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In this article, new q-analogues of Lyapunov-type inequalities are presented for two-point fractional bound-
ary value problems involving the Riemann–Liouville fractional q-derivative with well-posed q-boundary
conditions. The study relies on the properties of the q-Green’s function, which is constructed to solve such
problems and allows for the analytical derivation of the inequalities. These inequalities find application in
two directions: establishing precise lower bounds for the eigenvalues of corresponding q-fractional spectral
problems and formulating criteria for the absence of real zeros in q-analogues of Mittag-Leffler functions.
The obtained results generalize classical and fractional Lyapunov inequalities, offering new perspectives
for the analysis of stability and spectral properties of q-fractional differential systems. The relevance of
the work is driven by the growing interest in q-calculus in discrete models, such as viscoelastic systems
or quantum circuits, where discrete dynamics play a key role. The convenience of closed-form analytical
expressions makes the results practically applicable. The research lays the foundation for further general-
izations, including Caputo derivatives or multidimensional q-systems, which may stimulate new discoveries
in discrete fractional analysis.
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Introduction

Fractional calculus investigates integrals and derivatives of arbitrary (non-integer) order, has be-
come an indispensable framework for modelling complex phenomena in physics, biology, engineering,
and economics [1,2]. Fractional differential equations (FDEs) naturally describe memory effects, non-
local interactions, and anomalous diffusion; a representative example is C.F. Li et al.’s proof of positive
solutions for nonlinear FDEs with boundary constraints [3].

A central analytical tool for boundary-value problems (BVPs) in the fractional setting is the
Lyapunov-type inequality. R.A.C. Ferreira obtained the first variant for a Riemann–Liouville deriva-
tive with Dirichlet conditions [4]; M. Jleli and B. Samet extended the result to mixed boundary condi-
tions [5]; and D. Basu et al. treated fractional boundary conditions, applying the inequality to spectral
questions [6]. Subsequent refinements yielded sharper eigenvalue bounds and zero-free intervals for
Mittag-Leffler functions [7].

Parallel to the continuous theory, q-fractional calculus blends quantum calculus with fractional
analysis. Its origins trace back to Jackson’s introduction of q-difference operators and integrals
[8, 9] and R.D. Carmichael’s work on q-difference equations [10]. Modern expositions by V. Kac and
P. Cheung [11], T. Ernst [12,13], and M.H. Annaby, Z.S. Mansour [14] have systematised the subject.
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Foundational notions of q-fractional integrals and derivatives, proposed by W.A. Al-Salam [15] and
R.P. Agarwal [16], were rigorously formalised by P.M. Rajkovic et al. [17, 18].

Applications of q-fractional differential equations range from quantum mechanics to discrete dy-
namical systems. R.A.C. Ferreira analysed non-trivial and positive solutions for several classes of
q-fractional BVPs [19, 20]; S. Shaimardan and collaborators established existence and uniqueness re-
sults for Cauchy-type problems with Riemann–Liouville derivatives [21]. The q-fractional framework
has been connected with time–scale calculus through the work of F.M. Atici and P.W. Eloe [22];
with three-point and other non-local boundary conditions in the papers of S. Liang, J. Zhang, C. Yu,
J. Wang, S. Wang et al. [23–25]; and further refined for related non-local problems by C. Zhai,
J. Ren [26] and Y. Zhao, H. Chen, Q. Zhang [27]. Lyapunov-type inequalities for q-fractional equa-
tions were first obtained by M. Jleli and B. Samet [28].

In this work we derive two new Lyapunov-type inequalities for the q-fractional boundary-value
problem {

Dα
q,au(t) + q(t)u(t) = 0, a ≤ t ≤ b, 1 < α ≤ 2, 0 ≤ β ≤ 1,

u(a) = 0, Dβ
q,au(b) = 0, 0 < q < 1,

by exploiting properties of the associated q-Green function. The analysis combines topological fixed-
point techniques [29], and existence principles in the Caratheodory framework [30]. Our results sharpen
eigenvalue estimates, offer criteria for the real zeros of q-Mittag-Leffler functions, and advance the
spectral theory of discrete fractional models.

1 Preliminaries

In this section, we introduce essential definitions and foundational concepts, including key aspects
of q-calculus, which underpin the present study. For a comprehensive exploration of these topics,
readers are referred to the monographs [11,14].

For α ∈ R, the q-real number [α]q is given by

[α]q =
1− qα

1− q
, q 6= 1,

where lim
q→1

1−qα
1−q = α.

We introduce for k ∈ N:

(a; q)0 = 1, (a; q)n =
n−1∏
k=0

(
1− qka

)
, (a; q)∞ = lim

n→∞
(a, q)n, (a; q)α =

(a; q)∞
(qαa; q)∞

.

