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Recent advances in analysis and applied mathematics and their
applications
PREFACE

Guest-Editors: Allaberen Ashyralyev1,2,3,∗, Charyyar Ashyralyyev1,4,5, Makhmud Sadybekov2

1Department of Mathematics, Bahcesehir University, Istanbul, Turkey;
2Institute of Mathematics and Mathematical Modeling, Almaty, Kazakhstan;

3Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia;
4Khoja Akhmet Yassawi International Kazakh-Turkish University, Turkestan, Kazakhstan;

5National University of Uzbekistan named after Mirzo Ulugbek, Tashkent, Uzbekistan
(E-mail: aallaberen@gmail.com, charyyar@gmail.com, sadybekov@math.kz)

Keywords: partial differential equations, integro-differential equations, boundary value problems, Dirich-
let problem; well-posedness, regular solutions, identification problems, delay differential operators with
involution, numerical methods and solutions, difference schemes, involution, stability.

2020 Mathematics Subject Classification: 34K28, 35A35, 35G15, 35J15, 35J25, 35K10, 35K60, 35L05,
35L10, 35L35, 35M10, 35M12, 35N25, 35R30, 35S15, 39A14, 42A10, 42B10, 45J05, 45J99, 47A62, 47B39,
54E15, 54D20, 58J05, 58J32, 58J99, 58JXX, 60H30, 65M06, 65H10, 65H30, 65J22, 65N06, 82D75

This issue is a collection of 14 selected papers of foreign and national scientists. All of these have
been accepted after peer review and contain numerous new results in the fields of analysis and applied
mathematics, including their applications to constructing and investigating solutions for well-posed and
ill-posed boundary value problems for partial differential equations. The authors of the selected papers
are from different countries: Turkey, Kazakhstan, Sweden, Russian Federation, Azerbaijan, Kirgizistan,
Uzbekistan, and Turkmenistan. Especially, we are pleased with the fact that many articles are written
by co-authors who work in different universities around the world.

Guest-Editors: A. Ashyralyev, C. Ashyralyyev and M. Sadybekov

June 12, 2024

∗Correspondence: E-mail: aallaberen@gmail.com
c© 2024 The Authors. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
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MATHEMATICS

https://doi.org/10.31489/2024M3/5-12 Research article

The boundary value problem for an ordinary linear half-order
differential equation

N. Aliyev1, M. Rasulov2, B. Sinsoysal3,∗

1Baku State University, Baku, Azerbaijan;
2Ministry of Science and Education of Azerbaijan, Institute of Oil and Gas, Baku, Azerbaijan;

3Istanbul Gedik University, Istanbul, Turkey
(E-mail: aliev.jafar@gmail.com, mresulov@gmail.com, bahaddin.sinsoysal@gedik.edu.tr)

This study is devoted to the study of the solution of a boundary value problem for an ordinary linear
differential equation of half order with constant coefficients. Using of the fundamental solution of the main
part of the considered equation, we obtained the principal relations, from which we obtain the necessary
conditions for the Fredholm property of the original problem. Further, using the Mittag-Leffler function,
a general solution of the homogeneous equation is obtained. Finally, the problem under consideration is
reduced to an integral Fredholm equation of the second kind with a non-singular kernel, i.e., the Fredholm
property of the stated problem is proved.

Keywords: half-order equations, boundary value problem, fundamental solution, basic relation, integral
equations, Fredholm property, Mittag-Leffler functions, general solution of a homogeneous half-order equa-
tion.

2020 Mathematics Subject Classification: 34A08.

Introduction

Most investigations in different fields of science and engineering are modeled with the help of differ-
ential equations (or systems of equations) with fractional derivatives. The concept of fractional calculus
has gained considerable popularity and importance during the past half decades. The concept of the
fractional calculus takes beginning from outstanding learned as Marquis de L’Hopital, G.W. Leibniz,
Fourier, Laplace, Liouville, Riemann, Letnikov etc, as gained considerable popularity and importance
during the past half decades, in [1–5].

The study of solving boundary value problems is closely related to the Green’s function. The
construction of the Green’s function is not an easy task, since it is related to the considered equations
and the boundary condition [6–8].

Problems of the Cauchy type for an ordinary linear differential equation of fractional order, in
particular half-order, are studied in [1, 2, 4, 5], where these problems are reduced to Volterra integral
equations of the second kind. Constructing of a fundamental solution is much easier than constructing
∗Corresponding author. E-mail: bahaddin.sinsoysal@gedik.edu.tr
Received: 17 December 2023; Accepted: 15 May 2024.
c© 2024 The Authors. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
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the Green’s function, since it is associated only with the equation under consideration. In [9] and [10]
solutions of some classes of Cauchy problems containing fractional differential operators are established.

In [11–13] for some class of the fractional order equations of fundamental solutions constructed.
This article is devoted to the study of a boundary value problem for an ordinary linear differential
equation of half order. We used the fundamental solution proposed in [6], where a fundamental solution
was constructed for a wide class of differential equations.

With the help of the fundamental solution of the main part of the considered equation, the main
relations is obtained, from which the necessary conditions for Fredholm property are proved. Fur-
ther, with the help of the Mittag-Leffler function the general solution of the homogeneous equation is
obtained.

Let us consider the following problem

D
1
2
x1−

y(x)− ay(x) = f(x), 0 < x0 < x < x1, (1)

y(x1) + αy(x0) = 0, (2)

where a, x0, x1 and α are given constants, f(x) is a known continuous function defined on [x0, x1] and
y(x) is an unknown function that is required to define, and

D
1
2
x1−

y(x) = − d

dx

∫ x1

x

(x− t)−
1
2(

− 1
2

)
!
y(t)dt, x < x1

is left half order derivative of the function y(x) [1],(
−1

2

)
! = Γ

(1

2

)
=

∫ ∞
0

e−tt−
1
2dt.

Here, Γ is Euler’s gamma function.
In order to construct solution of the considered problem we use of the fundamental solution of the

conjugate equation corresponding to Eq. (1)

D
1
2
x0y(x)− ay(x) = f(x), 0 < x0 < x < x1, (3)

where

D
1
2
x0y(x) =

d

dx

∫ x

x0

(x− t)−
1
2(

− 1
2

)
!
y(t)dt, x > x0.

Let f(x), g(x) ∈ C[x0, x1] and D
1
2
x0g(x), D

1
2
x1−

f(x) exist on [x0, x1], where C[x0, x1] is a class of con-
tinuously functions in [x0, x1]. According to [13] the following equality holds∫ x1

x0

(
D

1
2
x0f(x)

)
g(x)dx =

∫ x1

x0

f(x)
(
D

1
2
x1−

g(x)
)
dx. (4)

Easy to see that x−
1
2(

− 1
2

)
!
is a fundamental solution for the main part of Eq. (3). Indeed [1],

D
1
2
x0

x−
1
2(

− 1
2

)
!

=
x−1

(−1)!
= δ(x).

Here δ(x) is Dirac’s function.
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Then multiplying Eq. (1) by
(t− ξ)−

1
2(

− 1
2

)
!

+ Cyh(t),

and integrating over x on the open interval (x0, x1), we have∫ x1

x0

(
(x− ξ)−

1
2(

− 1
2

)
!

+ Cyh(x)

)
D

1
2
x1−

y(x)dx− a
∫ x1

x0

(
(x− ξ)−

1
2(

− 1
2

)
!

+ Cyh(x)

)
y(x)dx =

=

∫ x1

x0

(
(x− ξ)−

1
2(

− 1
2

)
!

+ Cyh(x)

)
f(x)dx. (5)

Here,

yh(x) =

∞∑
k=0

ak
x

k−1
2(

k−1
2

)
!

(6)

is a partial solution and is the homogeneous solution corresponding to Eq. (3). Indeed,

D
1
2
x0y(x) =

∞∑
k=0

ak
x

k−2
2(

k−2
2

)
!

=
x−1

(−1)!
+ a

x−
1
2(

− 1
2

)
!

+ a2
x0

(0)!
+ a3

x
1
2(

1
2

)
!

+ · · · =

= δ(x) + a

[
x−

1
2(

− 1
2

)
!

+ a
x0

(0)!
+ a2

x
1
2(

1
2

)
!

+ · · ·

]
= ay(x).

Then the general solution of Eq. (3) has the form

yh(x) = C
∞∑
k=0

ak
x

k−1
2(

k−1
2

)
!
,

where C is an arbitrary constant.
Taking into account Eq. (4), we get from Eq. (5)∫ x1

x0

y(x)dxD
1
2
x0

[
(x− ξ)−

1
2(

− 1
2

)
!

+ Cyh(x)

]
− a

∫ x1

x0

[
(x− ξ)−

1
2(

− 1
2

)
!

+ Cyh(x)

]
y(x)dx =

=

∫ x1

x0

[
(x− ξ)−

1
2(

− 1
2

)
!

+ Cyh(x)

]
f(x)dx

or ∫ x1

x0

D
1
2
x0

(
(x− ξ)−

1
2(

− 1
2

)
!

)
y(x)dx+

∫ x1

x0

D
1
2
x0

[
Cyh(x)

]
y(x)dx−

−a
∫ x1

x0

(
(x− ξ)−

1
2(

− 1
2

)
!

)
y(x)dx− a

∫ x1

x0

Cyh(x)y(x)dx =

∫ x1

x0

[
(x− ξ)−

1
2(

− 1
2

)
!

+ Cyh(x)

]
f(x)dx.

According to

D
1
2
x0

(
(x− ξ)−

1
2(

− 1
2

)
!

)
=

(x− ξ)−1

(−1)!
= δ(x− ξ)
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from the last relation, we have∫ x1

x0

y(x)δ(x− ξ)dx+

∫ x1

x0

C

[
D

1
2
x0

(
yh(x)

)
− ayh(x)

]
y(x)dx−

−a
∫ x1

x0

(
(x− ξ)−

1
2(

− 1
2

)
!

)
y(x)dx =

∫ x1

x0

[
(x− ξ)−

1
2(

− 1
2

)
!

+ Cyh(x)

]
f(x)dx.

From here we get the following main relation

a

∫ x1

x0

(x− ξ)−
1
2(

− 1
2

)
!
y(x)dx+

∫ x1

x0

[
(x− ξ)−

1
2(

− 1
2

)
!

+ Cyh(x)

]
f(x)dx =

=


y(ξ), ξ ∈ (x0, x1),

1
2y(x0), ξ = x0,

1
2y(x1), ξ = x1,

or

a

∫ x1

x0

(x− ξ)−
1
2(

− 1
2

)
!
y(x)dx+

∫ x1

x0

[
(x− ξ)−

1
2(

− 1
2

)
!

+ C
∞∑
k=0

ak
x

k−1
2(

k−1
2

)
!

]
f(x)dx =

=


y(ξ), ξ ∈ (x0, x1),

1
2y(x0), ξ = x0,

1
2y(x1), ξ = x1.

(7)

Thus, based on the fundamental solution for the main part of Eq. (3), for the fractional order equation,
we obtained the main relation (7), which consists of two parts. The first part, where ξ ∈ (x0, x1) gives
any solution of Eq. (3), and the second part, where ξ = x0, or ξ = x1 gives us the necessary conditions.
With this, for each solution of the inhomogeneous Eq. (1), the boundary values are obtained in the
main relation (7).

Thus, for x ∈ (x0, x1) for the general solution of Eq. (3) we have the following representation

y(ξ) = a

∫ x1

x0

(x− ξ)−
1
2(

− 1
2

)
!
y(x)dx+

∫ x1

x0

[
(x− ξ)−

1
2(

− 1
2

)
!

+ C
∞∑
k=0

ak
x

k−1
2(

k−1
2

)
!

]
f(x)dx (8)

and for boundary points ξ = x0, and ξ = x1 we get relations

1
2y(x0) =

∫ x1
x0

(x−x0)−
1
2(

− 1
2

)
!
y(x)dx+

∫ x1
x0

[
(x−x0)−

1
2(

− 1
2

)
!

+ C
∑∞

k=0 a
k x

k−1
2(

k−1
2

)
!

]
f(x)dx,

1
2y(x1) =

∫ x1
x0

(x−x1)−
1
2(

− 1
2

)
!
y(x)dx+

∫ x1
x0

[
(x−x1)−

1
2(

− 1
2

)
!

+ C
∑∞

k=0 a
k x

k−1
2(

k−1
2

)
!

]
f(x)dx.

(9)

Putting (9) in boundary condition (2), we can define the arbitrary constant C

2a

∫ x1

x0

(x− x1)−
1
2(

− 1
2

)
!
y(x)dx+ 2

∫ x1

x0

[
(x− x1)−

1
2(

− 1
2

)
!

+ C

∞∑
k=0

ak
x

k−1
2(

k−1
2

)
!

]
f(x)dx+

8 Bulletin of the Karaganda University
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+2α

[
a

∫ x1

x0

(x− x0)−
1
2(

− 1
2

)
!
y(x)dx+

∫ x1

x0

[
(x− x0)−

1
2(

− 1
2

)
!

+ C
∞∑
k=0

ak
x

k−1
2(

k−1
2

)
!

]
f(x)dx

]
= 0

or

2a

∫ x1

x0

(x− x1)−
1
2(

− 1
2

)
!
y(x)dx+ 2αa

∫ x1

x0

(x− x0)−
1
2(

− 1
2

)
!
y(x)dx+

+2

∫ x1

x0

[
(x− x1)−

1
2(

− 1
2

)
!

]
f(x)dx+ 2α

∫ x1

x0

[
(x− x0)−

1
2(

− 1
2

)
!

]
f(x)dx+

+2

∫ x1

x0

[
C

∞∑
k=0

ak
x

k−1
2(

k−1
2

)
!

