on the numerical solution
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Figure 7. Effect of the parameter ε on the solution for Example 3
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(b) Example 2 at N = 64 = M , ε = 10−6,
µ = 0.3ε

Figure 8. Effect of time t level on the solution
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(a) At N = 64,M = 80, ε = 2−6, µ = 0
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(b) At N = 64,M = 80, ε = 2−16, µ = 0

Figure 9. Effect of time t level on the solution interms of line graph for Example 3
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Conclusion

This study presents a computational method that is almost second-order convergent for singularly
perturbed parabolic differential difference equations with negative shifts. The Taylor series approxima-
tion is used to estimate the terms that involve delays. An implicit Euler technique for the time direction
on a uniform mesh and an upwind difference method on a Shishkin mesh in the space direction are used
to discretise the resulting singularly perturbed parabolic convection-diffusion-reaction equation. The
stability and uniform convergence of the proposed method are established very well. The proposed
method gives almost first-order convergence both in the time and space variables. The Richardson
extrapolation technique is then applied to accelerate the order of convergence of the method in the
time and space variables. Theoretically, we have proved that the extrapolation provides almost second-
order ε−uniform convergence. To validate the applicability of the proposed method, some numerical
examples are computed for different values of the perturbation parameter and delay parameter.
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