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This article addresses the non-linear optimization problem of oscillatory processes governed by partial
integro-differential equations involving a Fredholm integral operator. A distinctive feature of the problem
is that both the objective functional and the functions describing external and boundary influences are
non-linear with respect to the vector controls. The integro-differential equation describing the state of the
oscillatory process includes Fredholm integral operator, which has a significant impact on the structure and
properties of the solutions. The algorithm for constructing the complete solution to this problem, as well as
the effect of the Fredholm integral operator on the solution of the corresponding boundary value problem,
has been published in previous studies. This article is dedicated to the investigation of the convergence
of approximate solutions to the exact solution of the considered non-linear optimization problem. The
influence of the Fredholm integral operator on the convergence behavior of the approximations is examined.
It is demonstrated that the presence of the integral operator necessitates the construction of three distinct
types of approximations of the optimal process: “Resolvent” approximations, based on the resolvent of the
kernel of the integral operator; Approximations by optimal controls, constructed through the approximation
of control functions; Finite-dimensional approximations.

Keywords: optimal control, optimal process, minimal value of functional, non-linear optimization problem,
approximations of complete solution, resolvent approximation, finite-dimensional approximation, conver-
gence.
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Introduction

Optimal control of systems with distributed parameters is one of the intensively developing scientific
directions of Optimal control theory. Dynamics of systems with distributed parameters is described
by partial differential equations, integral, integro-differential and more complex functional equations.
Methods for solving linear optimization problems in programming control of systems with distributed
parameters are based on the methods of classical variational calculus, the maximum principle, and
they have been developed in studies [1–3]. The mathematical model [4, 5] of many applied problems
need to solve non-linear optimization problems, for which methods for solving them are not sufficiently
developed [6, 7]. A research group of Kyrgyz mathematicians, led by Professor A. Kerimbekov, is
actively investigating the solvability of non-linear optimization problems [8–10] and the convergence
of their approximate solutions [11, 12]. The results of the authors’ research on solutions to non-linear
optimization problems are presented in works [13,14].
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In the paper [14], we have considered the non-linear optimization problem of oscillation processes
described by integro-differential equations in partial derivatives with the integral Fredholm operator and
an algorithm was developed for constructing a complete solution to this problem. It is established that
the presence of the integral operator significantly affects the solvability of the non-linear optimization
problem, in particular, when constructing a generalized solution to the boundary value problem of the
controlled process and when proving the existence and uniqueness of a solution to system of non-linear
integral equations.

In [14], the problem of non-linear optimization for oscillatory processes described by integro-
differential equations with the participation of the Fredholm integral operator was investigated. An
algorithm for constructing a complete solution to this problem was developed. It was established
that the presence of the Fredholm integral operator has a significant effect on the solvability of the
non-linear optimization problem, in particular, on the construction of a generalized solution to the
boundary value problem of the controlled process and on the proof of the existence and uniqueness of
a solution to a system of non-linear integral equations with respect to optimal controls.

This paper continues the study of the complete solution of the non-linear optimization problem
developed in [14], in particular, with the aim of studying the convergence of its approximations. It
is shown that the presence of the Fredholm integral operator necessitates constructing three types of
approximations of the optimal process: approximation through the resolvent of the kernel of the integral
operator, approximation by optimal controls, and finite-dimensional approximation. Accordingly, three
types of approximations of the minimum value of the objective functional are also considered. Sufficient
conditions are established for the convergence of approximations of both distributed and boundary
vector optimal controls, three types of approximations of the optimal process, and approximations of
the minimum value of the functional.

1 Formulation of the Non-linear Optimization Problem and Its Complete Solution

Consider the following non-linear optimization problem, where it is required to minimize the
quadratic integral functional [14].