]
f(x)dx+ 2α

∫ x1

x0

[
C

∞∑
k=0

ak
x

k−1
2(

k−1
2

)
!

]
f(x)dx = 0.

Grouping similar terms, we have

a

∫ x1

x0

(x− x1)−
1
2 + α(x− x0)−

1
2(

− 1
2

)
!

y(x)dx+

∫ x1

x0

(x− x1)−
1
2 + α(x− x0)−

1
2(

− 1
2

)
!

f(x)dx+

+C(1 + α)

∫ x1

x0

∞∑
k=0

ak
x

k−1
2(

k−1
2

)
!
f(x)dx = 0,

or

C(1 + α)

∫ x1

x0

∞∑
k=0

ak
x

k−1
2(

k−1
2

)
!
f(x)dx = −a

∫ x1

x0

(x− x1)−
1
2 + α(x− x0)−

1
2(

− 1
2

)
!

y(x)dx−

−
∫ x1

x0

(x− x1)−
1
2 + α(x− x0)−

1
2(

− 1
2

)
!

f(x)dx. (10)

If

∆ =

∫ x1

x0

∞∑
k=0

ak
x

k−1
2(

k−1
2

)
!
f(x)dx 6= 0, (11)

then from Eq. (10) we obtain

C = − 1

∆(1 + α)

[
a

∫ x1

x0

(x− x1)−
1
2 + α(x− x0)−

1
2(

− 1
2

)
!

y(x)dx+

+

∫ x1

x0

(x− x1)−
1
2 + α(x− x0)−

1
2(

− 1
2

)
!

f(x)dx

]
. (12)

Finally, substituting Eq. (12) in Eq. (8), we have

y(ξ) = a

∫ x1

x0

(x− ξ)−
1
2(

− 1
2

)
!
y(x)dx+

∫ x1

x0

[
(x− ξ)−

1
2(

− 1
2

)
!

]
f(x)dx−

−
∫ x1

x0

∞∑
k=0

ak
x

k−1
2(

k−1
2

)
!
f(x)dx

{
1

∆(1 + α)

[
a

∫ x1

x0

(x− x1)−
1
2 + α(x− x0)−

1
2(

− 1
2

)
!

y(x)dx+

+

∫ x1

x0

(x− x1)−
1
2 + α(x− x0)−

1
2(

− 1
2

)
!

f(x)dx

]}
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or

y(ξ) = a

∫ x1

x0

(x− ξ)−
1
2(

− 1
2

)
!
y(x)dx+

∫ x1

x0

[
(x− ξ)−

1
2(

− 1
2

)
!

]
f(x)dx−

− a

1 + α

∫ x1

x0

(x− x1)−
1
2 + α(x− x0)−

1
2(

− 1
2

)
!

y(x)dx− a

1 + α

∫ x1

x0

(x− x1)−
1
2 + α(x− x0)−

1
2(

− 1
2

)
!

f(x)dx.

Thus, the solution of problem (3), (2), we reduce to the following integral equation

y(ξ) = a

∫ x1

x0

(x− ξ)−
1
2 − 1

1+α

(
(x− x1)−

1
2 + α(x− x0)−

1
2

)(
− 1

2

)
!

y(x)dx+

+

∫ x1

x0

(x− ξ)−
1
2 − 1

1+α

(
(x− x1)−

1
2 + α(x− x0)−

1
2

)(
− 1

2

)
!

f(x)dx.

Let us denote by K(x, ξ) kernel in the last integral

K(x, ξ) =
(x− ξ)−

1
2 − 1

1+α

(
(x− x1)−

1
2 + α(x− x0)−

1
2

)(
− 1

2

)
!

then the solution of problem (3), (2) is reduced to the second type integral equation of the Fredholm
with regular kernel as

y(ξ) = a

∫ x1

x0

K(x, ξ)y(x)dx+

∫ x1

x0

K(x, ξ)f(x)dx, (13)

and so the following theorem is true.

Theorem 1. Let a and α be given positive constants and f(x) by x ∈ (x0, x1) known a continuous
function. If series (6) is convergent and take place (11), then the boundary value problem (3), (2) has
the Fredholm property.

The actual solution of problem (1), (2) can be obtained from Eq. (13) either by the method of
successive approximations [14], or by replacing the integral entering in (13) with any approximate
integration formula, for example method of trapeze, Simpson, etc.

Conclusion

For the first time, using the fundamental solution of the main part of the conjugate corresponding
to the main equation, we obtained the main relations from which the necessary conditions for the
Fredholm property of the original problem are obtained.

With this, for each solution of the inhomogeneous Eq. (3) the boundary values are obtained mainly
from relation (9).
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On stability of nonlinear difference equations and some of their
applications
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The issues of stability in solving nonlinear difference equations were considered. Based on a generalized
difference analog of the well-known Bihari lemma, stability conditions for a trivial solution based on initial
data were obtained, and an a priori estimate of stability under permanent disturbances was determined.
The results were used to study the stability of solving explicit and implicit difference schemes approximating
nonlinear parabolic equations.

Keywords: nonlinear difference equations, difference schemes, a priori estimates, stability.

2020 Mathematics Subject Classification: 65M06, 65M50.

Introduction

Many applied problems are reduced to the solution of nonlinear difference equations. One of the
main issues in the theory of difference equations is the study of the stability of their solution. Therefore,
it is of particular interest to study the stability of solutions of linear and nonlinear difference equations.
The concept of stability of solutions to difference equations was first formulated by O. Perron [1] as
an analog of the stability of differential equations. Then, numerous works appeared devoted to the
study of the stability of difference equations. Currently, methods for studying the stability of linear
difference equations with constant coefficients are quite well-developed (we do not consider equations
with periodic coefficients). However, the study of the stability of linear difference equations with
variable coefficients and nonlinear difference equations were not sufficient, since there were no effective
criteria for the stability of their solutions. It should be noted that many problems are reduced to
the solution of difference equations with variable coefficients and nonlinear difference equations. For
example, such problems are posed when numerically solving differential equations using finite difference
or finite element methods [2–6].

The stability of systems of linear difference equations with constant and variable coefficients was
studied in [7,8]. O. Perron [7] formulated the concept of stability of solutions of a system of difference
equations with constant coefficients by analogy with this concept for differential equations. In [8]
P.I. Koval studied the stability of linear difference equations with variable coefficients. He considered
the difference equation in vector-matrix form:

yn+1 = Ayn + bn, n = 1, 2, ..., (1)

∗Corresponding author. E-mail: dutebaev−56@mail.ru
Received: 23 December 2023; Accepted: 19 May 2024.
c© 2024 The Authors. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
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where {yn} is the sought-for sequence of vectors, {An} is the given sequence of matrices, and {bn} is
the given norm-bounded sequence of vectors. It was proven that the solution of system (1) is stable if
matrix An of the corresponding homogeneous system

yn+1 = Anyn

satisfies condition ‖An‖ ≤ 1 + qn, where
∞∑

n=n0

qn < ∞, and asymptotically stable, if ‖An‖ ≤ a < 1

(n > n0). Next, the so-called limiting matrix A = lim
n→∞

An is introduced and, on its basis, the stability
and instability of difference equations of the form (1) are studied. In [8] P.I. Koval considered linear
difference equations that could be reduced to almost triangular form using linear substitutions. The
asymptotic behavior of linear difference equations with almost triangular matrices was also studied
there.

M.A. Skalkina in [9] showed the connection between the stability of differential and difference
equations. V.B. Demidovich in [10,11] studied the stability of nonlinear difference equations based on
the first Lyapunov method. At that point, the concept of characteristic numbers of a system of linear
difference equations was introduced. The concepts of reducible and regular systems of linear difference
equations were introduced. In particular, it was shown that every reducible system is regular. In
addition, stability under the first approximation was studied. The main result of these studies is the
theorem on the asymptotic stability of the system

yn+1 = Snyn + fn(yn),

where fn(yn) is the nonlinear term, Sn is the transition operator.
Nonlinear difference equations, the right-hand sides of which are linear combinations of power

functions of phase variables, were studied in [12]. In addition, similar studies for differential and
difference equations were carried out in [13–15].

In this article, issues of stability of the solution of nonlinear difference equations are studied. Various
stability criteria are obtained, based on which nonlinear two-layer difference schemes are studied.
A theorem on the stability of a trivial solution with respect to initial data is proven. The difference
analog of Behari’s lemma is generalized and, on its basis, an a priori estimate of the stability under
permanent disturbances of a nonlinear difference equation is obtained. Examples of application of the
theorem to explicit and implicit difference schemes approximating nonlinear parabolic equations are
considered. Examples are given that confirm the theoretical results obtained.

1 Statement of the problem

Let us consider the Cauchy problem

u̇(t) +A(t)u(t) = f(t, u), u(0) = u0, u̇ = dt/du, (2)

where A is a slowly varying matrix.
Equation (1) is obtained by spatial discretization of a partial differential equation of parabolic type

∂t/∂u = Lu, u(0) = u0, (3)

where Lu ∈ H is some general form of a nonlinear differential operator. Here, H is the Hilbert space
with scalar product (u, ϑ) and norm ‖u‖ =

√
(u, u). Such problems arise in the mathematical modeling

of processes of chemical kinetics, combustion theory, biophysics, various kinds of biochemical reactions
(reaction-diffusion), convection-diffusion, processes of population growth and migration, etc.
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Any two-layer difference scheme [1] that approximates problem (2) or (3) can be written in the
following form of the difference equation:

yn+1 = Snyn + τfn(yn), y(0) = y0, n = 0, 1, ..., (4)

where y is a grid function that approximates function u, yn = y(tn), tn ∈ ωτ , ωτ = {tn = nτ,
n = 0, 1, ...}, τ > 0 is a uniform grid in time t ∈ [0, T ], Sn is a certain operator (transition operator),
fn(yn) is a nonlinear term.

Let us study the stability of the trivial solution of equation (4).
Along with (4), we consider the following homogeneous equation:

yn+1 = Snyn, y(0) = y0, n = 0, 1, ... (5)

The stability of solutions of the nonlinear non-homogeneous equation (4) is completely determined
by the stability of the trivial solution of its homogeneous equation (5) [10].

We consider the difference equation (4), where the nonlinear disturbance fn(yn) satisfies the fol-
lowing conditions:

‖fn(yn)‖ = Kn‖yn‖r, r > 1, fn(0) = 0,

n−1∑
m=0

Km ≤M1 <∞, (6)

where M1 is some positive constant. In this case, the trivial sequence yn = 0 is a solution to equa-
tion (4).

2 Stability theorems

Lemma 1. (The discrete analogue of Bihari’s lemma) [10]. Let

0 ≤ y0 ≤ c (c > 0) (7)

and

yn ≤ c+
n−1∑
v=0

avϕ(yv), n = 1, 2, ...,

where c is a positive constant, the sequence yi ≥ 0, ai ≥ 0, i = 0, 1, ..., ϕ(y) is a continuous monoton-

ically increasing positive function for y > 0, and ϕ(0) ≥ 0, and let the inequality
n−1∑
v=0

av < ϕ(∞) be

satisfied, where ϕ(z) =
z∫
c

dz1
ϕ(z1)

. Then the following estimate is valid:

yn ≤ ϕ−1
(
n−1∑
v=0

av

)
, n = 1, 2, ...

Corollary 1. Let ϕ(y) = yr (r > 0), i.e. inequalities (7) be satisfied and

yn ≤ c+
n−1∑
v=0

avy
r
v, n = 1, 2, ... ,

where the sequence yi ≥ 0, ai ≥ 0, i = 0, 1, ... Then, based on Lemma 1, we have:

yn ≤ c/

[
1− (r − 1)cr−1

n−1∑
v=0

av

]1/(r−1)
,
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only if
n−1∑
v=0

av < 1/
[
(r − 1)cr−1

]
.

Let us generalize Lemma 1.
Lemma 2. Let the following inequality hold

0 ≤ y0 ≤ c0 (c0 > 0),

yn ≤ cn +
n−1∑
v=0

avϕ(yv), n = 1, 2, ...,
(8)

where yi ≥ 0, ci > 0, ai ≥ 0, i = 0, 1, ..., ci is a non-decreasing sequence (ci+1 ≥ ci), ϕ(y) is a
homogeneous continuous monotonically increasing function (ϕ(0) ≥ 0 ) of r-th order; and let the
following inequality be satisfied:

c−1n

n−1∑
v=0

crvav < φ(∞),

where

φ(z) =

z∫
1

dz1
ϕ(z1)

.

Then the following estimate holds:

yn ≤ cnφ−1
(
c−1n

n−1∑
v=0

ãv

)
, n = 1, 2, ..., (9)

where ãv = crvav.
Proof. We divide (8) by cn > 0:

yn
cn
≤ 1 +

n−1∑
v=0

av
cn
ϕ(yv),

y0
c0
≤ 1.

Since cn ≥ cv, then from the last inequality considering homogeneity of ϕ(y) it follows that

yn
cn
≤ 1 +

1

cn

n−1∑
v=0

crvavϕ

(
yv
cv

)
,
y0
c0
≤ 1. (10)

For inequality (10), we apply Lemma 1, which gives the following estimate:

yn
cn
≤ φ−1

(
1

cn

n−1∑
v=0

crvav

)
,

where φ−1(z) is the inverse function of φ(z). This gives us estimate (9).
Corollary 2. Let ϕ(y) = yr (r > 1) and the following inequalities be satisfied

0 < y0 < c0 (c0 > 0),

yn ≤ cn +
n−1∑
v=0

avy
r
v, r > 1, n = 1, 2, ... ,
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where yi ≥ 0, ci > 0, ai ≥ 0, i = 0, 1, ... Therefore, if
n−1∑
v=0

cr−1v av <
1

r − 1
,

then based on Lemma 2, we have that

yn ≤ cn/

[
1− (r − 1)c−1n

n−1∑
v=0

crvav

]1/(r−1)
.