The q-factorial [n]q!, serving as the q-analogue of the binomial coefficient factorial, is defined as

[n]q! =

{
1, if n = 0,
[1]q × [2]q × · · · × [n]q, if n ∈ N.

The q-gamma function Γq(x) is given by

Γq(x) =
(q; q)∞
(qx; q)∞

(1− q)1−x, x ∈ R\{0,−1,−2, . . .}

and satisfies the functional relation Γq(x+ 1) = [x]qΓq(x).
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Definition 1. [11] The q-analogue differential operator Dqf(x) is

Dqf(x) =
f(x)− f(qx)

x(1− q)
,

and the q-derivatives Dn
q (f(x)) of higher order are defined inductively as follows:

D0
q(f(x)) = f(x), Dn

q (f(x)) = Dq

(
Dn−1
q f(x)

)
(n = 1, 2, 3, . . . ),

where 0 < q < 1. Be aware that lim
q→1

Dqf(x) = f ′(x).

Dq,x(x− s)q(γ) = [γ]q(x− s)q(γ−1), (1)

Dq,s(x− s)q(γ) = −[γ]q(x− qs)q(γ−1).

The q-integral (or Jackson integral)
b∫
a
f(x)dqx is defined by

a∫
0

f(x)dqx := (1− q)a
∞∑
m=0

qmf (aqm) ,

for a = 0 and

b∫
a

f(x)dqx =

b∫
0

f(x)dqx−
a∫

0

f(x)dqx,

for 0 < a < b. For further details, see [8, 9].

Definition 2. [21] For α > 0, and a function f defined on [a, b], the fractional q-integral of Riemann–
Liouville type is characterized by

(
I0
q,af

)
(x) = f(x) and

(
Iαq,af

)
(x) =

1

Γq(α)

x∫
a

(x− qt)(α−1)
q f(t)dqt, x ∈ [a, b].

Definition 3. [16]. Given α, β > 0, the Riemann–Liouville fractional q-derivative is defined by
setting

(
D0
q,af

)
(x) = f(x) and (

Dα
q,af

)
(x) =

(
D[α]
q,aI

[α]−α
q,a f

)
(x),

where [α] is the smallest integer greater than or equal to α.
For λ ∈ (−1,∞), the following is valid [9]:

(
Dα
q,a(x− a)λ

)
(x) =

Γq(λ+ 1)

Γq(λ− α+ 1)
(x− a)λ−α. (2)

The space Lpq = Lpq [a, b] corresponding to 1 ≤ p <∞ is defined by

Lpq [a, b] :=

f :

 b∫
a

|f(x)|pdqx


1
p

<∞

 .
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Let 0 < a < b <∞ and 0 ≤ λ ≤ 1. Then we introduce the space Cq,λ[a, b] of functions f given on
[a, b], such that the functions with the norm

‖f‖Cq,λ[a,b] := max
x∈[a,b]

∣∣∣(x− qa)(λ)
q f(x)

∣∣∣ <∞.
The collection of all q-absolutely continuous functions on [a, b] is denoted ACq[a, b]. For
n ∈ N := 1, 2, 3, . . . we denote by ACnq [a, b] the space of real-valued functions f(x) which have
q-derivatives up to order n− 1 on [a, b] such that Dn−1

q f(x) ∈ ACq[a, b] :

ACnq [a, b] :=
{
f : [a, b]→ R;Dn−1

q f(x) ∈ ACq[a, b]
}
.

Lemma 1. [18] Assume α > 0, β > 0, and 1 ≤ p <∞. The semigroup property for the q-fractional
integral holds as follows:

1. (Iβq,aIαq,af)(x) = (Iα+β
q,a f)(x),

2. (Dα
q,aI

α
q,af)(x) = f(x),

3.
(
Dβ
q,aIαq,af

)
(x) =

(
Iα−βq,a f

)
(x),

where f(x) ∈ Lpq [a, b] for all x ∈ [a, b].

Lemma 2. Suppose α > 0, p ∈ N, q ∈ (0, 1), and let f ∈ ACpq [a, b] be a function with q-derivatives
Dk
q,af defined at x = a for k = 0, 1, . . . , p − 1. Following [19], the Riemann–Liouville q-fractional

integral Iαq,a and derivative Dα
q,a satisfy

(
Iαq,aD

α
q,af

)
(x) =

(
Dα
q,aI

α
q,af

)
(x)−

p−1∑
k=0

(x− a)α−p+k

Γq(α+ k − p+ 1)

(
Dk
q,af

)
(a), x ∈ [a, b].

Lemma 3. For γ > −1, q ∈ (0, 1), a < b, and x ≥ b, the q-integral of the q-power function is given
by ∫ b

a
(x− qs)(γ)

q dqs =
(x− a)γ+1

[γ + 1]q
, (3)

where (x− qs)(γ)
q = (x− qs)γ and [γ + 1]q = 1−qγ+1

1−q . See [9] for details.