J [ū(t, x), ϑ̄(t, x)] =

∫
Q

[V (T, x)− ξ1(x)]2 dx+

∫
Q

[Vt(T, x)− ξ2(x)]2 dx+

+

∫ T

0

[
α

∫
Q
h2[t, x, ū(t, x)]dx+ β

∫
γ
b2[t, x, ϑ̄(t, x)]dx

]
dt, α, β > 0,

(1)

on the set of solutions to the boundary value problem

Vtt(t, x)−AV (t, x) = λ

∫ T

0
K(t, τ)V (τ, x)dτ + f [t, x, ū(t, x)], x ∈ Q ⊂ Rn, 0 < t < T, (2)

V (0, x) = ψ1(x), Vt(0, x) = ψ2(x), x = (x1, x2, . . . , xn) ∈ Q, (3)

ΓV (t, x) ≡
n∑

i,k=1

aik(x)Vxk(t, x) cos(δ, xi) + a(x)V (t, x) = p[t, x, ϑ̄(t, x)], x ∈ γ, 0 < t < T. (4)

It should be noted that the characteristics of the data in problem (1)–(4) are preserved as presented
in [14]. It is assumed that the functions describing external and boundary influences satisfy the
following monotonicity conditions with respect to the functional variables:

fui [t, x, ū(t, x)] 6= 0, i = 1, 2, . . . ,m, ∀(t, x) ∈ H(QT ), (5)
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pϑi [t, x, ϑ̄(t, x)] 6= 0, i = 1, 2, . . . , r, ∀(t, x) ∈ H(γT ).

The conditions stated in (5) guarantee a one-to-one correspondence between the elements of the space
of controls (ū0(t, x), ϑ̄0(t, x)) and the space of states V (t, x) the controlled process.

The complete solution of nonlinear optimization problem (1)–(4) is defined in the form of a triple(
(ū0(t, x), ϑ̄0(t, x)), V 0(t, x), J [ū0(t, x), ϑ̄0(t, x)]

)
[14], where:

1) the distributed vector optimal control ū0(t, x) and the boundary vector optimal control ϑ̄0(t, x)
are determined by the formulas

ū0(t, x) = ϕ̄[t, x, θ0
1(t, x), α], θ0

1(t, x) = lim
n→∞

θ
(n)
1 (t, x), x ∈ Q, (6)

ϑ̄0(t, x) = ῡ[t, x, θ0
2(t, x), β], θ0

2(t, x) = lim
n→∞

θ
(n)
2 (t, x), x ∈ γ, (7)

where functions θ(n)
1 (t, x) and θ(n)

2 (t, x) are defined as solutions of the operator equation

θn(t, x) = F
[
θn−1(t, x)

]
, n = 1, 2, 3, . . . ,

with

θ(n)(t, x) =

{
θ

(n)
1 (t, x), x ∈ Q,
θ

(n)
2 (t, x), x ∈ γ,

and satisfy the estimate

‖θ(0)(t, x)− θ(n)(t, x)‖H(Q̄T ) ≤
Cn(α, β)

1− C(α, β)
‖F (θ0(t, x))− θ0(t, x)‖H(Q̄T ), (8)

where

θ0(t, x) =

{
θ10(t, x), x ∈ Q,
θ20(t, x), x ∈ γ,

is an arbitrary vector function in the space H(Q̄T ), and

C(α, β) =
√
f2

0mϕ
2
0(α) + p2

0rυ
2
0(β)
√

2E0G0T < 1, (9)

with constants f0, p0, ϕ0(α), υ0(β), E0, and G0 defined appropriately.
2) V 0(t, x) is an optimal process, determined by the following formula

V 0(t, x) =
∞∑
n=1

(
ψn(t, λ) +

1

λn

∫ T

0
En(t, η, λ)

(∫
Q
f [η, ξ, ū0(η, ξ)]zn(ξ)dξ+

+

∫
γ
p[η, ξ, ϑ̄0(η, ξ)]zn(ξ)dξ

)
dη
)
zn(x),

(10)

where

ψn(t, λ) = ψ1n

[
cosλnt+ λ

∫ T

0
Rn(t, s, λ) cos sds

]
+
ψ2n

λn

[
sinλnt+ λ

∫ T

0
Rn(t, s, λ) sinλnsds

]
,

En(t, η, λ) =

{
sinλn(t− η) + λ

∫ T
η Rn(t, s, λ) sinλn(s− η)ds, 0 ≤ η ≤ t,

λ
∫ T
η Rn(t, s, λ) sinλn(s− η)ds, t ≤ η ≤ T.