Thus, the following theorem holds.
Theorem 1. Let the following conditions be satisfied:
a) the trivial solution of equation (5) is uniformly stable, i.e. ∀j > 0, j ≤ n, estimate

‖yn‖ ≤M2 ‖yj‖ holds; M2 is a positive constant;
b) the nonlinear right-hand side of equation (4) satisfies conditions (6);
c) the initial disturbance y0 is small.
Then the trivial solution of equation (4) is stable, i.e. the following estimate holds:

‖yn‖ ≤ M̃2 ‖y0‖ , ∀n = 0, 1, ..., (11)

where M̃2 is a positive constant.
Proof. The solution of equation (4) satisfies the following relationship:

yn = Tn,0y0 +

n−1∑
m=0

Tn,mfm(ym),

where Tn,m = Sn−1Sn · · · Sm is the resolving operator of equation (5) from layer m to layer n. Due to
assumptions a) and b) for the solution (4), we have the following estimates

‖Tn,m‖ ≤M2, ‖yn‖ ≤M2 ‖y0‖+
n−1∑
m=0

M2Km‖ym‖r.

Applying the discrete analogue of Bihari’s lemma (Lemma 1) to this inequality, we obtain

‖yn‖ ≤
M2 ‖y0‖
ϕ(‖y0‖)

, (12)

where

ϕ (‖y0‖) =

[
1− (r − 1)(M2 ‖y0‖)r−1M2

n−1∑
m=0

Km

]1/(r−1)
, ϕ(0) = 1.

Let us estimate the lower bound ϕ (‖y0‖). We assume that

(r − 1)M r
2‖y0‖

r−1
n−1∑
m=0

Km ≤ δ, 0 < δ < 1, (13)

i.e. y0 is a small value. Then ϕ (‖y0‖) ≥ (1− δ)1/(r−1). Inequality (13) is satisfied, for example, if
n−1∑
m=0

Km ≤M3, ∀n > 1, and the initial data satisfies the following condition

‖y0‖ ≤ (δ/ [(r − 1)M3M
r
2 ])

1/(r−1), (14)

whereM3 is a positive constant. From (12) and (14) for the solution (4), we obtain estimate (11), which
means stability based on the initial data of difference equation (4), where M̃2 =M2/

[
(1− δ)1/(r−1)

]
.
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3 Stability under permanent disturbances

Let us study the stability of the trivial solution of the difference equation (4) under permanent
disturbances gn, i.e. consider the following difference equation:

yn+1 = Snyn + fn(yn) + gn, y(0) = y0, gn(0) 6= 0, n = 0, 1, ... (15)

The nonlinear disturbance fn(yn) satisfies condition (6) and the permanent disturbance gn is such
that

n=1∑
m=0

‖gm‖ ≤ δ0, ∀m, δ0 > 0, (16)

where δ0 is quite small.
The following theorem holds.

Theorem 2. Let the conditions of Theorem 1 be satisfied. In addition, a permanent disturbance sat-
isfies condition (16). Then the trivial solution of equation (15) is stable under permanent disturbances
and the following estimate is valid for its solution

‖yn‖ ≤ M̃2

(
‖y0‖+

n=1∑
m=0

‖gm‖

)
. (17)

Proof. The solution of equation (15) satisfies the following relationship

yn = Tn,0y0 +

n−1∑
m=0

Tn,m [fm(ym) + gm] .

Hence, considering conditions of the theorem, we have

‖yn‖ ≤M2

(
‖y0‖+

n−1∑
m=0

‖gm‖+
n−1∑
m=0

Km‖ym‖r
)
, r > 1. (18)

Let ‖y0‖+
n=1∑
m=0
‖gm‖ = cn. Then, applying Lemma 2 to inequality (18), we obtain

‖yn‖ ≤M2

(
‖y0‖+

n=1∑
m=0

‖gm‖

)
/

1− (r − 1)
n=1∑
m=0

KmM
r
2

(
‖y0‖+

m=1∑
v=0

‖gv‖

)r−11/(r−1)

,

i.e.

‖yn‖ ≤
M2

ϕ̃(‖y0‖)

(
‖y0‖+

n=1∑
m=0

‖gm‖

)
,

where ϕ̃(‖y0‖) ≥ (1− δ)1/(r−1), if

δ = (r − 1)
n=1∑
m=0

M r
2Km

(
‖y0‖+

m=1∑
v=0

‖gv‖

)r−1
≤ δ1, 0 ≤ δ1 < 1. (19)

We rewrite inequality (19) in the following form
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(r − 1)M r
2

n=1∑
m=0

Km

(
‖y0‖+

m=1∑
v=0

‖gv‖

)r−1
≤ δ1, 0 ≤ δ1 < 1.

Then

‖y0‖+
m=1∑
v=0

‖gv‖ ≤ (δ1/ [(r − 1)M r
2M3])

1/(r−1),

where
m=1∑
v=0

Km ≤M3 <∞, for all m.

Consequently, estimate (17) of Theorem 2 holds.

4 Study of the stability of nonlinear difference schemes

Let us consider the Cauchy problem

∂u

∂t
= f(u), u(0) = u0, (20)

where u is a certain variable describing the state of the system, f(u) is a nonlinear operator (functional).
Similar problems include equations of the following form:

∂u

∂t
=
∂2u

∂x2
+ q(u),

with linear derivative terms, but containing a nonlinear in u term. For example, the following semilinear
equations [16,17]:

– Zeldovich’s equation, found in combustion theory, for which

q(u) = kuv(1− u), v > 1, q(u) > 0, 0 < u < 1,

q(0) = q(1) = 0, q′(0) = 0, q′(1) < 0;

– Semenov’s equation describing autocatalytic chain reactions:

q(u) = u(u− α)(1− u), 0 < u < 1, 0 < α < 1,

q(0) = q(α) = q(1) = 0, q′(0) < 0, q′(α) > 0, q′(1) < 0;

– Fisher’s equation (or Kolmogorov-Petrovsky-Piskunov’s equation) found in problems of mathe-
matical biology, for which

q(u) = ku(1− u), q(u) > 0, 0 < u < 1,

q(0) = q(1) = 0, q′(0) > 0, q′(1) < 0,

k > 0 is the constant.
1◦. Let us approximate (20) with an explicit difference scheme of the following form (Eulerian

scheme)
yt = f(yn), y(0) = y0, (21)

where yt = (yn+1 − yn)/τ .
The error of scheme (21) z = y − u (y = z + u) satisfies the following equation:

zt = f(yn)− f(un) + gn, z0 = 0, (22)
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where gn = O(τ) is the approximation error.
Using the Fréchet derivative for functional f , we obtain:

f(y)− f(u) = f(u+ z)− f(u) = f ′(u)z +O(z),

i.e. from (22) it follows that
zt = f ′(un)zn + q(zn) + gn, z0 = 0, (23)

where q(zn) = O (‖zn‖r) , r > 1.
From (23) it follows that

zn+1 = Snzn + τq(zn) + τgn, z0 = 0, (24)

where Sn = 1 + τf ′(un).
By Theorem 2, scheme (24) is stable, if the solution of its first approximation is uniformly stable

zn+1 = Snzn, z0 = 0. (25)

The condition for uniform stability of solution (25) is ‖Sn‖ ≤M . If this condition is met, we obtain
estimate

‖zn+1‖ ≤M1 ‖zn‖

for all n > 0. Since f ′(u) is the bounded linear functional, estimate ‖1 + τf ′(un)‖ ≤ M1 holds, and
the remaining conditions of Theorem 2 are satisfied.

Now we prove the convergence of the scheme. Since (21) is uniformly stable according to the initial
data (the first condition of Theorem 1), then from (24) it follows that

‖zn+1‖ ≤ ‖Sn‖ ‖zn‖+ τ ‖q(zn)‖+ τ ‖gn‖ .

Hence

‖zn+1‖ ≤M1

(
‖z0‖+ τ

n−1∑
m=0

Km ‖zn‖+ τ

n−1∑
m=0

‖gm‖

)
,

by Theorem 2, the following estimate holds:

‖zn+1‖ ≤ M̃1

(
‖z0‖+ τ

n−1∑
m=0

‖gm‖

)
. (26)

From ‖Sn‖ ≤ 1 we obtain condition |1 + τf ′(un)| ≤ 1 or −1 ≤ 1 + τf ′(un) ≤ 1, i.e.
a) inequality

1 + τf ′(un) ≤ 1

fulfilled for f ′(un) ≤ 0;
b) inequalities −1 ≤ 1 + τf ′(un), τ |f ′(un) | ≤ 2, τ ≤ 2/ |f ′(un)| are the conditions for uniform

stability of scheme (21). Thus, the following theorem is proven.

Theorem 3. Let conditions f ′(un) ≤ 0, τ ≤ 2/ |f ′(un)| be satisfied. Then the solution of the explicit
difference scheme (21) is stable with respect to the initial data and the right-hand side, and for its
solution, there is an a priori estimate (26).
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2◦. Let us approximate problem (20) with the following implicit difference scheme

yt = f(ŷ), (27)

where
ŷ = yn+1.

Then for the error we get problem (z = y − u, y = z + u):

zt = f(
∧
y )− f(∧u ) + gn.

Using the Frechet derivative, we get

zt = f ′(un+1)zn+1 + q(zn+1) + gn, (28)

where ‖q(zn+1)‖ = Kn+1‖zn+1‖r, r > 1 (n = 0, 1, ...), f ′(un+1) is a bounded linear operator (func-
tional). To study the convergence of scheme (28), we obtain the first approximation equation

zn+1 = Snzn, Sn =
(
1− τf ′(un+1)

)−1
.

Let the solution to this equation be uniformly stable, i.e. ‖Sn‖ ≤ 1 . Then we obtain the condition
for uniform stability of solution 1/ (1− τf ′(un+1)) ≤ 1. This condition is always satisfied, if

f ′(un+1) ≤ 0. (29)

Therefore, taking (6) into account, the following estimate holds:

‖zn+1‖ ≤M1

(
‖z0‖+ τ

n∑
m=0

km+1‖zm+1‖r + τ

n−1∑
m=0

‖gm‖

)
.

From here, we get

‖zn+1‖
(
1−M1kn+1τ‖zn+1‖r−1

)
≤M1

(
‖z0‖+ τ

n−1∑
m=0

Km+1‖zn+1‖r + τ

n−1∑
m=0

‖gm‖

)
. (30)

Let
1−M1kn+1τ‖zn+1‖r−1 ≥ δ, 0 < δ < 1.

Then, from (30), we have the following estimate:

‖zn+1‖ ≤
M1

δ

(
‖z0‖+ τ

n−1∑
m=0

Km+1‖zm+1‖r + τ

n−1∑
m=0

‖gm‖

)
.

Based on Lemma 2, we obtain the following estimate:

‖zn+1‖ ≤ M̃1

(
‖z0‖+ τ

n−1∑
m=0

‖gm‖

)
, (31)

if

‖zn+1‖r−1 ≤
1− δ

M1Kn+1
or ‖zn+1‖ ≤

(
1− δ

M1Kn+1

) 1
r−1

.

Thus, the following theorem is proven.
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Theorem 4. Let condition (29) be satisfied. Then the solution of the implicit difference scheme (27)
is stable with respect to the initial data and the right-hand side, and its solution has a priori estimate
(31).

3◦. Let us approximate problem (20) with the following one-parameter difference scheme

yt = yn + τf2(yn)/ [(1 + α)f(yn)− αf(yn + ατf(yn))] . (32)

Here
F (y) = y + τf2(y)/ [(1 + α)f(y)− αf(y + ατf(y))] .

From (32) for α = 0, we obtain difference scheme (21), for α = −1 and α = 1, we obtain
V.V. Bobkov’s A-stable difference schemes.

Let us obtain the problem for the scheme error (32)

zt = F (yn)− F (un) + gn, z0 = 0.

Using the Fréchet derivative for F (y), we obtain

zt = F ′(un)zn + q(zn) + gn, z0 = 0,

where
F ′(u) = 1 + τ f̃ ′(u),

f̃ ′(u) =
f2(u)

[(1 + α)f(y)− αf(y + ατf(y))]2
[f ′(u) + αf ′(u)−

− 2α

f(u)
f(u+ ατf(u))f ′(u) + αf ′(u+ ατf(u)) + α2τf ′(u)f ′(u+ ατf(u)).

(33)

Thus, we obtained the first approximation equations

zn+1 = (1 + f̃ ′(un))zn.

Let us check, under what terms the uniform stability condition f̃ ′(u) ≤ 0 is satisfied. From (33), it
follows that f̃ ′(u) ≤ 0, if

f ′(u) + αf ′(u)− 2α

f(u)
f(u+ ατf(u))f ′(u)+

+αf ′(u+ ατf(u)) + α2τf ′(u)f ′(u+ ατf(u))] ≤ 0.

(34)

Applying the Taylor formula for f(u + ατf(u)) and f ′(u + ατf(u)), we obtain the condition for
the fulfillment of inequality (34)

f ′(u)− α2τf ′
2
(u) + α2τf(u)f ′′(u) +

α3τ2

2
f2(u)f ′′′(u) +O(τ3) ≤ 0. (35)

This proves the following theorem.