2 Main Results

Theorem 1. Let 1 < α ≤ 2, 0 ≤ β ≤ 1, 0 < α− β < 1, q ∈ (0, 1), and h ∈ L1
q [a, b]. The q-fractional

boundary value problem
Dα
q,au(t) + h(t) = 0, t ∈ [a, b], (4)

with boundary conditions
u(a) = 0, Dβ

q,au(b) = 0, (5)

has a unique solution given by

u(t) =

b∫
a

Gq(t, s)h(s) dqs,

where the q-Green’s function Gq(t, s) is defined as

Gq(t, s) =
1

Γq(α)


(t−a)α−1

(b−a)α−β−1 (b− qs)(α−β−1)
q , a ≤ t ≤ s ≤ b,

(t−a)α−1

(b−a)α−β−1 (b− qs)(α−β−1)
q − (t− qs)(α−1)

q , a ≤ s ≤ t ≤ b.
(6)
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Proof. By applying the operator Iαq,a from definition 2 to both sides of (4) and employing Lemma 2
with p = 2, we obtain

u(t) = −Iαq,ah(t) + C1(t− a)α−1 + C2(t− a)α−2, (7)

for some C1, C2 ∈ R. Applying the operator Dβ
q,a in condition (5) to both parts of the equation (7)

and using the Lemma 1, we obtain

Dβ
q,au(t) = −Dβ

q,aI
α
q,ah(t) + C1D

β
q,a(t− a)α−1

+ C2D
β
q,a(t− a)α−2,

proceeding further, and using formula (2), we arrive at

Dβ
q,au(t) = −Iα−βq,a h(t) + C1

Γq(α)

Γq(α− β)
(t− a)α−β−1

+ C2
Γq(α− 1)

Γq(α− β − 1)
(t− a)α−β−2.

(8)

Using the boundary condition u(a) = 0 in equation (7) gives C2 = 0. Applying the condition
Dβ
q,au(b) = 0 to equation (8) then leads to

C1 =
1

Γq(α)(b− a)α−β−1

b∫
a

(b− qs)(α−β−1)
q h(s) dqs.

Substituting the explicit expressions for C1 and C2 into equation (7), we obtain the unique solution
of (4) as

u(t) = − 1

Γq(α)

t∫
a

(t− qs)(α−1)
q h(s)dqs

+
1

Γq(α)

b∫
a

(t− a)α−1

(b− a)α−β−1
(b− qs)(α−β−1)

q h(s)dqs

=
1

Γq(α)

t∫
a

[
(t− a)α−1

(b− a)α−β−1
(b− qs)(α−β−1)

q − (t− qs)(α−1)
q

]
h(s)dqs

+
1

Γq(α)

b∫
t

(t− a)α−1

(b− a)α−β−1
(b− qs)(α−β−1)

q h(s)dqs

=

b∫
a

Gq(t, s)h(s)dqs.

Hence, the result follows.

Corollary 1. Let 1 < α ≤ 2, 0 ≤ β ≤ 1, 1 ≤ α−β < 2, q ∈ (0, 1), and h ∈ L1
q [a, b]. The q-fractional

boundary value problem
Dα
q,au(t) + h(t) = 0, t ∈ [a, b],

with boundary conditions
u(a) = 0, Dβ

q,au(b) = 0,
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has a unique solution u ∈ ACαq [a, b] given by

u(t) =

b∫
a

Gq(t, s)h(s) dqs,

where the q-Green’s function Gq(t, s) is defined as

Gq(t, s) =
1

Γq(α)


(t−a)α−1

(b−a)α−β−1 (b− qs)(α−β−1)
q , a ≤ t ≤ s ≤ b,

(t−a)α−1

(b−a)α−β−1 (b− qs)(α−β−1)
q − (t− qs)(α−1)

q , a ≤ s ≤ t ≤ b.
(9)

Proof. The result follows from Theorem 1 by identical arguments for the case 1 ≤ α − β < 2; the
details are omitted.

We proceed to demonstrate the nonnegativity of the q-Green’s functions and establish upper bounds
for both the functions and their q-integrals.

Theorem 2. Let 1 < α ≤ 2, 0 ≤ β ≤ 1, 0 < α − β < 1, q ∈ (0, 1), and let the q-Green’s function
Gq(t, s) be defined as in Theorem 1. Then,

Gq(t, s) ≥ 0 for all (t, s) ∈ [a, b]× [a, b].

Proof. We analyze the q-Green’s function Gq(t, s) defined in Theorem 1, considering its piecewise
structure.