3) J [ū0(t, x), ϑ̄0(t, x)] is a minimum value of the functional determined by the following formula
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J [ū0(t, x), ϑ̄0(t, x)] =

∫
Q

([
V 0(T, x)− ξ1(x)

]2
+
[
V 0
t (T, x)− ξ2(x)

]2)
dx+

+

(
α

∫
Q
h2[t, x, ū0(t, x)]dx+ β

∫
γ
b2[t, x, ϑ̄0(t, x)]dx

)
dt, α > 0, β > 0.

(11)

2 Approximations of the Complete Solution to a Non-linear Optimization Problem

The main objective of this work is to investigate the construction of approximate solutions to non-
linear optimization problem (1)–(4) and to analyze their convergence. Since the complete solution
to the problem is represented as a triple

(
(ū0(t, x), ϑ̄0(t, x)), V 0(t, x), J [ū0(t, x), ϑ̄0(t, x)]

)
consisting

of the optimal control, the optimal process, and the minimum value of the functional, we consider
approximations of each of these components separately.

2.1 Convergence of Approximations of Vector Optimal Controls

In formulas (6) and (7), replacing functions θ0
1(t, x) and θ0

2(t, x) with functions θ(k)
1 (t, x) and

θ
(k)
2 (t, x), we find the k-th approximation of the vector distributed control by the formula

ū(k)(t, x) = ϕ̄[t, x, θ
((k))
1 (t, x), α], x ∈ Q, k = 1, 2, 3, . . . ,

and similarly, we find the k-th approximation of the boundary vector control by the formula

ϑ̄(k)(t, x) = ῡ[t, x, θ
(k)
2 (t, x), β], x ∈ γ, k = 1, 2, 3, . . . ,

where ϕ̄[t, x, θ
(k)
1 (t, x), α] and ῡ[t, x, θ

(k)
2 (t, x), β] are known vector functions.

Lemma 1. The k-th approximations of the distributed and boundary vector controls for non-linear
optimization problem (1)–(4) converge to the optimal distributed and boundary vector controls, re-
spectively, in the norms of the Hilbert spaces Hm(QT ) and Hr(γT ).

Proof. Let us introduce the notation

Ū(t, x) =

{
ū(t, x), x ∈ Q,
ϑ̄(t, x), x ∈ γ.

Using inequalities (8) and (9), we calculate the following norm:

‖Ū(t, x)− Ūn(t, x)‖2H(Q̄T ) = ‖ū0(t, x)− ūn(t, x)‖2Hm(Q̄T ) + ‖ϑ̄0(t, x)− ϑ̄n(t, x)‖2Hk(γ̄T ) ≤

≤ ϕ2
0(α)‖θ0

1(t, x)− θn1 (t, x)‖2H(QT ) + υ2
0(β)‖θ0

2(t, x)− θn2 (t, x)‖2H(γT ) ≤ Ψ2(α, β)‖θ0(t, x)− θn(t, x)‖2H(Q̄T ),

Ψ2(α, β) = max{ϕ2
0(α), υ2

0(β)}, from which the assertion of the lemma follows.