Theorem 5. Let condition (35) be satisfied. Then the solution of the difference scheme (32) is stable
with respect to the initial data and the right-hand side, and for its solution, there is a priori estimate
(17).
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Let us check condition (35) using a test example. Let f(u) = −λu, λ > 0.
Then, substituting f(u) = −λu, f ′(u) = −λ, f ′′(u) = 0 into (35), we obtain inequality,

−λ− τλ2 ≤ 0, from which it follows that f̃ ′(u) ≤ 0. Let now f(u) = k[A(1 − u) − Bu2], where
k > 0, A > 0, B > 0. Hence f ′(u) = −k[A+ 2Bu], f ′′(u) = −2kB, and the remaining derivatives are
zero. Then to satisfy (35), we obtain the following condition:

−k[A+ 2Bu+ τkA2 + 2ABτku+ 2B2τku2 + 2τkAB] ≤ 0,

or
A+ 2Bu+ τkA2 + 2ABτku+ 2B2τku2 + 2τkAB ≥ 0,

which is valid for 0 ≤ u ≤ 1.
The results of Theorem 5 are also valid for the multi-parameter explicit absolutely A-stable Bobkov

difference scheme

ŷ = y + τ(A+B)
fk+1(y, t+ ατ)

Afk(y + aτf(y, t+ ατ), t+ βτ) +Bfk(y, t+ ατ)
,

where y ≈ u(t), ŷ ≈ u(t + τ) are approximate solutions, u(t) is the solution of equation u̇ = f(t, u),
A, B, α, β, a, k are some parameters that control the order of accuracy of the scheme.

Conclusion

Stability conditions for solutions of nonlinear difference equations are obtained. Based on the
generalized discrete analogue of Bihari’s lemma, an a priori estimate of the stability under permanent
disturbances of a nonlinear difference equation is obtained. Theorems on the stability of the solution of
nonlinear difference equations are proven. Examples of application of the stability theorem to explicit
and implicit difference schemes that approximate nonlinear parabolic equations are considered. Based
on the proposed methodology for studying the stability of difference equations, it is possible to study
the stability of difference schemes for the above semi-linear equations of Zeldovich, Semenov and Fisher,
as well as the stability of difference schemes for nonlinear equations of pseudo-parabolic type [18–21].
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The construction of new railway lines is based on the railway plan. There are various ways to draw up
a railway plan. The basis of all railway plans is a scheme of geometric point locations, the projection of
the center of gravity of the carriage is on a horizontal plane and consists of a single flat line. The railway
plan consists of linear and curved parts connecting straight sections. However, the curves determining the
position of the rails of the railway track in the curved part will be spatial. To extinguish the centrifugal force
arising in the curved part of the road, an external rail rises. In this case, the elevated curve representing
the outer rail becomes spatial. Therefore, in the work, it is proposed to draw up a plan of a railway track
as two curves, one of which is flat, and the other depicts an external spatial rail. In this case, the distance
between the ends of the rectilinear parts and the angle between the rectilinear parts are selected as the main
parameters. In the work, for the simplest case, when both linear parts belong to the same horizontal plane,
it is proved that the curved part is a spatial curve. The curvature of the required curve was determined
and a dynamic system was constructed, the solution of which would be a curve that satisfied the technical
conditions presented for the railway route. This dynamic system is proposed as a mathematical model of
the railway route. In the rectilinear parts, the railway plan is straight on a horizontal plane. The curve of
the road should be spatial.

Keywords: railway plan, route, curvature, torsion, osculating plane, radius, osculating circle, angle of
rotation, car motion profile, vector equation, Frenier’s formula.

2024 Mathematics Subject Classification: 53A35, 53Z30.

Introduction

Railroad plan design has been the main issue of practical experience for many years. The railway
plan consists of linear parts and curved parts connecting them [1]. The curved part of the plan has
a curvature that is the inverse of the radius of the touching circle. Existing methods consider the
curved part of the plan to be a flat curve. For technical reasons, the curved part of the plan must be
spatial [2]. The work determines the steepness of the curve, which is the route plan, and provides a
mathematical model with which one can determine the equation of the route.

There are methods for designing and reconstructing existing roads using laser technology [3]. Re-
construction of existing roads using modern technologies is expensive [4].

1 Elements of the railroad plan

The railway plan is the projection of the track axis onto a horizontal plane. The railway in plan is
a combination of alternating linear and curved sections [5].

In straight sections, the main parameter is its direction, the technical name of which is azimuth. In
this case, the railway plan is linear on a horizontal plane. But even on a horizontal plane, due to the
terrain, the presence of settlements and other obstacles, there is a need to change the azimuth. The
new azimuth defines a new straight section on the horizontal plane.
∗Corresponding author. E-mail: aartykbaev@mail.ru
Received: 21 January 2024; Accepted: 28 May 2024.
c© 2024 The Authors. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
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The pairing of linear sections with each other is carried out using curves. The presence of curves
in the railway plan is due to the need to deviate the route from the linear direction for the purpose of
bypassing [6].

The angle α between linear sections is called the angle of rotation. When a railway plan is considered
only the horizontal plane α ∈ (0, π). In general, α can take any value. If the linear sections belong
to horizontal planes of different levels, the connecting curve has the form of a spiral, then the angle
of rotation can take on arbitrary values. A section of a railway plan, on a horizontal plane, with a
rotation angle α can be represented in the form of two rays that make up this rotation angle (Fig. 1).

Figure 1. Curved section of the railway plan

The simplest, cost-effective solution for choosing a curved section is a circle of radius R and another
connecting points A and B of the straight sections a and b of the turn (Fig. 1). The position of the
railway significantly depends on the value of the radius of the circle R and it is called the radius of the
curve [7].

In the railway there are special tables that determine the radius of the curve R, taking into account
the technical and economic requirements for a given road [8]. In addition, the curved part of the road
is considered clothoidal [9, 10]. This table is compiled taking into account the need to limit the speed
of trains, removal of the designed line, increased wear of the rails, increased costs for the ongoing
maintenance of the upper structure of the track and repair of rolling stock and other factors associated
with the operation of the road.

Note that the curve of a railway plan section on a horizontal plane is considered as a flat curve on
this plane.

2 Properties of the curve describing the railway plan

To study the curve of the railway plan, it is important to consider the point describing the curve
in the profile section by the movement of the wagon.

When the wagon moves in a linear direction on a horizontal plane, the plan of the railway will be
a straight line, which is obtained by moving point M in azimuth (Fig. 2).
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Figure 2. The profile of the movement of the wagon in a straight section

Here N is the center of gravity of the wagon and pointM is its projection on the horizontal plane π0.
The plan of a railway track is understood as the geometric location of points M on a horizontal plane.
These geometric locations of points generally determine the curve that defines the railroad plan. As
stated above, this curve consists of linear and curved parts connecting straight parts.

To clarify the geometry of the curve formed by the point M , we consider the mechanics of the
movement of the wagon when turning, that is, when moving from one straight section to the next,
when these straight sections both belong to the same horizontal plane.

Theorem 1. With curved sections of the railway plan, the trace of point M will be a spatial curve.
Proof. We will prove the theorem for the simplest case of the railway plan, when both linear sections

a and b of the railway plan belong to the same horizontal plane α.
The proof of the theorem in complex conditions, that is, at least in the case of a and b lying on

different horizontal planes, becomes obvious, since the connection of points A and B at different levels
ensures the spatiality of the curve of the railway plan.

To prove the theorem, let’s consider the profile of the movement of the wagon in a curve, which
looks like the one shown in Figure 3. To avoid the influence of centrifugal force when the part is curved,
an elevation of the outer rail h is arranged in relation to the inner one. The value of h depends on the
radius of R and the speed of the train in this section.

Figure 3. The profile of the movement of the wagon in a curve section

If we establish a Cartesian coordinate system with the origin at point A and the direction of
the x-axis along the direction of the segment AB, the y-axis is perpendicular to the x-axis and the
z-axis is along the normal of the horizontal plane, then the point M ′ has three coordinates (x0, y0, z0).
Moreover, the value of z0 depends on the value of h and will be different from zero, if h 6= 0. In the
curved part of the railway plan there is h 6= 0, therefore the curve that is the trace of point M is
spatial. The theorem is proved.
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To study the movement of pointM of the railway plan, the horizontal plane π0 is taken as the plane
z = 0. We select the y-axis perpendicular to the x-axis with a positive direction to the corresponding
direction of the linear part starting from point B.

Figure 4. The inner path of the curve section

Let’s assume that points A and B are connected to an arc of a circle with radius R and center at
point O′(x0, y0).

With the current selection of the coordinate system, the points A and B have the following coor-
dinates A(0, 0) and B(2x0, 0). The equation of a circle with center at point O′(x0, y0) and radius R
has the form

(x− x0)2 + (y − y0)2 = x2
0 + y2

0, (1)

since
R2 = x2

0 + y2
0.

The same equation can be written in parametric form:{
x = x0 +

(
x2

0 + y2
0

) 1
2 cos t,

y = y0 +
(
x2

0 + y2
0

) 1
2 sin t,

where the parameter t = S

(x20+y20)
1
2
is proportional to the length of the circular arc.

When the train moves along a curved part of the road, in order to extinguish the centrifugal force
that appears when turning, the outer country of the rail is raised to a certain height H. The value of
H depends on the radius of the curve R and on the speed of the train.

The position of the base of the wagon when turning is shown schematically in Figure 5.

Figure 5. Deviation from the horizontal plane
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The horizontal plane π0 takes on another position πψ, where ψ is the angle between these planes.
But the size of the angle ψ depends on the value of H. In this case, point M of the railway plan goes
into point M ′ on the plane πψ. Since the point M ′ differs from the M belonging to the horizontal
plane, it is spatial. Therefore, the curve describing the point M will also be spatial.

The technical and economic requirement for railways prefers not to change the internal part of the
track rail. Therefore, it is advisable to select plane π0 so that the inner part of the road rail remains
on a horizontal plane. Then the road traffic pattern takes the following form.

Figure 6. Deviation from the horizontal plane while maintaining the internal path on the horizontal
plane

At the same time, the spatiality of the curve formed by the point M ′ remains.
In Figures 5 and 6, L1 and L2 indicate the track rails. It is obvious in Figure 6 that the inner part

of the track rail is left unchanged and the outer part, that is, the point L2 goes into the point L′2.
Note that changes in point L2 linearly depend on pointM and on the track width, which is constant.

The position of the point L′2 is completely determined by the position of the point M ′. Therefore, we
can reason only with respect to the point M ′.

Let us assume that, relative to the section AB, the radius R is selected and the speed V is the
passage of the train. Then the lifting height of the outer rail HAB can be accurately determined, so
that the inner side of the track rail remains on a horizontal plane.

Then the plane π0 to which the circular arc belongs can be accurately determined by the equation.
This plane will be the plane passing through the points (x0, y0, 0), (0, 0, H) and (2x0, 0, H) of the
equation of this plane.

z = H

(
x

x0
+

y

y0
− 2

)
. (2)

The curve M ′ described by the point M is a spatial curve relative to the railway plan described by
the point M , but belongs to the plane (2). The equation of this curve can be written in metric form:

x = x0 +
(
x2

0 + y2
0

) 1
2 cos t,

y = y0 +
(
x2

0 + y2
0

) 1
2 sin t,

z =
(x20+y20)

1
2

x0
cos t+

(x20+y20)
1
2

y0
sin t− 2.

But curve γ will not be a continuous continuation of the path; it lies on a different plane relative
to the horizontal plane. A connection should be established using an additional curve connecting the
curve γ with the linear part a and b. For this purpose, we divide ÂB into three parts ÂC, ĈD and
D̂B with the condition that the length of the arc ÂC and D̂B in duration is greater than the length
of the two wagons. This is a general requirement for a curved part to ensure smooth movement of the
train along that part. Let’s assume that points C ′ and D′ are the images of points C and D on the
curve γ. Then we take part of the curve γ with ends at points C ′ and D′ as a part of the route.

It is required to construct a part of the railway plan connecting points A and C ′, also points D′

and B, so that when crossing the curve AC ′D′B, the smooth movement of the train is ensured.
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We denote by γ1 and γ2 the curved parts of the curve connecting points A and B consisting of the
arc ÂC ′ and D̂′B, respectively. For convenience, curves γ1 and γ2 can be considered symmetrical with
respect to the bisector x0 of the angle formed by the straight part a and b of the railway plan (Fig. 7).

Figure 7. The curve of the outer rail

The curve equation of part γ1 can be thought of as a spatial curve connecting points A(0, 0, 0) and
C ′(x1, y1, z1) ∈ γ with curvature k = 1

(x20+y20)
1
2
and torsion σ.

But torsion σ can be considered a linearly increasing function of the length of the road in the form
σ = m · s+ e. Moreover, given R and V , the values of m and e can be determined. Thus, curvature k
and torsion σ are functions of R radius of curvature and speed of movement. Then, using the Frenier
formula [11] for the curve γ1 , one can determine the equation of the curve. Having obtained the
equation of the curve, we can calculate the size of the railway track with the necessary accuracy, which
ensures the safe movement of the train along this track.

3 Dynamic system for determining the route schedule

The railway with the curved part is called the railway route. It has been proven that the route is
a spatial curve.

In the previous section it was shown that the radius of the curved part of the railway plan completely
determines the curvature of the curved part of the route [12].

Torsion of the curved part of the road is defined as a change in the angle of the contacting plane
of the curve representing the road route.

If the curve is given by the vector equation

~r(s) = ~x(s)i+ ~y(s)j + ~z(s)k,

where s is mastiff curve length, {i, j, k} is basis vectors and x(s), y(s), z(s) ∈ C2.
Then the touching plane at point (x0, y0, z0) is determined by the formula:∣∣∣∣∣∣

x− x0 y − y0 z − z0

x′(s0) y′(s0) z′(s0)
x′′(s0) y′′(s0) z′′(s0)

∣∣∣∣∣∣ = 0.