Case 1: a ≤ t ≤ s ≤ b. Here,

Gq(t, s) =
1

Γq(α)
· (t− a)α−1

(b− a)α−β−1
· (b− qs)(α−β−1)

q .

Since Γq(α) > 0, (b − a)α−β−1 > 0, (t − a)α−1 ≥ 0 for t ≥ a, and (b − qs)(α−β−1)
q ≥ 0 for s ≤ b (as

qs ≤ s, q ∈ (0, 1), and 0 < α− β < 1), it follows that Gq(t, s) ≥ 0.
Case 2: a ≤ s ≤ t ≤ b. In this case,

Gq(t, s) =
1

Γq(α)

[
(t− a)α−1

(b− a)α−β−1
(b− qs)(α−β−1)

q − (t− qs)(α−1)
q

]
.

Since s ≤ t, the q-power function is monotonic, so t− qs ≥ t− a, and thus (t− qs)(α−1)
q ≤ (t− a)α−1.

Additionally, as qs ≤ s ≤ t ≤ b, we have b − qs ≥ b − a, implying (b − qs)(α−β−1)
q ≥ (b − a)α−β−1.

Therefore,
(t− a)α−1

(b− a)α−β−1
(b− qs)(α−β−1)

q ≥ (t− a)α−1 ≥ (t− qs)(α−1)
q .

Hence,

Gq(t, s) ≥
1

Γq(α)

[
(t− a)α−1 − (t− qs)(α−1)

q

]
≥ 0.

Combining both cases, we conclude that Gq(t, s) ≥ 0 for all (t, s) ∈ [a, b]× [a, b].

Remark 1. The nonnegativity of the q-Green’s function Gq(t, s), established in Theorem 2, is crucial
for the qualitative analysis of the q-fractional boundary value problem in Theorem 1. Specifically, it
ensures that the solution

u(t) =

b∫
a

Gq(t, s)h(s) dqs, h ∈ L1
q [a, b],

preserves the sign of the source term h(s). For instance, if h(s) ≥ 0 on [a, b], then u(t) ≥ 0; similarly,
if h(s) ≤ 0, then u(t) ≤ 0, for all t ∈ [a, b].
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Corollary 2. Let 1 < α ≤ 2, 0 ≤ β ≤ 1, 1 ≤ α − β < 2, q ∈ (0, 1), and let the q-Green’s function
Gq(t, s) be defined as in Corollary 1 for a < b. Then,

Gq(t, s) ≥ 0 for all (t, s) ∈ [a, b]× [a, b].

Proof. We analyze the piecewise definition of Gq(t, s) from Corollary 1.
Case 1: a ≤ t ≤ s ≤ b. Here,

Gq(t, s) =
1

Γq(α)
· (t− a)α−1

(b− a)α−β−1
· (b− qs)(α−β−1)

q .

Since Γq(α) > 0, (t − a)α−1 ≥ 0, (b − a)α−β−1 ≥ 0 (as α − β − 1 ≥ 0), and (b − qs)(α−β−1)
q ≥ 0 (as

qs ≤ s ≤ b, q ∈ (0, 1)), it follows that Gq(t, s) ≥ 0.
Case 2: a ≤ s ≤ t ≤ b. In this case,

Gq(t, s) =
1

Γq(α)

[
(t− a)α−1

(b− a)α−β−1
(b− qs)(α−β−1)

q − (t− qs)(α−1)
q

]
.

Since a ≤ qs ≤ s ≤ t ≤ b, we have b− qs ≥ b− a, so (b− qs)(α−β−1)
q ≥ (b− a)α−β−1. Also, qs ≥ a, so

t − qs ≤ t − a, and the monotonicity of the q-power function [14] implies (t − qs)(α−1)
q ≤ (t − a)α−1.

Thus,
(t− a)α−1

(b− a)α−β−1
(b− qs)(α−β−1)

q ≥ (t− a)α−1 ≥ (t− qs)(α−1)
q .

Hence,

Gq(t, s) ≥
1

Γq(α)

[
(t− a)α−1 − (t− qs)(α−1)

q

]
≥ 0.

Thus, Gq(t, s) ≥ 0 for all (t, s) ∈ [a, b]× [a, b].

Theorem 3. Let 1 < α ≤ 2, 0 ≤ β ≤ 1, 0 < α − β < 1, q ∈ (0, 1), a < b, and let the q-Green’s
function Gq(t, s) be defined as in (6). Then, for s ∈ [a, b],

max
t∈[a,b]

Gq(t, s)

(b− qs)(α−β−1)
q

=
Gq(s, s)

(b− qs)(α−β−1)
q

,

and

max
s∈[a,b]

Gq(s, s)

(b− qs)(α−β−1)
q

=
(b− a)β

Γq(α)
.