2.2 Approximations of the Optimal Process and Their Convergence

The presence of the Fredholm integral operator in boundary value problem (2)–(4), according to
formula (10), leads to the construction of the following three types of approximations of the optimal
process: approximations based on the resolvent of the kernel of the integral operator; approximations
induced by the approximations of the optimal controls; finite-dimensional approximations. Each of
these approximation types will be considered separately below.
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2.2.1 “Resolvent” Approximations of the Optimal Process and Their Convergence

Functions defined by the formulas

V (m)(t, x) =

∞∑
n=1

(
ψ(m)
n (t, λ) +

1

λn

∫ T

0
E(m)
n (t, η, λ)×

×
(∫

Q
f [η, ξ, ū0(η, ξ)]zn(ξ)dξ +

∫
γ
p[η, ξ, ϑ̄0(η, ξ)]zn(ξ)dξ

)
dη
)
zn(x), m = 1, 2, 3, ...,

are called m-th approximations of the optimal process with respect to the resolvent or “resolvent”
approximations of the optimal Process. Here,

ψ(m)
n (t, λ) = ψ1n

[
cosλnt+ λ

∫ T

0
R(m)
n (t, s, λ) cosλnsds

]
+
ψ2n

λn

[
sinλnt+ λ

∫ T

0
R(m)
n (t, s, λ) sinλnsds

]
,

E(m)
n (t, η, λ) =

{
sinλn(t− η) + λ

∫ T
η R

(m)
n (t, s, λ) sinλn(s− η)ds, 0 ≤ η ≤ t,

λ
∫ T
η R

(m)
n (t, s, λ) sinλn(s− η)ds, t ≤ η ≤ T,

R(m)
n (t, s, λ) =

m∑
n=0

λi−1Kn,i(t, s), n = 1, 2, 3, . . .

Lemma 2. “Resolvent” approximations V (m)(t, x) of the optimal process under the conditions of
non-linear optimization problem (1)–(4) converge to the optimal process V 0(t, x) in the norm of the
Hilbert space H(QT ).

Proof. We evaluate the following norm

‖V 0(t, x)− V (m)(t, x)‖2H(QT ) ≤ 2T
2λ2T 2K0

λ2
1

(
|λ| T

√
K0

λ1

)2m (
1− 1

ln |λ| T
√
K0
λ1

)2
×

×
(
‖ψ1(x)‖2H(Q)+

1

λ2
1

‖ψ2(x)‖2H(Q)+‖f [η, ξ, ū0(η, ξ)]‖2H(QT )+‖p[η, ξ, ϑ̄
0(η, ξ)]‖2H(γT )

) ∞∑
n=1

1

λ2
n

→ 0, m→∞,

from which, by virtue of the condition |λ| T
√
K0
λ1

< 1, the assertion of the lemma follows.

2.2.2 m, k-th Approximations of the Optimal Process and Their Convergence

Functions defined by following the formula

V
(m)
k (t, x) =

∞∑
n=1

(
ψ(m)
n (t, λ) +

1

λn

∫ T

0
E(m)
n (t, η, λ)×

×
(∫

Q
f [η, ξ, ū(k)(η, ξ)]zn(ξ)dξ +

∫
γ
p[η, ξ, ϑ̄(k)(η, ξ)]zn(ξ)dξ

)
dη
)
zn(x),

are called m, k-th approximations of the optimal process with respect to controls, where ū(k)(t, x) are
k-th approximations of the distributed vector control, and ϑ̄(k)(t, x) are k-th approximations of the
boundary vector control.

Lemma 3. m, k-th approximations V (m)
k (t, x) of the optimal process under the conditions of non-

linear optimization problem (1)–(4) converge to the “resolvent” approximations V (m)(t, x) when k →∞
for any m = 1, 2, 3, . . . in the norm of the space H(QT ).
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Proof. The evaluation of the following norm leads directly to the conclusion of Lemma 3.

‖V (m)(t, x)− V (m)
k (t, x)‖2H(QT ) ≤ 4T

(
1 +

λ2T 2K0(
λ1 − |λ|T

√
K0

)2
)
×

×
∞∑
n=1

1

λ2
n

(
f2

0 ‖ū0(η, ξ)− ū(m)(η, ξ)‖2H(QT ) + p2
0‖ϑ̄0(η, ξ)− ϑ̄(m)(η, ξ)‖2H(γT )

)
→ 0, k →∞,

which is obtained taking into account the estimate∫ T

0

(
E(m)
n (t, η, λ)

)2
dη ≤ 2T

(
1 + λ2 T 2K0(

λn − λT
√
K0

)2
)
.