Consider at two points M(x0, y0, z0) and N(x0 + ∆x, y0 + ∆y, z0 + ∆z) the osculating plane of
the curve γ. Let us determine the angle ∆ψ between these planes. Speed change of angle ψ between
osculating planes

lim
∆s→0

∆ϕ

∆s
= ϕ′s = σ

called torsion of a curve into points M(x0, y0, z0).

Mathematics Series. No. 3(115)/2024 31



A. Artykbaev, M.M. Toshmatova

The torsion of plane curves is zero everywhere.
If we have a vector equation of a curve given by formula (1), then the curvature and torsion of the

curve are calculated by the formulas [13, 14]:

k =
∣∣r′′(s)∣∣

and
σ =

|(r′r′′r′′′)|
k2

.

It should be noted that the curvature depends on the coordinates of the center of the osculating
circle (x0, y0). The radius of the osculating circle is calculated using the formula R =

√
x2

0 + y2
0. The

torsion of the curve is determined depending on the radius R and the rise h- the outer part of the track
rail σ = f(R, h).

But the parameters R, h can be selected depending on the requirements for the road, which are
determined by technical and economic conditions. Therefore, Frenier’s formula

τ̇ = kν,
ν̇ = −kτ − σβ
β̇ = σν

(3)

is a dynamic system of differential equations overestimated from parameters R and V . The path
equation is a solution to the dynamic system (3). Setting parameters R, h is completely determined
by the solution of the system. Therefore, system (3) can be taken as a mathematical model of the
railway route.
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In recent years, the fractional partial differential equation of the Boussinesq type has attracted much
attention from researchers due to its practical importance. In this paper, we study a non-local problem
for the Boussinesq type equation Dα

t u(t) + ADα
t u(t) + ν2Au(t) = 0, 0 < t < T, 1 < α < 3/2, where Dα

t

is the Caputo fractional derivative, and A is an abstract operator. In the classical case, i.e., when α = 2,
this problem has been studied previously, and an interesting effect has been discovered: the existence and
uniqueness of a solution depend significantly on the length of the time interval and the parameter ν. In this
note, we show that in the case of a fractional equation, there is no such effect: a solution of the problem
exists and is unique for any T and ν.

Keywords: fractional equation, Caputo derivative, forward and inverse problems, Fourier method.

2020 Mathematics Subject Classification: 35A01, 35A02.

Introduction

Let H be a separable Hilbert space, and let A : D(A) ⊂ H → H be an arbitrary unbounded,
positive self-adjoint operator, and we assume that A has a compact inverse A−1, where D(A) is the
domain of A. Let λk and {vk} be the eigenvalues and corresponding eigenfunctions of A.

Let us introduce the Caputo fractional derivative Dα
t of order α ∈ (1, 2) of a vector-valued function

h(t) ∈ H (see, for example [1])

Dα
t h(t) =

1

Γ(2− α)

t∫
0

h′′(ξ)

(t− ξ)α−1
dξ, t > 0,

provided the right-hand side exists. Here Γ(α) is Euler’s gamma function.
Let 1 < α < 3/2. The object of study of this work is the following fractional differential equation

Dα
t u(t) +ADα

t u(t) + ν2Au(t) = 0, 0 < t < T (1)

with non-local conditions
u(0) = u(T ), (2)

and
T∫
0

u(t)dt = ϕ, (3)
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where ϕ ∈ H is a given vector and ν > 0 is a fixed number.
Note that since the abstract operator A is only required to have a complete orthonormal system of

eigenfunctions, any elliptic operator can be considered as A. For example, if we take L2(Ω), Ω ⊂ RN ,
as the Hilbert space H, then we can take the Laplace operator (−∆) with the Dirichlet condition as
A.

The equation (1) has different names for different values of the parameter α. Thus, if α = 1, it
is called a differential equation of the Barenblatt-Zheltov-Kochina type (see [2]), and if α = 2, it is
called a differential equation of the Boussinesq type (see [3]). If 0 < α < 1, it is called a fractional
differential equation of the Barenblatt-Zheltov-Kochina type, in the case 1 < α < 2, it is called a
fractional differential equation of the Boussinesq type. Differential equations of the Boussinesq type
were introduced by Joseph Boussinesq in 1872 (see [3], eq. 26). The Boussinesq equations are widely
used in numerical modeling in coastal engineering for modeling waves in shallow water and harbors.
Although wave modeling in such cases is well described by the Navier-Stokes equations, it is currently
extremely difficult to solve three-dimensional equations in complex models. Therefore, approximate
models, such as the Boussinesq equations can be used to reduce three-dimensional problems to two-
dimensional states (see, e.g., [4]).

There is a number of works (see, for example, [2], [5]–[7]) in which specialists consider various
initial-boundary value problems for differential and fractional differential equations of the Barenblatt-
Zheltov-Kochina type. Since our study relates to the Boussinesq type differential equation, we present
some results related specifically to these equations.

Due to the mathematical and physical importance, over the last couple of decades, existence and
nonexistence of solutions of the Boussinesq type equations have been extensively studied by many
mathematicians and physicists (see, for example [8]–[12] with fractional order, and literature therein).
Nonlinear Boussinesq type equations arise in a number of mathematical models of physical processes,
for example, in the modeling of surface waves in shallow waters or considering the possibility of
energy exchange through the lateral surfaces of the wave guide in the physical study of nonlinear
wave propagation in wave guide (see, for example, [13] and [14], and literature therein). In [13], the
authors consider the Cauchy problem of the two-dimensional generalized Boussinesq type equation
utt −∆u−∆utt + ∆2u+ ∆f(u) = 0. Under the assumption that f(u) is a function with exponential
growth at infinity and under some assumptions on the initial data, the authors prove the existence
and, in some cases the nonexistence of a global weak solution.

Model equations of the Boussinesq type (the problem (1)–(3) with α = 2, ν = 1 and
A = − ∂2

∂x2
− ∂2

∂y2
, x, y ∈ (0, l)) and equations of mixed type and nonlinear equations containing equa-

tions of the Boussinesq type are systematically studied in a series of works [15]–[17]. In these works,
the existence and uniqueness of the classical solution of initial-boundary value problems were proved
and some inverse problems were studied. In the work [18], problems for the Boussinesq equation with
a spectral parameter were investigated.

Let us cite two more works [19] and [20] that motivated the appearance of our research. In these
works, the above non-local problem (1)–(3) was studied for a classical partial differential equation in
which A is the Laplace operator with the Dirichlet condition. So in the fundamental work [19], Alimov
and Khalmukhamedov studied the following non-local problem in the cylinder Ω× (0, T ):

utt −∆utt − ν2∆u = 0, x ∈ Ω, 0 < t < T,

u(x, 0) = u(x, T ), x ∈ Ω,

T∫
0

u(x, t)dt = ϕ(x),

(4)

where ϕ(x) is a given function. The authors discovered an interesting effect: it turns out that the
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existence and uniqueness of the solution of this problem significantly depend on the length of the time
interval and the parameter ν. If νT

2π ∈ (0, 1), then the solution exists and is unique for all ϕ ∈ D(A).
The case νT

2π ≥ 1 is more complicated: if νT2π > 1, and this number is not a natural number, then for the
existence of a solution, it is necessary that the function ϕ is orthogonal to some eigenfunctions of the
Laplace operator, and in this case, the solution is not unique. If the number νT

2π is a natural number,
then only orthogonality is not enough; it is necessary that the function ϕ is smoother: ϕ ∈ D(A2).

Since the parameter ν in the equation is fixed, this result means that if the process under study
lasts “not so long”, then a solution to the problem exists for any measurements ϕ. However, if the
process lasts “a little” longer, then the solution does not exist for all data ϕ.

In the recent work [20], problem (4) was studied with the kernel tu(x, t) in the integral condition.
Similar to the paper [19], conditions have been found for the time interval (0, T ], function ϕ and
parameter ν, which guarantees the existence of a solution to the problem.

A natural question arises: will the effect found in [19] be preserved, if instead of the second time
derivative in equation (4) we take the fractional derivative of order α ∈ (1, 3/2), in other words, instead
of equation in (4), consider equation (1)? In this paper it will be shown that the above parameter
νT
2π does not play a significant role in solving the non-local problem (1)–(3) and the solution to this
problem exists and is unique for any function ϕ ∈ D(A), regardless of the value of the number νT

2π .
The article is organized as follows: Section 2 provides some information about the domain of

definition of the operator A and proves the necessary estimates for the Mittag-Leffler functions. In
Section 3, we will formulate the main result of the work and construct a formal solution to the problem
(1)–(3). Section 4 is devoted to the proof of Theorem 1. In the “Conclusions” section discusses possible
further developments of the obtained results.

1 Preliminaries

In this section, we provide some information about the operator A and present new bounds for the
Mittag-Leffler function in the case 1 < ρ < 3/2, based on the findings of the study conducted by [21].

The action of the abstract operator A under consideration on the element h ∈ H can be written as

Ah =
∞∑
k=1

λkhkvk,

where hk is the Fourier coefficient of the element h: hk = (h, vk). Obviously, the domain of this
operator has the form

D(A) = {h ∈ H :

∞∑
k=1

λ2k|hk|2 <∞}.

For elements h and g of D(A) we introduce the norm and inner product as

||h||21 =
∞∑
k=1

λ2k|hk|2 = ||Ah||2,

(h, g)1 =

∞∑
k=1

λ2khkgk,

respectively. Together with this norm D(A) turns into a Hilbert space.
Let us denote by C((a, b);H) the sets of continuous vector functions u(t) on the interval t ∈ (a, b),

whose values lie inH, and by AC1((a, b);H) the sets of vector functions whose derivatives are absolutely
continuous with respect to t ∈ (a, b).

36 Bulletin of the Karaganda University



On a non-local problem ...

Recall, the Mittag-Leffler function Eρ,µ(t) has the form (see e.g. [22], p. 56):

Eρ,µ(t) =
∞∑
n=0

tn

Γ(ρn+ µ)
,

where ρ > 0 and µ complex number.
Next, we establish some two-sided estimates for the Mittag-Leffler function Eρ,µ(−t), 1 < ρ < 3/2,

t ≥ 0, µ = 1, 2, 3, ρ. The following simple method for obtaining these estimates was suggested to the
authors by Professor A.V. Pskhu (see, [21]).

Let φ(δ, β; z) stand for the Wright function, defined as

φ(δ, β; z) =

∞∑
k=0

zk

k!Γ(β + δk)
, δ > −1, β ∈ R, z ∈ C.

Let 0 < ξ < 1. In the work of A.V. Pskhu [21] for functions h(t) defined at t ≥ 0, the following integral
transform is introduced and studied:

P ξ,ηh(t) = tη−1
∞∫
0

h(s)φ

(
− ξ, η;− s

tξ

)
ds.

Note that P ξ,ηh(t) is some modification of the integral transform introduced by B. Stankovič in 1955
(see [23]).

Let us present the following statement from [21].

Lemma 1. Let γ > 0. Then

P ξ,ηtγ−1 = tξγ+η−1
Γ(γ)

Γ(ξγ + η)
.

From Lemma 1, by the definition of the Mittag-Leffler function, we get

P ξ,η[tµ−1Eρ,µ(λtρ)] = tµξ+η−1Eρξ,µξ+η(λt
ρξ). (5)

Lemma 2. ( see [24], p. 372, 373) There is a function f(α) decreasing on the interval (1, 3/2) such
that for any α ∈ (1, 3/2) and β > f(α) function Eα,β(z) does not vanish, where f(α) satisfies the
following inequality:

α+ h(α) < f(α) <
4

3
α, 1 < α < 3/2,

where
h(α) = exp [−π(1− 1/α)].

Lemma 3. Let α ∈ (1, 2). Then the following estimate holds:

Eα,1(−tα) ≤ 1 t > 0.

Proof. Let µ = 1, ρ = 2, ξ = α
2 , η = 1− α

2 and λ = −1 in equality (5). Then, we have:

Eα,1(−tα) = P
α
2
,1−α

2 (E2,1(−t2)) = P
α
2
,1−α

2 cos t.

Using the inequality | cos t| ≤ 1 and Lemma 1, we get

|Eα,1(−tα)| ≤ P
α
2
,1−α

2 1 =
Γ(1)

Γ(1)
= 1.

Lemma 3 is proved.
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Lemma 4. Let α ∈ (1, 3/2) and 0 < a <∞. Then there exists a number ε1 = ε1(a) > 0, depending
on a such that the following estimate holds

0 < ε1 < Eα,2(−tα) ≤ 1, 0 < t ≤ a.

Proof. Let µ = 1, ρ = 2, ξ = α
2 , η = 2 − α

2 and λ = −1. Then from (5) it follows the following
equality

tEα,2(−tα) = P
α
2
,2−α

2 (E2,1(−t2)) = P
α
2
,2−α

2 cos t.

Using the inequality | cos t| ≤ 1 and Lemma 1, we get

|tEα,2(−tα)| ≤ P
α
2
,2−α

2 1 = t
Γ(1)

Γ(2)
= t.

Therefore, for t > 0, we have that
|Eα,2(−tα)| ≤ 1.

Let 0 < a < ∞. First we show that Eα,2(−tα) > 0. Since β = 2 > f(α), then from Lemma 2 it
follows Eα,2(−tα) 6= 0, and therefore Eα,2(−tα) function keeps its sign for all t ≥ 0. On the other hand,
we know that Eα,2(0) = 1 > 0 and therefore Eα,2(−tα) > 0 for all t ≥ 0. Further it is well known
that Eα,2(−tα) ∈ C[0,∞). Since function Eα,2(−tα), continuous in a closed domain [0, a], reaches
its minimum and this minimum is obviously positive, denoting it by ε1 = ε1(a) > 0, we obtain the
statement of the lemma. Lemma 4 is proved.