Proof. We analyze the ratio Gq(t,s)

(b−qs)(α−β−1)
q

for fixed s ∈ [a, b]. Since qs ≤ s ≤ b, q ∈ (0, 1), and

0 < α− β < 1, we have α− β − 1 ∈ (−1, 0), but (b− qs)(α−β−1)
q ≥ 0 as per [14].

Case 1: a ≤ t ≤ s ≤ b. From (6),

Gq(t, s)

(b− qs)(α−β−1)
q

=
1

Γq(α)
· (t− a)α−1

(b− a)α−β−1
.

Using the q-derivative (1),
Dq,t[(t− a)α−1] = [α− 1]q(t− a)α−2,

we obtain

Dq,t

[
Gq(t, s)

(b− qs)(α−β−1)
q

]
=

(t− a)α−2

(b− a)α−β−1Γq(α− 1)
≥ 0,
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since α−2 > −1. At t = a, (t−a)α−2 may be singular (α−2 ∈ (−1, 0]), but the q-derivative is defined
for t ∈ (a, s]. Thus, the ratio is non-decreasing on [a, s].

Case 2: a ≤ s ≤ t ≤ b. Here,

Gq(t, s)

(b− qs)(α−β−1)
q

=
1

Γq(α)

[
(t− a)α−1

(b− a)α−β−1
− (t− qs)(α−1)

q

(b− qs)(α−β−1)
q

]
.

Computing the q-derivative,

Dq,t

[
Gq(t, s)

(b− qs)(α−β−1)
q

]
=

1

Γq(α− 1)

[
(t− a)α−2

(b− a)α−β−1
− (t− qs)(α−2)

q

(b− qs)(α−β−1)
q

]
.

Since qs ≤ s ≤ b, we have b − qs ≥ b − a, so (b − qs)
(α−β−1)
q ≥ (b − a)α−β−1. Also, qs ≥ a, so

t − qs ≤ t − a, and the monotonicity of the q-power function [14] implies (t − qs)(α−2)
q ≤ (t − a)α−2.

Thus,
(t− a)α−2

(b− a)α−β−1
≥ (t− qs)(α−2)

q

(b− qs)(α−β−1)
q

,

so

Dq,t

[
Gq(t, s)

(b− qs)(α−β−1)
q

]
≤ 0.

Hence, the ratio is non-increasing on [s, b]. Combining both cases, the maximum occurs at t = s, where

Gq(s, s)

(b− qs)(α−β−1)
q

=
1

Γq(α)
· (s− a)α−1

(b− a)α−β−1
.

For the second part, consider

Gq(s, s)

(b− qs)(α−β−1)
q

=
(s− a)α−1

(b− a)α−β−1Γq(α)
.

Since (s− a)α−1 is increasing on [a, b] (α− 1 > 0), the maximum occurs at s = b, yielding

(b− a)α−1

(b− a)α−β−1Γq(α)
=

(b− a)β

Γq(α)
.

This completes the proof.

Corollary 3. Let 1 < α ≤ 2, 0 ≤ β ≤ 1, 1 ≤ α − β < 2, q ∈ (0, 1), a < b, and let the q-Green’s
function Gq(t, s) be defined as in (9). Then, for s ∈ [a, b],

max
t∈[a,b]

Gq(t, s) = Gq(s, s),

and

max
s∈[a,b]

Gq(s, s) =
(b− a)βbα−β−1(1− q)α−β−1

Γq(α)
.

Proof. The statement follows from Theorem 3 by identical arguments applied to the range
1 ≤ α− β < 2; the details are omitted.
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Corollary 4. Let 1 < α ≤ 2, 0 ≤ β ≤ 1, 1 ≤ α − β < 2, q ∈ (0, 1), a < b, and let the q-Green’s
function Gq(t, s) be defined as in (6) and (9). Then:

max
t∈[a,b]

b∫
a

Gq(t, s) dqs =
[α− 1]α−1

q

Γq(α+ 1)

(
b− a

[α− β]q

)α
.

Proof. Consider the integral I(t) =
b∫
a
Gq(t, s) dqs, where Gq(t, s) is defined in (6) and (9). Split

the integral based on the definition of Gq(t, s):
Case 1: a ≤ t ≤ s ≤ b.

Gq(t, s) =
1

Γq(α)
· (t− a)α−1

(b− a)α−β−1
(b− qs)(α−β−1)

q .

Case 2: a ≤ s ≤ t ≤ b.

Gq(t, s) =
1

Γq(α)

[
(t− a)α−1

(b− a)α−β−1
(b− qs)(α−β−1)

q − (t− qs)(α−1)
q

]
.

Thus,

I(t) =

t∫
a

Gq(t, s) dqs+

∫ b

t
Gq(t, s) dqs.