2.2.3 Finite-Dimensional Approximations of the Optimal Process and Their Convergence

Functions defined by the following formula

V
(m)
k,l (t, x) =

l∑
n=1

(
ψ(m)
n (t, λ) +

1

λn

∫ T

0
E(m)
n (t, η, λ)×

×
(∫

Q
f [η, ξ, ū(k)(η, ξ)]zn(ξ)dξ +

∫
γ
p[η, ξ, ϑ̄(k)(η, ξ)]zn(ξ)dξ

)
dη
)
zn(x),

m = 1, 2, 3, . . . , µm <∞, k = 1, 2, 3, . . . , µk <∞, l = 1, 2, 3, . . . , µl <∞,

(12)

are called m, k, l-th approximations or finite-dimensional approximations of the optimal process.

Lemma 4. m, k, l-th approximations V (m)
k,l (t, x) or finite-dimensional approximations of the optimal

process under the conditions of non-linear optimization problem (1)–(4) converge to m, k-th approxi-
mations V (m)

k (t, x) when l→∞ for any m, k in the norm of the space H(QT ).
Proof. The assertion of the lemma follows from the following relation:

‖V (m)
k (t, x)− V (m)

k,l (t, x)‖2H(QT ) ≤
∞∑

n=l+1

∫ T

0

∫
Q

(
V (m)(t, x)− V (m)

k (t, x)
)2
dxdt ≤

≤ 4T

(
1 +

λ2T 2K0(
λ1 − |λ|T

√
K0

)2
)
×

×
∞∑

n=l+1

1

λ2
n

(
f2

0 ‖ū0(η, ξ)− ū(m)(η, ξ)‖2H(QT ) + p2
0‖ϑ̄0(η, ξ)− ϑ̄(m)(η, ξ)‖2H(γT )

)
→ 0, l→∞,

which holds due to the convergence of the remainder terms of the convergent series for each fixedm, k.

2.3 Approximations of the Generalized Derivative of the Optimal Process and Their Convergence

Similarly, the convergence of approximations was investigated for the generalized derivative of the
optimal process determined by the following formula

V 0
t (t, x) =

∞∑
n=1

(
ψ′nt(t, λ) +

1

λn

∫ T

0
E′nt(t, η, λ)

(∫
Q
f [η, ξ, ū0(η, ξ)]zn(ξ)dξ+

+

∫
γ
p[η, ξ, ϑ̄0(η, ξ)]zn(ξ)dξ

)
dη
)
zn(x),
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where

ψ′nt(t, λ) = ψ1n

(
−λn sinλnt+ λ

∫ T

0
R′nt(t, s, λ) cosλns ds

)
+

ψ2nλn(
λn cosλnt+ λ

∫ T
0 R′nt(t, s, λ) sinλns ds

) ,

E′nt(t, η, λ) =

{
λn cosλn(t− η) + λ

∫ T
η R′nt(t, s, λ) sinλn(s− η)ds, 0 ≤ η ≤ t,

λ
∫ T
η R′nt(t, s, λ) sinλn(s− η)ds, t ≤ η ≤ T,

and it is an element of the space H(QT ) [14].

2.3.1 “Resolvent” Approximations of the Generalized Derivative of the Optimal Process and Their
Convergence

Functions defined by the following formula

V m
t (t, x) =

∞∑
n=1

(
ψ′mnt (t, λ) +

1

λn

∫ T

0
E′mnt (t, η, λ)×

×
(∫

Q
f [η, ξ, ū0(η, ξ)]zn(ξ)dξ +

∫
γ
p[η, ξ, ϑ̄0(η, ξ)]zn(ξ)dξ

)
dη
)
zn(x), m = 1, 2, 3, ...,

are called m-th approximations or “resolvent” approximations of the generalized derivative of the
optimal process.

Lemma 5. “Resolvent” approximations V ′mt (t, x) of the generalized derivative of the optimal process
under the conditions of non-linear optimization problem (1)–(4), converge to the generalized derivative
optimal process V ′0t (t, x) in the norm of the Hilbert space H(QT ).