Lemma 5. Let α ∈ (1, 3/2). Then the following estimate holds

0 < Eα,3(−tα) ≤ 1

2
, 0 < t ≤ b.

Proof. Let µ = 1, ρ = 2, ξ = α
2 , η = 3 − α

2 and λ = −1. Then from (5) it follows the following
equality

t2Eα,3(−tα) = P
α
2
,3−α

2 (E2,1(−t2)) = P
α
2
,3−α

2 cos t.

Using the inequality | cos t| ≤ 1 and Lemma 1, we get

|t2Eα,3(−tα)| ≤ P
α
2
,3−α

2 1 = t2
Γ(1)

Γ(3)
=
t2

2
.

Therefore
|Eα,3(−tα)| ≤ 1

2
, t > 0.

Now we show thatEα,3(−tα) > 0. Since β = 3 > f(α), then from Lemma 2 it followsEα,3(−tα) 6= 0,
and therefore Eα,3(−tα) function keeps its sign for all t ≥ 0. Also, we know that Eα,3(0) = 1

2 > 0 and
therefore Eα,3(−tα) > 0 for all t ≥ 0. Lemma 5 is proved.

Lemma 6. Let α ∈ (1, 3/2). Then there exists a number C0 > 0, such that the following estimate
holds:

(Eα,2(−Tα))2 + Eα,3(−Tα)(1− Eα,1(−Tα)) > C0.

Proof. We have that

(Eα,2(−Tα))2 + Eα,3(−Tα)(1− Eα,1(−Tα)) ≥ (Eα,2(−Tα))2.

According to Lemma 4, there exists a positive number C0, such that

(Eα,2(−Tα))2 > C0,

where C0 = ε21. Lemma 6 is proved.
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Lemma 7. Let α ∈ (1, 2). Then, the following estimate holds

|Eα,α(−tα)| ≤ 1

Γ(α)
, t ≥ 0.

Proof. Let µ = 1, ρ = 2, ξ = α
2 , η = 0 and λ = −1. Then from (5) it follows the equality

tα−1Eα,α(−tα) = P
α
2
,0(E2,1(−t2)) = P

α
2
,0 cos t.

Using the inequality | cos t| ≤ 1 and Lemma 1, we get

|tα−1Eα,α(−tα)| ≤ P
α
2
,01 = tα−1

Γ(1)

Γ(α)
= tα−1

1

Γ(α)
.

Therefore, for t > 0, we have that

|Eα,α(−tα)| ≤ 1

Γ(α)
.

Lemma 7 is proved.

2 Formulation of the main result and formal solution of the problem (1)–(3)

The solution of problem (1)–(3) will be understood in the sense of the following definition:

Definition 1. If a function u(t) ∈ AC1([0, T ];H), Dα
t u(t), Au(t), ADα

t u(t) ∈ C((0, T );H) and
satisfies all the conditions of problem (1)–(3), then it is called the solution of problem (1)–(3).

Note that here the absolute continuity of the derivative u′(t) is necessary to avoid non-uniqueness
of solutions due to singular functions.

Here is the main result of this paper.

Theorem 1. Let ϕ ∈ D(A). Then, there is a unique solution of problem (1)–(3) and it has the form:

u(t) =

∞∑
k=1

(
ϕkEα,2(−ν2kTα)Eα,1(−ν2ktα)

T ((Eα,2(−ν2kTα))2 + Eα,3(−ν2kTα)(1− Eα,1(−ν2kTα)))
+

+
ϕkt(1− Eα,1(−ν2kTα))Eα,2(−ν2ktα)

T 2((Eα,2(−ν2kTα))2 + Eα,3(−ν2kTα)(1− Eα,1(−ν2kTα)))

)
vk, (6)

where νk = ν
√

λk
1+λk

and ϕk = (ϕ, vk) are the Fourier coefficients of function ϕ.

In this section we will construct a formal solution of problem (1)–(3) and prove the uniqueness of
the solution.

Let u(t) be any solution of the non-local problem (1)–(3). Then since the system {vk} is complete
in H, the solution has the form:

u(t) =

∞∑
k=1

Tk(t)vk. (7)

If we multiply both sides of this equality scalarly by vj , then from the orthonormality of the system of
eigenfunctions {vk}, we obtain the equalities Tj(t) = (u(t), vj).

Substituting (7) into equation (1), we get

Dα
t Tk(t) + λkD

α
t Tk(t) + ν2λkTk(t) = 0.
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Then, we have that
(1 + λk)D

α
t Tk(t) + ν2λkTk(t) = 0.

If we divide above equation to 1 + λk and by νk we denote ν
√

λk
1+λk

, then we obtain:

Dα
t Tk(t) + ν2kTk(t) = 0, (8)

and using the conditions (2) and (3), we have:

Tk(0) = Tk(T ), (9)

and
T∫
0

Tk(t)dt = ϕk. (10)

The solution of the equation (8) has the form (see, for example [25], p. 231.)

Tk(t) = akEα,1(−ν2ktα) + bktEα,2(−ν2ktα). (11)

To find the unknown coefficients ak and bk, we use the non-local conditions (9) and (10).
Apply conditions (9) and (10) to (11), we get:

ak = akEα,1(−ν2kTα) + bkTEα,2(−ν2kTα),

T∫
0

(akEα,1(−ν2ktα) + bktEα,2(−ν2ktα))dt = ϕk.

Solving this system of equations, we will have

ak =
ϕkEα,2(−ν2kTα)

T ((Eα,2(−ν2kTα))2 + Eα,3(−ν2kTα)(1− Eα,1(−ν2kTα)))
, (12)

bk =
ϕk(1− Eα,1(−ν2kTα))

T 2((Eα,2(−ν2kTα))2 + Eα,3(−ν2kTα)(1− Eα,1(−ν2kTα)))
. (13)

Using the equalities (7), (11), (12) and (13) we get the formal solution (6) for the problem (1)–(3).
It remains to prove that the constructed formal solution satisfies all the requirements of Definition 1,
i.e. is indeed a solution to problem (1)–(3). We will do this in the next section.

On the other hand, the uniqueness of the solution follows from the already established equalities
(12) and (13). Indeed, let us show that the solution to the homogeneous problem (1)–(3) with function
ϕ = 0 is identically zero. From equalities (12) and (13) it follows that ak = bk = 0, and then all
coefficients Tk(t) of series (7) are equal to zero. Due to the completeness of system {vk}, it follows
that u(t) ≡ 0.

3 Proof of Theorem 1

Let Sj(t) be the partial sums of (6). Then

ASj(t) =

j∑
k=1

λk(akEα,1(−ν2ktα) + bktEα,2(−ν2ktα))vk.

40 Bulletin of the Karaganda University



On a non-local problem ...

By Parseval equality, we obtain

||ASj(t)||2 =

j∑
k=1

λ2k|akEα,1(−ν2ktα) + bktEα,2(−ν2ktα)|2 ≤

≤ C
j∑

k=1

λ2k|akEα,1(−ν2ktα)|2 + C

j∑
k=1

λ2k|bktEα,2(−ν2ktα)|2.

Let us estimate the following two terms, separately

I1 = |akEα,1(−ν2ktα)| =
∣∣∣∣ ϕkEα,2(−ν2kTα)Eα,1(−ν2ktα)

T ((Eα,2(−ν2kTα))2 + Eα,3(−ν2kTα)(1− Eα,1(−ν2kTα)))

∣∣∣∣
and

I2 = |bktEα,2(−ν2ktα)| =
∣∣∣∣ ϕkt(1− Eα,1(−ν2kTα))Eα,2(−ν2ktα)

T 2((Eα,2(−ν2kTα))2 + Eα,3(−ν2kTα)(1− Eα,1(−ν2kTα)))

∣∣∣∣ .
To estimate I1, we apply Lemma 3, Lemma 4 and Lemma 6. Then

I1 ≤
|ϕk|
T

1

C0
≤ CT−1|ϕk|. (14)

Similarly

I2 ≤
t|ϕk|
T 2

1

C0
≤ CT−2t|ϕk|. (15)

Using estimates (14) and (15), we obtain:

||ASj(t)||2 ≤ C2T−2
j∑

k=1

λ2k|ϕk|2 + C2T−4t2
j∑

k=1

λ2k|ϕk|2.

Therefore, if ϕ ∈ D(A), then

C2T−2
j∑

k=1

λ2k|ϕk|2 + C2T−4t2
j∑

k=1

λ2k|ϕk|2 ≤ const.

Thus Au(t) ∈ C([0, T ];D(A)).
Now we will show that the termwise differentiated series (6) converges uniformly on [0, T ], which

will mean that u′(t) ∈ C([0, T ], H). We have that

S′j(t) =

j∑
k=1

(akt
α−1Eα,α(−ν2ktα) + bkEα,1(−ν2ktα))vk.

By Parseval equality, we obtain that

||S′j(t)||2 =

j∑
k=1

|aktα−1Eα,α(−ν2ktα) + bkEα,1(−ν2ktα)|2 ≤

≤ C
j∑

k=1

|aktα−1Eα,α(−ν2ktα)|2 + C

j∑
k=1

|bkEα,1(−ν2ktα)|2.
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Let us estimate the following two terms, separately

I1 = |aktα−1Eα,α(−ν2ktα)| =
∣∣∣∣ ϕkt

α−1Eα,2(−ν2kTα)Eα,α(−ν2ktα)

T ((Eα,2(−ν2kTα))2 + Eα,3(−ν2kTα)(1− Eα,1(−ν2kTα)))

∣∣∣∣ ,
and

I2 = |bkEα,1(−ν2ktα)| =
∣∣∣∣ ϕk(1− Eα,1(−ν2kTα))Eα,1(−ν2ktα)

T 2((Eα,2(−ν2kTα))2 + Eα,3(−ν2kTα)(1− Eα,1(−ν2kTα)))

∣∣∣∣ .
To estimate I1, we apply Lemmas 3–7. Then

I1 ≤ tα−1
|ϕk|
T

1

C0Γ(α)
≤ Ctα−1T−1|ϕk|. (16)

Similarly

I2 ≤
|ϕk|
T 2

1

C0
≤ CT−2|ϕk|. (17)

Apply estimates (16) and (17), we get

||S′j(t)||2 ≤ C2t2(α−1)T−2
j∑

k=1

|ϕk|2 + C2T−4
j∑

k=1

|ϕk|2.

Hence
||S′j(t)||2 ≤ C||ϕ||, t ≥ 0.

Further let us show that u′(t) is absolutely continuous. For this, we take the first-order derivative
with respect to t from the partial sums S′j(t):

S′′j (t) =

j∑
k=1

(akt
α−2Eα,α−1(−ν2ktα) + bkt

α−1Eα,α(−ν2ktα))vk.

From this it is easy to see that S′′j (t) ∈ L((0, T ), H). Therefore, we get u(t) ∈ AC1([0, T ];H).
Now we show that the following sum Dα

t Sj(t) converge uniformly in t ∈ (0, T ). To do this, first
consider the sums

(I +A)−1ASj(t) =

j∑
k=1

λk
1 + λk

(akEα,1(−ν2ktα) + bktEα,2(−ν2ktα))vk.

By Parseval equality, we get

||(I +A)−1ASj(t)||2 =

j∑
k=1

λ2k
(1 + λk)2

|akEα,1(−ν2ktα) + bktEα,2(−ν2ktα)|2 ≤

≤ C
j∑

k=1

λ2k
(1 + λk)2

|akEα,1(−ν2ktα)|2 + C

j∑
k=1

λ2k
(1 + λk)2

|bktEα,2(−ν2ktα)|2.

By estimates (14), (15) and λk
1+λk

≤ 1 we have that

||(I +A)−1ASj(t)||2 ≤ C2T−2
j∑

k=1

|ϕk|2 + C2T−4t2
j∑

k=1

|ϕk|2.
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From this, since ϕ ∈ H, we have that

C2T−2
j∑

k=1

|ϕk|2 + C2T−4t2
j∑

k=1

|ϕk|2 ≤ const.

Therefore (I +A)−1Au(t) ∈ C((0, T );H). Now applying the obvious equality
Dα
t u(t) = −ν2(I + A)−1Au(t), which follows from the commutativity of the corresponding operators,

we obtain Dα
t u(t) ∈ C((0, T ), H).

It remains to prove the continuity of ADα
t u(t). From equality ADα

t u(t) = −Dα
t u(t)− ν2Au(t) and

continuity of Dα
t u(t) and Au(t), it follows ADα

t u(t) ∈ C((0, T ), D(A)). Theorem 1 is proved.

4 Conclusions

The work is devoted to the study of the correctness of a certain non-local problem (1)–(3) for
equations of Busineski type. Namely, the question of the existence and uniqueness of a solution to the
corresponding non-local problem is analyzed. In recent years, a number of works have appeared where
initial boundary value problems for various types of equations of Busineski type have been studied.
The motivation for this was primarily the numerous applications of such problems in the modeling of
various processes in physics and mechanics.

Recently, a fundamental work [19] (see also [20]) appeared, where the correctness of a similar
non-local problem was studied in the case when α = 2. Here the authors discovered an interesting
phenomenon: the correctness of the problem significantly depends on the duration of the process T and
the parameter ν. It turned out that the most optimal case is when the process does not last that long,
i.e. νT

2π ∈ (0, 1): here the problem is correct for any ϕ ∈ D(A). If the process lasts longer, i.e. νT
2π ≥ 1,

then additional conditions will appear on the function ϕ and these conditions depend on whether the
number νT

2π is a natural number or not.
The question naturally arises: does this phenomenon persist in the case when, instead of the second

derivative with respect to time, we take a derivative in the sense of Caputo Dα
t of order 1 < α < 3/2.

In this paper it is shown that there is no such effect and the corresponding non-local problem has a
unique solution for any ϕ ∈ D(A).