Substitute the expression for Gq(t, s):

I(t) =

t∫
a

1

Γq(α)

[
(t− a)α−1

(b− a)α−β−1
(b− qs)(α−β−1)

q − (t− qs)(α−1)
q

]
dqs

+

b∫
t

1

Γq(α)
· (t− a)α−1

(b− a)α−β−1
(b− qs)(α−β−1)

q dqs

=
(t− a)α−1

Γq(α)(b− a)α−β−1

b∫
a

(b− qs)(α−β−1)
q dqs−

1

Γq(α)

t∫
a

(t− qs)(α−1)
q dqs.

Using equation (3), under the conditions x = b or x = t ≥ s, we have

b∫
a

(b− qs)(α−β−1)
q dqs =

(b− a)α−β

[α− β]q
,

t∫
a

(t− qs)(α−1)
q dqs =

(t− a)α

[α]q
,

we get

I(t) =
(t− a)α−1(b− a)α−β

Γq(α)(b− a)α−β−1[α− β]q
− (t− a)α

Γq(α)[α]q

=
(t− a)α−1(b− a)

Γq(α)[α− β]q
− (t− a)α

Γq(α)[α]q

=
(t− a)α−1

Γq(α)

(
b− a

[α− β]q
− t− a

[α]q

)
.
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To find the maximum, compute the q-derivative:

Dq,tI(t) =
1

Γq(α)

[
[α− 1]q(t− a)α−2

(
b− a

[α− β]q
− t− a

[α]q

)
− (t− a)α−1 · 1

[α]q

]
=

1

Γq(α)

[
[α− 1]q(t− a)α−2(b− a)

[α− β]q
− (t− a)α−1([α− 1]q + 1)

[α]q

]
=

1

Γq(α)

[
[α− 1]q(t− a)α−2(b− a)

[α− β]q
− (t− a)α−1

]
,

where [α− 1]q + 1 = 1−qα−1

1−q + 1 = 1−qα
1−q = [α]q.

Set Dq,tI(t) = 0:

t∗ = a+
[α− 1]q(b− a)

[α− β]q
.

Substitute t∗ into the expression for I(t):

I(t∗) =

(
[α−1]q(b−a)

[α−β]q

)α−1

Γq(α)

 b− a
[α− β]q

−
[α−1]q(b−a)

[α−β]q

[α]q


=

(
[α−1]q(b−a)

[α−β]q

)α−1

Γq(α)

(
b− a

[α− β]q

(
1− [α− 1]q

[α]q

))
=

[α− 1]α−1
q (b− a)α−1

Γq(α)[α− β]α−1
q

· b− a
[α− β]q

· q
α−1

[α]q

=
[α− 1]α−1

q (b− a)αqα−1

Γq(α)[α− β]αq [α]q
.

The function I(t) is increasing for t < t∗ (Dq,tI(t) > 0) and decreasing for t > t∗ (Dq,tI(t) < 0),
confirming the maximum at t∗.

Theorem 4. Let Bq = Cq,λ[a, b] denote the Banach space of functions continuous in the q-sense on
the interval [a, b], with norm

‖u‖Cq,λ = max
t∈[a,b]

|u(t)|,

where [a, b] = {a, aq, aq2, . . . , aqn = b}. Given 1 < α ≤ 2, 0 ≤ β ≤ 1, 0 < α − β < 1, if the fractional
q-difference boundary value problem{

Dα
q,au(t) + q(t)u(t) = 0, t ∈ [a, b],

u(a) = 0, Dβ
q,au(b) = 0,

(10)

admits a nontrivial solution u ∈ Bq, then the following Lyapunov-type inequality holds:

b∫
a

(b− qs)(α−β−1)
q |q(s)|dqs >

Γq(α)

(b− a)β
. (11)

Proof. Any solution u ∈ Bq of the boundary value problem (10) satisfies

u(t) =

b∫
a

Gq(t, s)q(s)u(s)dqs,
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where Gq(t, s) is the q-Green’s function given by (6).
By applying the Cq,λ-norm, we obtain

‖u‖Cq,λ = max
t∈[a,b]

∣∣∣∣∣∣
b∫
a

Gq(t, s)q(s)u(s)dqs

∣∣∣∣∣∣
≤ max

t∈[a,b]

b∫
a

|Gq(t, s)||q(s)||u(s)|dqs

≤ ‖u‖Cq,λ · max
t∈[a,b]

b∫
a

|Gq(t, s)||q(s)|dqs.

For a nontrivial solution (‖u‖Cq,λ 6= 0), this implies

1 ≤ max
t∈[a,b]

b∫
a

|Gq(t, s)||q(s)|dqs.

By Theorem 3, the q-Green’s function satisfies the bound

|Gq(t, s)| ≤
(b− a)β(b− qs)(α−β−1)

q

Γq(α)
.