Proof. The assertion of Lemma 5 follows from the following relation

‖V 0
t (t, x)− V m

t (t, x)‖2H(QT ) ≤ 4Tλ2T 2K0

(
|λ|

√
K0T 2

λ2
1

)2m(
1− 1

ln
(
|λ|T

√
K0

))×
×
(
‖ψ1(x)‖2H(Q) +

1

λ2
1

‖ψ2(x)‖2H(Q) + (13)

+
(
‖f [η, ξ, ū0(η, ξ)]‖2H(QT ) + ‖p[η, ξ, ϑ̄0(η, ξ)]‖2H(QT )

) ∞∑
n=1

1

λ2
n

)
→ 0, m→∞

which holds due to the condition |λ|
√
K0T 2

λ1
< 1.

2.3.2 m, k-th Approximations of the Generalized Derivative of the Optimal Process and Their
Convergence

Functions defined by the following formula

V ′mtk (t, x) =
∞∑
n=1

(
ψ′mnt (t, λ) +

1

λn

∫ T

0
E′mnt (t, η, λ)×

×
(∫

Q
f [η, ξ, ū(k)(η, ξ)]zn(ξ)dξ +

∫
γ
p[η, ξ, ϑ̄(k)(η, ξ)]zn(ξ)dξ

)
dη
)
zn(x),

(14)

are called m, k-th approximations of the generalized derivative of the optimal process.
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Lemma 6. m, k-th approximations V ′mtk (t, x) of the generalized derivative of the optimal process
under the conditions of non-linear optimization problem (1)–(4) converge to the m-th approxima-
tions V ′(m)

t (t, x) of the generalized derivative of the optimal process when k → ∞ for any value of
m = 1, 2, 3, . . . in the norm of the space H(QT ).

Proof. Proof of the lemma follows from the following relation:

‖V m
t (t, x)− V m

tk (t, x)‖2H(QT ) ≤4T 3

(
1 +

λ2K0T

λ2
1

)
·
(
f2

0

∥∥∥ū0(t, x)− ū(k)(t, x)
∥∥∥2

H(QT )
+

+ p2
0

∥∥∥ϑ̄0(t, x)− ϑ̄(k)(t, x)
∥∥∥2

H(γT )

)
→ 0, k →∞.

2.3.3 Finite-Dimensional Approximations of the Generalized Derivative of the Optimal Process and
Their Convergence

Functions defined by the following formula

V ′mtk,l(t, x) =
l∑

n=1

(
ψ′mnt (t, λ) +

1

λn

∫ T

0
E′mnt (t, η, λ)×

×
(∫

Q
f [η, ξ, ū(l)(η, ξ)]zn(ξ)dξ +

∫
γ
p[η, ξ, ϑ̄(l)(η, ξ)]zn(ξ)dξ

)
dη
)
zn(x),

are called m, k, l-th approximations or finite-dimensional approximations of the generalized derivative
of the optimal process.

Lemma 7. Finite-dimensional approximations V ′mtk,l(t, x) of the generalized derivative of the optimal
process under the conditions of non-linear optimization problem (1)–(4) converge to m, k-th approx-
imations V ′mtk (t, x) of the generalized derivative of the optimal process when l → ∞ for any value of
m, k in the norm of space H(QT ).

Proof. Proof of the lemma follows from the following inequality

∥∥V m
tk (t, x)− V m

tk,l(t, x)
∥∥2

H(QT )
≤8T

(
1 +

λ2

λ2
n

· K0T
2λ2

n(
λn|λ|

√
K0T 2

)2
)
·

( ∞∑
n=i+1

λ2
nψ

2
1n +

∞∑
n=i+1

ψ2
1n+

+
∞∑

n=i+1

∫ T

0
f2
n[η, ūk] dη +

∞∑
n=i+1

∫ T

0
p2
n[η, ϑ̄k] dη

)
→ 0, l→∞,

which hold due to the convergence of the remainder terms of convergent series.