In the future, it would be interesting to consider other fractional derivatives instead of Caputo
derivatives, to see if the corresponding effect would take place. Also interesting is the study of inverse
problems to determine the right-hand side of the equation for such non-local problems.

These tasks are the subject of further research.
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In the present paper, we construct a first order of accuracy difference scheme for the approximate solution of
the inverse problem for telegraph-parabolic equations with an unknown spacewise dependent source term.
The unique solvability of constructed difference scheme and the stability estimates for its solution were
obtained. The proofs are based on the spectral representation of the self-adjoint positive definite operator
in a Hilbert space.
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Introduction

Differential equations with unknown source terms are widely used in the mathematical modelling
of real-life phenomena in many different fields of science and have been broadly investigated over the
years (see, e.g., [1]–[9] and the references therein).

The problems for differential equations containing a time- and/or space-dependent parameter
(source term) are called source identification problems. These types of problems are inverse and their
solutions cannot be determined uniquely from imposed initial and/or boundary conditions. To achieve
a well-posedness of a source identification problem, one needs to provide some additional condition(s).
Source identification problems for mixed type differential equations have been receiving a great deal of
attention recently (see, e.g., [10]–[19] for hyperbolic-parabolic, [20]–[22] for elliptic-hyperbolic, and [23]
for parabolic-elliptic source identification problems).

Numerous local and nonlocal boundary value problems for telegraph-parabolic equations with un-
known source terms can be reduced to the following abstract problem for the differential equation with
a spacewise dependent parameter p

u′′(t) + αu′(t) +Au(t) = p+ f(t), 0 < t < 1,

u′(t) +Au(t) = p+ g(t), −1 < t < 0,

u(0+) = u(0−), u′(0+) = u′(0−),
u(−1) = ϕ, u(λ) = ψ, −1 < λ ≤ 1

(1)

in a Hilbert space H with a self-adjoint positive definite operator A satisfying A ≥ δI, where δ > α2

4
and α ≥ 0. The last condition in (1) is considered in order to compensate the uncertainty in the
problem due to unknown term p.
∗Corresponding author. E-mail: maksat.ashyralyyev@mdu.se
Received: 12 February 2024; Accepted: 26 May 2024.
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The unique solvability of problem (1) in the space C(H) of the continuous H-valued functions u(t)
defined on [−1, 1], equipped with the norm

‖u‖C(H) = max
−1≤t≤1

‖u(t)‖H

was established in [24], and the following theorem on the continuous dependence of the solution on the
given data was proven.

Theorem 1 ([24]). Assume that ϕ, ψ ∈ D(A). Let f(t) and g(t) be continuously differentiable
functions on [0, 1] and [−1, 0], respectively. Then, for the solution {u(t), p} of problem (1) in C(H)×H
the following stability inequalities

‖u‖C(H) + ‖A−1p‖H ≤M(δ, λ)
[
‖ϕ‖H + ‖ψ‖H + max

0≤t≤1
‖f(t)‖H + max

−1≤t≤0
‖g(t)‖H

]
,

max
0≤t≤1

‖u′′(t)‖H + max
0≤t≤1

‖αu′(t)‖H + max
−1≤t≤0

‖u′(t)‖H + ‖Au‖C(H) + ‖p‖H

≤M(δ, λ)
[
‖Aϕ‖H + ‖Aψ‖H + max

0≤t≤1
‖f ′(t)‖H + ‖f(0)‖H + max

−1≤t≤0
‖g′(t)‖H + ‖g(0)‖H

]
hold, where M(δ, λ) does not depend on ϕ, ψ, f(t) and g(t).

In general, the differential equations with unknown parameters are not solvable analytically and
therefore one needs to use numerical methods to approximate their solutions. The main goal of this
study is to construct and investigate a first order of accuracy stable difference scheme for the approx-
imate solution of abstract problem (1). We prove the unique solvability of the constructed difference
scheme and obtain the stability estimates for its solution. The analysis is based on the operator approach
and the proofs of the stability estimates are based on the spectral representation of the self-adjoint
positive definite operator in a Hilbert space.

1 First order of accuracy stable difference scheme

Let τ = 1/N be sufficiently small positive number satisfying λ ≥ −1 + τ . Let us define the grid
points tk = kτ, −N ≤ k ≤ N . For the approximate solution of problem (1), we construct the first
order of accuracy stable difference scheme

uk+1−2uk+uk−1

τ2
+ α

uk+1−uk
τ +Auk+1 = p+ fk, 1 ≤ k ≤ N − 1,

uk−uk−1

τ +Auk = p+ gk, −N + 1 ≤ k ≤ 0,

u1−u0
τ = p−Au0 + g0, u−N = ϕ, u` = ψ,

(2)

where ` = bλ/τc, fk = f(tk), 1 ≤ k ≤ N − 1 and gk = g(tk), −N + 1 ≤ k ≤ 0.
We first present some lemmas, which we will need in the remaining part of this paper. Here and

everywhere else, we denote

R =

((
1 +

ατ

2

)
I + iτ

(
A− α2

4
I

)1/2
)−1

, R̃ =

((
1 +

ατ

2

)
I − iτ

(
A− α2

4
I

)1/2
)−1

and
Q = (I + τA)−1 .

Lemma 1 ([25]). The following estimates hold

‖R‖H→H ≤ 1, ‖R̃‖H→H ≤ 1, ‖R̃−1R‖H→H ≤ 1,
∥∥R−1R̃∥∥

H→H ≤ 1. (3)
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Lemma 2 ([25]). The following estimates hold

‖Qm‖H→H ≤
1

1 +mτδ
< 1, m ≥ 1, (4)

‖A1/2Qm‖H→H ≤
1

2
√
mτ

, m ≥ 1. (5)

Lemma 3. If −1 + τ ≤ λ < τ , then −N + 1 ≤ ` ≤ 0, and the following estimate holds∥∥∥∥(I −QN+`
)−1∥∥∥∥

H→H
≤M1(δ, λ). (6)

Proof. The proof of estimate (6) is based on estimate (4).

Lemma 4. The following estimates hold for m ≥ 1∥∥∥∥∥
[
Rm−1

2

(
I − α

2i

(
A− α2

4
I

)−1/2)
+
R̃m−1

2

(
I +

α

2i

(
A− α2

4
I

)−1/2)

+
A

2i

(
A− α2

4
I

)−1/2 (
R̃−1Rm−1 −R−1R̃m−1

)]
QN

∥∥∥∥∥
H→H

< 1. (7)

Proof. Since

Rm−1

2

(
I − α

2i

(
A− α2

4
I

)−1/2)
+
R̃m−1

2

(
I +

α

2i

(
A− α2

4
I

)−1/2)

+
A

2i

(
A− α2

4
I

)−1/2 (
R̃−1Rm−1 −R−1R̃m−1

)
=

[
I − τA+ i

{α
2
I −

(
1 +

ατ

2

)
A
}(

A− α2

4
I

)−1/2]
Rm−1

2

+

[
I − τA− i

{α
2
I −

(
1 +

ατ

2

)
A
}(

A− α2

4
I

)−1/2]
R̃m−1

2
,

using (3) and the following estimates∥∥∥∥∥
[
I − τA± i

{α
2
I −

(
1 +

ατ

2

)
A
}(

A− α2

4
I

)−1/2]
QN

∥∥∥∥∥
H→H

< 1, (8)

we obtain (7). The proof of estimates (8) is based on the spectral representation of the self-adjoint
positive definite operator A in a Hilbert space H [25].

Lemma 5. If τ ≤ λ ≤ 1, then 1 ≤ ` ≤ N and the following estimate holds∥∥∥∥∥
(
I −

[
R`−1

2

(
I − α

2i

(
A− α2

4
I

)−1/2)
+
R̃`−1

2

(
I +

α

2i

(
A− α2

4
I

)−1/2)

+
A

2i

(
A− α2

4
I

)−1/2 (
R̃−1R`−1 −R−1R̃`−1

)]
QN

)−1∥∥∥∥∥∥
H→H

≤M2(δ, λ, α). (9)
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Proof. The proof of estimate (9) is based on estimate (7).

We now present the main theorem for the solution of the first order of accuracy difference scheme (2).

Theorem 2. The difference scheme (2) has a unique solution and the following stability estimate
holds

max
−N≤k≤N

‖uk‖H +
∥∥A−1p∥∥

H

≤M∗(δ, λ, α)
[
‖ϕ‖H + ‖ψ‖H + max

1≤k≤N−1
‖fk‖H+ max

−N+1≤k≤0
‖gk‖H

]
, (10)

where M∗(δ, λ, α) is independent of ϕ, ψ, τ , fk and gk.

Proof. Let us denote
uk = vk +A−1p, −N ≤ k ≤ N. (11)

Then, the difference scheme (2) results in the following auxiliary difference scheme
vk+1−2vk+vk−1

τ2
+ α

vk+1−vk
τ +Avk+1 = fk, 1 ≤ k ≤ N − 1,

vk−vk−1

τ +Avk = gk, −N + 1 ≤ k ≤ 0,

v1−v0
τ = −Av0 + g0, v` = v−N + ψ − ϕ.

(12)

First, we obtain the formulas for solution of scheme (12). For the given v0 the following difference
scheme { vk+1−2vk+vk−1

τ2
+ α

vk+1−vk
τ +Avk+1 = fk, 1 ≤ k ≤ N − 1,

v1−v0
τ = −Av0 + g0

has a solution

vk =

[
Rk−1

2

(
I − α

2i

(
A− α2

4
I

)−1/2)
+
R̃k−1

2

(
I +

α

2i

(
A− α2

4
I

)−1/2)]
v0

+
(
R− R̃

)−1
τ
(
Rk − R̃k

)
(−Av0 + g0)

− 1

2i

k∑
j=1

(
A− α2

4
I

)−1/2 (
Rk−j − R̃k−j

)
fjτ, 1 ≤ k ≤ N. (13)

Furthermore, for the given v−N , the following difference scheme

vk − vk−1
τ

+Avk = gk, −N + 1 ≤ k ≤ 0

has a solution

vk = QN+kv−N +

k∑
j=−N+1

Qk−j+1gjτ, −N + 1 ≤ k ≤ 0. (14)

In particular, putting k = 0 in (14), we get

v0 = QNv−N +

0∑
j=−N+1

Q−j+1gjτ.
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Then, by putting this expression for v0 in (13), we obtain

vk =

[
Rk−1

2

(
I − α

2i

(
A− α2

4
I

)−1/2)
+
R̃k−1

2

(
I +

α

2i

(
A− α2

4
I

)−1/2)

− τA
(
R− R̃

)−1 (
Rk − R̃k

)]QNv−N +

0∑
j=−N+1

Q−j+1gjτ


+
(
R− R̃

)−1 (
Rk − R̃k

)
τg0 −

1

2i

k∑
j=1

(
A− α2

4
I

)−1/2 (
Rk−j − R̃k−j

)
fjτ, 1 ≤ k ≤ N.

Using R− R̃ = −2iτ
(
A− α2

4 I
)1/2

RR̃, we have

vk =

[
Rk−1

2

(
I − α

2i

(
A− α2

4
I

)−1/2)
+
R̃k−1

2

(
I +

α

2i

(
A− α2

4
I

)−1/2)

+
A

2i

(
A− α2

4
I

)−1/2 (
R̃−1Rk−1 −R−1R̃k−1

)]QNv−N +
0∑

j=−N+1

Q−j+1gjτ


− 1

2i

(
A− α2

4
I

)−1/2 (
R̃−1Rk−1 −R−1R̃k−1

)
g0

− 1

2i

k∑
j=1

(
A− α2

4
I

)−1/2 (
Rk−j − R̃k−j

)
fjτ, 1 ≤ k ≤ N. (15)

If −1 + τ ≤ λ < τ , then −N + 1 ≤ ` ≤ 0, and therefore from (12) and (14) it follows

v` = v−N + ψ − ϕ = QN+`v−N +
∑̀

j=−N+1

Q`−j+1gjτ,

so that

v−N =
(
I −QN+`

)−1 ∑̀
j=−N+1

Q`−j+1gjτ + ϕ− ψ

 . (16)

If τ ≤ λ ≤ 1, then 1 ≤ ` ≤ N , and therefore from (12) and (15) it follows

v` =v−N + ψ − ϕ =

[
R`−1

2

(
I − α

2i

(
A− α2

4
I

)−1/2)
+
R̃`−1

2

(
I +

α

2i

(
A− α2

4
I

)−1/2)

+
A

2i

(
A− α2

4
I

)−1/2 (
R̃−1R`−1 −R−1R̃`−1

)]QNv−N +

0∑
j=−N+1

Q−j+1gjτ


− 1

2i

(
A− α2

4
I

)−1/2 (
R̃−1R`−1 −R−1R̃`−1

)
g0 −

1

2i

∑̀
j=1

(
A− α2

4
I

)−1/2 (
R`−j − R̃`−j

)
fjτ,
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so that

v−N =

(
I −

[
R`−1

2

(
I − α

2i

(
A− α2

4
I

)−1/2)
+
R̃`−1

2

(
I +

α

2i

(
A− α2

4
I

)−1/2)

+
A

2i

(
A− α2

4
I

)−1/2 (
R̃−1R`−1 −R−1R̃`−1

)]
QN

)−1

×

[{
R`−1

2

(
I − α

2i

(
A− α2

4
I

)−1/2)
+
R̃`−1

2

(
I +

α

2i

(
A− α2

4
I

)−1/2)

+
A

2i

(
A− α2

4
I

)−1/2 (
R̃−1R`−1 −R−1R̃`−1

)} 0∑
j=−N+1

Q−j+1gjτ

− 1

2i

(
A− α2

4
I

)−1/2 (
R̃−1R`−1 −R−1R̃`−1

)
g0

− 1

2i

∑̀
j=1

(
A− α2

4
I

)−1/2 (
R`−j − R̃`−j

)
fjτ + ϕ− ψ

 . (17)

Thus, for the solution of auxiliary difference scheme (12), we have formulas (14) and (15), with v−N
being found by formula (16) if −1 + τ ≤ λ < τ and formula (17), if τ ≤ λ ≤ 1. Now, taking into
account that u−N = ϕ, we have A−1p = ϕ−v−N . Then, using (11), we obtain the solution of difference
scheme (2).