Substituting this bound, we get

1 < max
t∈[a,b]

b∫
a

|Gq(t, s)||q(s)|dqs ≤
(b− a)β

Γq(α)

b∫
a

(b− qs)(α−β−1)
q |q(s)|dqs.

Therefore, dividing both sides by (b−a)β

Γq(α) , we obtain (11).
This completes the proof.

Corollary 5. Let 1 < α ≤ 2, 0 ≤ β ≤ 1, and 1 ≤ α − β < 2. Suppose the fractional q-difference
boundary-value problem {

Dα
q,au(t) + q(t)u(t) = 0, t ∈ [a, b],

u(a) = 0, Dβ
q,au(b) = 0,

admits a nontrivial solution u ∈ Bq = Cq,λ[a, b], where Cq,λ[a, b] is the space of q-continuous functions
on the q-interval [a, b] with 0 < q < 1. Then the following Lyapunov-type inequality holds:

b∫
a

|q(s)| dqs >
Γq(α)

(b− a)βbα−β−1(1− q)α−β−1
.

Proof. By Corollary 1, any solution u ∈ Cq,λ[a, b] to the boundary-value problem satisfies:

u(t) =

b∫
a

Gq(t, s)q(s)u(s) dqs,
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where Gq(t, s) is the q-Green’s function defined in (9).
Define the norm ‖u‖Cq,λ = sup

t∈[a,b]
|u(t)|. From the solution representation:

|u(t)| ≤
b∫
a

|Gq(t, s)||q(s)||u(s)| dqs ≤ ‖u‖Cq,λ

b∫
a

|Gq(t, s)||q(s)| dqs.

Taking the supremum over t ∈ [a, b], we obtain

‖u‖Cq,λ ≤ ‖u‖Cq,λ max
t∈[a,b]

b∫
a

|Gq(t, s)||q(s)| dqs.

For a nontrivial solution (‖u‖Cq,λ > 0), it follows that

1 ≤ max
t∈[a,b]

b∫
a

|Gq(t, s)||q(s)| dqs.

By Corollary 2, Gq(t, s) is non-negative, so |Gq(t, s)| = Gq(t, s). By Corollary 3, the maximum of
the Green’s function is

max
t,s∈[a,b]

Gq(t, s) = max
s∈[a,b]

Gq(s, s) =
(b− a)βbα−β−1(1− q)α−β−1

Γq(α)
.

Thus, Gq(t, s) ≤ max
s∈[a,b]

Gq(s, s), and

b∫
a

Gq(t, s)|q(s)| dqs ≤
(b− a)βbα−β−1(1− q)α−β−1

Γq(α)

b∫
a

|q(s)| dqs.

Combining with the previous inequality, we get

1 ≤ (b− a)βbα−β−1(1− q)α−β−1

Γq(α)

b∫
a

|q(s)| dqs.

Rearranging yields
b∫
a

|q(s)| dqs ≥
Γq(α)

(b− a)βbα−β−1(1− q)α−β−1
.

To establish the strict inequality, suppose equality holds
b∫
a

|q(s)| dqs =
Γq(α)

(b− a)βbα−β−1(1− q)α−β−1
.

This implies Gq(t, s) = max
s∈[a,b]

Gq(s, s) for all t, s ∈ [a, b] where q(s)u(s) 6= 0. By Corollary 3,

Gq(t, s) = Gq(s, s) only when t = s, which has measure zero in the q-integral unless u ≡ 0. Since
u is nontrivial, equality is impossible, so

b∫
a

|q(s)| dqs >
Γq(α)

(b− a)βbα−β−1(1− q)α−β−1
.
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3 Applications

In this section, we investigate two applications of Theorem 4 and Corollary 5. First, we establish
lower bounds for the eigenvalues of the Riemann–Liouville type fractional q-eigenvalue problems as-
sociated with (10). Second, we utilize these findings to identify intervals where the q-analogue of the
two-parameter Mittag-Leffler function has no real zeros.

Theorem 5. Let 1 < α ≤ 2, 0 ≤ β ≤ 1 such that 0 < α − β < 1. Assume that y is a nontrivial
solution of the Riemann–Liouville type fractional q-eigenvalue problem{

Dα
q,au(t) + λu(t) = 0, t ∈ [a, b],

u(a) = 0, Dβ
q,au(b) = 0,

(12)

where u(t) 6= 0 for each t ∈ (a, b). Then,

|λ| > [α− β]qΓq(α)

(b− a)α
.

Corollary 6. Let 1 < α ≤ 2, 0 ≤ β ≤ 1 such that 1 ≤ α − β < 2. Assume that u is a nontrivial
solution of the Riemann–Liouville type fractional q-eigenvalue problem (12), where u(t) 6= 0 for each
t ∈ (a, b). Then,

|λ| > Γq(α)

(b− a)βbα−β−1(1− q)α−β−1
.