2.4 Approximations of the Minimum Value of the Functional and Their Convergence

The minimum value of functional (11), in accordance with the approximations of the optimal
process, has three types of approximations.

Let us first derive the following formula that will be repeatedly used in proving the convergence of
approximations of the minimum value of the functional:

|J [û, ϑ̂]− J [ũ, ϑ̃]| ≤ ‖V (T, x) +W (T, x)− 2ξ1(x)‖H(Q) · ‖V (T, x)−W (T, x)‖H(Q)

+ ‖Vt(T, x) +Wt(T, x)− 2ξ2(x)‖H(Q) · ‖Vt(T, x)−Wt(T, x)‖H(Q)

+ αh0 · ‖h[t, x, û(t, x)] + h[t, x, ũ(t, x)]‖H(QT ) · ‖û(t, x)− ũ(t, x)‖H(QT )

+ βb0 · ‖b[t, x, ϑ̂(t, x)] + b[t, x, ϑ̃(t, x)]‖H(γT ) · ‖ϑ̂(t, x)− ϑ̃(t, x)‖H(γT ),
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2.4.1 Finite-dimensional approximations of the functional minimum value and their convergence

According to formulas (12) and (13), finite-dimensional approximations of the functional minimum
value are calculated by the formula

Jk,jm [ū(k)(t, x), ϑ̄(k)(t, x)] =

∫
Q

[(
V

(m)
k,j (T, x)− ξ1(x)

)2
+
(
Vtk,j (T, x)− ξ2(x)

)2]
dx+

+

∫ T

0

[
α

∫
Q
h2(t, x, ū(k)(t, x)) dx+ β

∫
γ
b2(t, x, ϑ̄(k)(t, x)) dx

]
dt.

Lemma 8. Finite-dimensional approximations Jkm[ū0(t, x), ϑ̄0(t, x)] of the functional minimal value
under the conditions of the non-linear optimization problem (1)–(4) converge to the m-th approxima-
tions of the functional minimal value when k → ∞ for all fixed values of m, k in the norm of real
numbers space R.

Proof. In formula (14), by replacing

V (t, x)→ V
(m)
k,l (t, x), Vt(t, x)→ V

(m)
tk (t, x), W (t, x)→ V

(m)
k,j (t, x), Wt(t, x)→ V

(m)
tk,j (t, x),

we obtain the inequality∣∣∣J (k)
m [ūk(t, x), ϑ̄(k)(t, x)]− Jk,jm [ū(k)(t, x), ϑ̄(k)(t, x)]

∣∣∣ ≤ C(2)
∥∥V m

k (T, x)− V m
k,j(T, x)

∥∥
H(Q)

+

+ C(3)
∥∥V m

tk (T, x)− V m
tk,j(T, x)

∥∥
H(γ)

→ 0, k →∞,

where C(2), C(3) are constants.

3 Main results

Theorem 1. (Convergence of Finite-Dimensional Approximations to the Optimal Process). Let the
following conditions be satisfied:

1) Functions of external and boundary influences satisfy the Lipschitz condition for functional
variables (for controls):

‖f [η, ξ, û(η, ξ)]− f [η, ξ, ũ(η, ξ)]‖2H(QT ) ≤ f
2
0 ‖û(η, ξ)− ũ(η, ξ)‖2H(QT ), f2

0 = const,

‖p[η, ξ, ϑ̂(η, ξ)]− p[η, ξ, ϑ̃(η, ξ)]‖2H(QT ) ≤ p
2
0‖ϑ̂(η, ξ)− ϑ̃(η, ξ)‖2H(QT ), p2

0 = const.

2) The intermediate vectors ϕ̄[t, x, θ1(t, x), α], x ∈ Q, and ῡ[t, x, θ2(t, x), β], x ∈ γ, of the functions
satisfy the Lipschitz condition with respect to functional variables:

‖ϕ̄[t, x, θ̂1(t, x), α]− ϕ̄[t, x, θ̃1(t, x), α]‖H(QT ) ≤ ϕ0(α)‖θ̂1(t, x)− θ̃1(t, x)‖H(QT ), ϕ0(α) > 0,

‖ῡ[t, x, θ̂2(t, x), β]− ῡ[t, x, θ̃2(t, x), β]‖H(QT ) ≤ υ0(β)‖θ̂2(t, x)− θ̃2(t, x)‖H(QT ), υ0(β) > 0.

3) With respect to the parameters of non-linear optimization problem (1)–(4), the following in-
equality holds:

C(α, β) =
√
f2

0mϕ
2
0(α) + p2

0rυ
2
0(β)
√

2E0G0T < 1.

Then finite-dimensional approximations V (m)
k,l (t, x) of the optimal process V 0(t, x) under the condi-

tions of the non-linear optimization problem (1)–(4) converge to the optimal process when m, k, l→∞
in the norm of the space H(QT ).
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Proof. Based on Lemmas 1–4, the assertion of the theorem follows from the inequality:

‖V 0(t, x)− V (m)
k,l (t, x)‖H(QT ) ≤‖V 0(t, x)− V (m)(t, x)‖H(QT ) + ‖V (m)(t, x)− V (m)

k (t, x)‖H(QT )+

+ ‖V (m)
k (t, x)− V (m)

k,l (t, x)‖H(QT ) → 0, m, k, l→∞.

Theorem 2. (Convergence of finite-dimensional approximations of the generalized derivative to the
generalized derivative of the optimal process). Let the conditions of Theorem 1 be satisfied. Then
Finite-dimensional approximations V (m)

tk,l (t, x) of the generalized derivative of the optimal under the
conditions of non- linear optimization problem (1)–(4)converge to generalized derivative V 0

t (t, x) of the
optimal process when m, k, l→∞ in the norm of the space H(QT ).

Proof. Proof of the lemma follows from following inequality

‖V 0
t (t, x)− V (m)

tk,l (t, x)‖H(QT
=‖V 0

t (t, x)− V (m)
t (t, x)‖H(QT ) + ‖V (m)

t (t, x)− V (m)
tk (t, x)‖H(QT )+

+ ‖Vtk(t, x)− V (m)
tk,l (t, x)‖H(QT ) → 0, l→∞.

Theorem 3. (Convergence of finite-dimensional approximations of the functional minimum value
to the minimum value of the functional). Let the conditions of Theorem 1 be satisfied, then Finite-
dimensional approximations Jkm[ū0(t, x), ϑ̄0(t, x)] of the functional minimal value under the conditions
of non-linear optimization problem (1)–(4) converge to functional minimal value J [ū0(t, x), ϑ̄0(t, x)]
when m, k, l→∞ in the norm of real numbers space R.

Proof. Proof of Theorem 3 follows from the inequality

|J [ū0(t, x), ϑ̄0(t, x)]− Jk,jm [ū(k)(t, x), ϑ̄(k)(t, x)]| ≤ |J [ū0(t, x), ϑ̄0(t, x)]− Jm[ū0(t, x), ϑ̄0(t, x)]|+

+|Jm[ū0(t, x), ϑ̄0(t, x)]− Jkm[ū(k)(t, x), ϑ̄(k)(t, x)]| +

+|Jkm[ū(k)(t, x), ϑ̄(k)(t, x)]− Jk,jm [ū(k)(t, x), ϑ̄(k)(t, x)]| → 0, m, k, l→∞.

Conclusion

In this paper, the influence of the Fredholm integral operator in the integro-differential equation
on the convergence of approximate solutions to a nonlinear optimization problem is investigated. It
is established that the presence of the Fredholm integral operator leads to the identification of three
distinct types of approximations of the optimal process (“Resolvent” approximations, based on the re-
solvent of the kernel of the integral operator; Approximations by optimal controls, constructed through
the approximation of control functions; Finite-dimensional approximations) and corresponding approx-
imations of the minimum value of the functional.
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