Consider the q-analogue of the two-parameter Mittag-Leffler function, defined as ([14]):

Eq,α,β(z) =

∞∑
k=0

zk

Γq(kα+ β)
, z, β ∈ C, <(α) > 0, 0 < q < 1. (13)

We use Theorem 5 and Corollary 6 to determine intervals where the function (13) has no real zeros.

Theorem 6. Let 1 < α ≤ 2, 0 ≤ β ≤ 1, 0 < α− β < 1, q ∈ (0, 1). The q-Mittag-Leffler function

Eq,α,α−β(z) =

∞∑
k=0

zk

Γq(kα+ α− β)
,

has no real zeros for
|z| ≤ [α− β]qΓq(α)

(b− a)α
, (14)

where [α− β]q = 1−qα−β
1−q .

Proof. Consider the q-fractional eigenvalue problem{
Dα
q,au(t) + λu(t) = 0, t ∈ [a, b],

u(a) = 0, Dβ
q,au(b) = 0,

where Dα
q,a is the Riemann–Liouville q-fractional derivative. The general solution is

u(t) = c1(t− a)α−1Eq,α,α(−λ(t− a)α) + c2(t− a)α−2Eq,α,α−1(−λ(t− a)α).

Let g(t) = (t− a)α−1Eq,α,α(−λ(t− a)α). Compute

Dα
q,ag(t) = Dα

q,a

( ∞∑
n=0

(−λ)n(t− a)αn+α−1

Γq(αn+ α)

)
=
∞∑
n=0

(−λ)n

Γq(αn+ α)
Dα
q,a(t− a)αn+α−1.
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Since Dα
q,a(t− a)αn+α−1 =

Γq(αn+α)
Γq(αn) (t− a)αn−1, we get

Dα
q,ag(t) =

∞∑
n=0

(−λ)n

Γq(αn)
(t− a)αn−1 = −λg(t).

The condition u(a) = 0 implies c2 = 0, since (t− a)α−2 →∞ as t→ a. Thus,

u(t) = c1(t− a)α−1Eq,α,α(−λ(t− a)α).

Compute

Dβ
q,au(t) = c1

∞∑
n=0

(−λ)n

Γq(αn+ α)
Dβ
q,a(t− a)αn+α−1.

Since Dβ
q,a(t− a)αn+α−1 =

Γq(αn+α)
Γq(αn+α−β)(t− a)αn+α−β−1, we obtain

Dβ
q,au(t) = c1(t− a)α−β−1Eq,α,α−β(−λ(t− a)α).

The condition Dβ
q,au(b) = 0 gives

c1(b− a)α−β−1Eq,α,α−β(−λ(b− a)α) = 0 =⇒ Eq,α,α−β(−λ(b− a)α) = 0.

By Theorem 5, for a nontrivial solution u ∈ Bq = Cq,λ[a, b],

|λ| > [α− β]qΓq(α)

(b− a)α
.

For z = −λ(b− a)α, we have
|z| = |λ|(b− a)α > [α− β]qΓq(α).

Thus, Eq,α,α−β(z) 6= 0 for (14).

Corollary 7. Let 1 < α ≤ 2, 0 ≤ β ≤ 1 such that 1 ≤ α − β < 2. The q-Mittag-Leffler function
Eq,α,β(z) has no real zeros for

|z| ≤ Γq(α)

(b− a)α
.

Proof. Following the same reasoning as in Theorem 6, suppose Eq,α,β(λ) = 0 for some real λ.
The function u(t) = Eq,α,β(−λ(t − a)α) satisfies the q-eigenvalue problem (12). By Corollary 6, any
eigenvalue λ must satisfy:

|λ| > Γq(α)

(b− a)α
.

Hence, Eq,α,β(z) 6= 0.

Conclusion

In this study, we derived two novel Lyapunov-type inequalities for boundary value problems involv-
ing the Riemann–Liouville fractional q-derivative within the regimes 0 < α−β < 1 and 1 ≤ α−β < 2,
thereby establishing precise estimates for eigenvalues and intervals free of zeros for q-Mittag-Leffler
functions. By employing an analysis of the q-Green’s function, we determined lower bounds for the
eigenvalues of the problem Dα

q,au + λu = 0 and identified regions devoid of real zeros for q-analogues
of Mittag-Leffler functions, which holds significant importance for discrete systems with memory, such
as viscoelastic lattices and quantum circuits. This work extends classical inequalities to the realm of
q-calculus, thereby bridging continuous and discrete fractional analysis, and paves the way for further
research on Caputo q-fractional derivatives and multidimensional q-lattices.
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