Now, let us obtain the estimate (10). Using (16) and estimates (4) and (6), we obtain

‖v−N‖H ≤M1(δ, λ)
[
‖ϕ‖H + ‖ψ‖H + max

−N+1≤k≤0
‖gk‖H

]
. (18)

Next, using (17) and the estimates (3), (4), (5), and (9), we obtain

‖v−N‖H ≤M2(δ, λ, α)
[
‖ϕ‖H + ‖ψ‖H + max

1≤k≤N−1
‖fk‖H + max

−N+1≤k≤0
‖gk‖H

]
. (19)

Then, using (14) and the estimates (4), (18), and (19), we get

‖vk‖H ≤‖v−N‖H + max
−N+1≤k≤0

‖gk‖H

≤M3(δ, λ, α)
[
‖ϕ‖H + ‖ψ‖H + max

1≤k≤N−1
‖fk‖H + max

−N+1≤k≤0
‖gk‖H

]
(20)

for k = −N + 1, . . . , 0. Using (15) and the estimates (3), (4), (5), (7), (18), and (19), we obtain

‖vk‖H ≤‖v−N‖H +M4(δ, α)
(

max
1≤k≤N−1

‖fk‖H + max
−N+1≤k≤0

‖gk‖H
)

≤M5(δ, λ, α)
[
‖ϕ‖H + ‖ψ‖H + max

1≤k≤N−1
‖fk‖H + max

−N+1≤k≤0
‖gk‖H

]
(21)

for k = 1, . . . , N . Since A−1p = ϕ− v−N , using (18), (19), and the triangle inequality, we have∥∥A−1p∥∥
H
≤‖ϕ‖H + ‖v−N‖H
≤M6(δ, λ, α)

[
‖ϕ‖H + ‖ψ‖H + max

1≤k≤N−1
‖fk‖H + max

−N+1≤k≤0
‖gk‖H

]
. (22)
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Finally, using (11), (20), (21), and (22), we prove the estimate

‖uk‖H ≤
∥∥A−1p∥∥

H
+ ‖vk‖H

≤M7(δ, λ, α)
[
‖ϕ‖H + ‖ψ‖H + max

1≤k≤N−1
‖fk‖H + max

−N+1≤k≤0
‖gk‖H

]
(23)

for k = −N, . . . , N . Estimate (10) follows from (22) and (23).
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Mathematics Series. No. 3(115)/2024 53

https://doi.org/10.1063/1.5049042
https://doi.org/10.1063/1.5049042
https://doi.org/10.12732/ijam.v34i2.12
https://doi.org/10.12732/ijam.v34i2.12
https://doi.org/10.1063/5.0042271
https://doi.org/10.1063/5.0042271
https://doi.org/10.1007/s40590-023-00585-1
https://doi.org/10.1063/1.4959650
https://doi.org/10.1063/1.4959650
https://doi.org/10.1002/num.22561
https://doi.org/10.1002/num.22561
https://doi.org/10.1063/1.5136171
https://doi.org/10.1063/1.5136171
https://doi.org/10.1134/S0965542520080035


M. Ashyraliyev, M.A. Ashyralyyeva

Author Information∗

Maksat Ashyraliyev (corresponding author) — Associate Professor, Mälardalen University, Väster̊as,
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Introduction

Over the years, nonlocal and local boundary value problems (BVPs) for third-order partial differen-
tial equations (PDEs) have gone through extensive investigations (see, for instance, [1–9]). Time delay
(TD) is a common phenomenon in various engineering projects. The theory as well as applications of
delay nonlinear and linear third-order ordinary differential and difference equations having delay terms
have been explored in numerous works (see, for instance, [10–16]).

The stability of the third order partial delay differential equation (PDDE) having involution and
Dirichlet condition was investigated in [17]. Nevertheless, the third order PDDE with involution and
Robin condition (IRC) is not studied before. Therefore, the main motivation for this paper is to study
the stability of the third order partial delay differential and difference equations with IRC.

1 Differential problem stability

In [0,∞)× (−ρ, ρ) , the initial BVP for the TD third order PDE with IRC.

∂3u(ζ,y)
∂ζ3

− (δ(y)uζy(ζ, y))y + β (δ(−y)uζ,−y(ζ,−y))−y
= −b (−δ(y)uy(ζ − w, y))y + β (δ(−y)u−y(ζ,−y))−y
+Φ(ζ, y), 0 < t <∞, (−ρ, ρ) ,

u(ζ, y) = g(ζ, y),−w ≤ ζ ≤ 0, y ∈ [−ρ, ρ] ,

α1u(ζ,−ρ)− γ1uy(ζ,−ρ) = 0, α2u(ζ, ρ) + γ2uy(ζ, ρ) = 0, 0 ≤ ζ <∞

(1)
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is studied. In this study, we make the assumption that w > 0, δ ≥ δ(y) = δ(−y) ≥ δ > 0, y ∈ (−t, t)
and δ − δ|β| ≥ 0, α1, α2, γ1, γ2 are non negative constants.

We examine the Hilbert space L2 [−ρ, ρ] consisting of all square integrable functions defined on
[−ρ, ρ] , equipped with the norm

‖ Φ ‖L2[−ρ,ρ]=

(∫ ρ

−ρ
|Φ(y)|2dy

) 1
2

.

A unique solution u(ζ, y) is possessed by problem (1) for the smooth functions δ(y), y ∈ (−t, t),
g(ζ, y),−w ≤ ζ ≤ 0, y ∈ [−ρ, ρ] ,Φ(ζ, y), 0 < ζ < ∞, y ∈ (−ρ, ρ) , and b ∈ R1, provided the
compatibility conditions are met.

Theorem 1. The following stability estimates hold for the solutions of problem (1):

max
0≤ζ≤nw

‖vζζ(ζ, ·)‖W 1
2 (−ρ,ρ) , max

0≤ζ≤nw
‖vζ(ζ, ·)‖W 2

2 (−ρ,ρ) , max
0≤ζ≤nw

‖v(ζ, ·)‖W 3
2 (−ρ,ρ)

≤M2

[
(2 + |b|w)n a0 +

n∑
i=1

(2 + |b|w)n−i
∫ iw

(i−1)ω
‖Φ(s, ·)‖

W1
2 (−ρ,ρ)

ds

]
,

a0 = max

{
max
−w≤ζ≤0

‖gζζ(ζ, ·)‖W 1
2 (−ρ,ρ) ,

max
−w≤ζ≤0

‖g(ζ, ·)‖W 3
2 (−ρ,ρ)

}
.

Here, the Sobolev spaces W k
2 for k = 1, 2, 3 consist of all square integrable functions ψ (y) defined on

[−ρ, ρ], each equipped with their respective norms

‖ψ‖Wk
2 (−ρ,ρ) =

∫ ρ

−ρ

k∑
i=0

ψy · · · y︸ ︷︷ ︸
i time

(y)

2

dy


1
2

.

Note that M2 does not depend on g(t, y) and Φ(ζ, y).

Proof. With this we are able to change problem (1) to the following initial value problem
d3v(ζ)
dζ3

+Adv(ζ)
dζ = bAv(ζ − w) + Φ(ζ), 0 < ζ <∞,

v(ζ) = g(ζ),−w ≤ ζ ≤ 0

(2)

in H = L2 [−ρ, ρ] which happens to be Hilbert space having a self-adjoint positive definite operator
(SAPDO) A that is given by the formula below:

Au(y) = −(δ(y)uy(y))y + β(δ(−y)u−y(−y))−y, (3)

having domain

D(A) = {u(y) : u(y), uy(y), (δ(y)uy)y ∈ L2 [−ρ, ρ] , α1u(−ρ)− γ1uy(−ρ) = 0, α2u(ρ) + γ2uy(ρ) = 0} .

Theorem 1’s proof relies on the positive definiteness as well as the self-adjointness of the space operator
A as specified by equation (3), as well as the results presented in paper [18]. Additionally, the proof
incorporates the theorem on the stability of the solution to problem (2).
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Theorem 2. [19] The following estimate applies to the solution of problem (2):

max
0≤ζ≤nw

∥∥∥∥A 1
2
d2v(ζ)

dζ2

∥∥∥∥
H

, max
0≤ζ≤nw

∥∥∥∥Adζ(ζ)

dζ

∥∥∥∥
H

,
1

2
max

0≤ζ≤nw

∥∥∥A 3
2 v(ζ)

∥∥∥
H

≤ (2 + |b|w)n a0 +

∫ nw

0

∥∥∥A 1
2 Φ(s)

∥∥∥
H
ds, n = 1, 2, ...,

where

a0 = max

{
max
−w≤ζ≤0

∥∥∥∥A 1
2
d2g(ζ)

dζ2

∥∥∥∥
H

, max
−w≤ζ≤0

∥∥∥∥Adg(ζ)

dζ

∥∥∥∥
H

, max
−w≤ζ≤0

∥∥∥A 3
2 g(t)

∥∥∥
H

}
.

Stability of the difference scheme

For the approximate solution of problem (1), we study the stable difference scheme (DS). Prob-
lem (1) discretization is conducted in two stages.

Firstly, the spatial discretization is executed. The equation below defines the grid space:

[−t, t]h =
{
y = yn

∣∣ yn = nh, −Γ ≤ n ≤ Γ, Γh = t
}
.

We present the Hilbert space L2h = L2([−t, t]h) of the grid functions ϕh(y) = {ϕn}Γ−Γ defined on
[−t, t]h, endowed with the norm

∥∥∥ϕh∥∥∥
L2h

=

 ∑
y∈[−t,t]h

∣∣∣ϕh(y)
∣∣∣2 h
1/2

.

We associate the difference operator Ayh with the differential operator A that is defined by equation (3),
using the following expression

Ayhϕ
h(y) =

{
−
(
δ(y)ϕny

)
y
− β

(
δ(−y)ϕ−ny

)
y

}Γ−1

−Γ+1
, (4)

that acts in the space of grid functions ϕh(y) = {ϕn}Γ−Γ and meeting the requirements

α1hϕ
−Γ − γ1(ϕ−Γ − ϕ−Γ+1) = 0, α2hϕ

Γ + γ2(ϕΓ − ϕΓ−1) = 0.

Here

ϕnȳ =
ϕn − ϕn−1

h
, −Γ + 1 ≤ n ≤ Γ, ϕny =

ϕn+1 − ϕn

h
, −Γ ≤ n ≤ Γ− 1.

It is properly-established that Ayh, as defined by equation (4) is a SAPDO in L2h. By making use of
Ayh, the initial discretization step leads to the problem that follows:

∂3uh(ζ, y)

∂ζ3
+Ayhu

h(ζ, y) = −bAyhu
h(ζ − w, y)

+Φh(ζ, y), y ∈ [−t, t]h, 0 < ζ <∞,
uh(ζ, y) = gh(ζ, y),−w ≤ ζ ≤ 0, y ∈ [−t, t]h, −w < ζ < 0.

(5)
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Secondly, problem (5) is replaced with the following first order of accuracy DS



uhk+2(y)−3uhk+1(y)+3uhk(y)−uhk−1(y)

η3
+Ayh

uhk+2(y)−uhk+1(y)

η

= bAyhu
h
k−M(y) + Φh

k(y),Φh
k(y) = Φh(ζk, y), k ≥ 1, y ∈ [−t, t]h,

uhk(y) = gh(ζk, y),−M ≤ k ≤ 0,

(Υh + η2Ayh)
uh1 (y)−uh0 (y)

η = ghζ (0, y),

(Υh + η2Ayh)
uh2 (y)−2uh1 (y)+uh0 (y)

η2
= ghζζ(0, y), y ∈ [−t, t]h,

(Υh + η2Ayh)
uhmM+1(y)−uhmM(y)

η =
uhmM(y)−uhmM−1(y)

η , y ∈ [−t, t]h,

(Υh + η2Ayh)
uhmM+2(y)−2uhmM+1(y)+uhmM(y)

η2

=
uhmM(y)−2uhmM−1(y)+uhmM−2(y)

η2
, y ∈ [−t, t]h,m = 1, 2, ...,

(6)

here η = 1/M and ζk = kη, −M ≤ k <∞.
Theorem 3. Let h and η be values that are small enough. The following estimates hold for the

solution of DS (6):

max
0≤k≤(m+1)M−2

∥∥∥∥∥uhk+2 − 2uhk+1 + uhk
η2

∥∥∥∥∥
W 1

2h

, max
1≤k≤(m+1)M

∥∥∥∥∥uhk − uhk−1

η

∥∥∥∥∥
W 2

2h

,

max
0≤k≤(m+1)M

‖uhk‖W 3
2h
≤ χ1

[
(2 + η|b|(M− 2))mbh0

+
m∑
i=1

(2 + η|b|(M− 2))m−iη
iM∑

s=(i−1)M+1

‖Φ(ζs)‖W 1
2h

 ,m = 0, 1, ...,

bh0 = max

{
max
−M≤k≤0

‖ghζζ(ζk)‖W 1
2h
, max
−M≤k≤0

‖ghζ (ζk)‖W 2
2h
, max
−M≤k≤0

‖gh(ζk)‖W 3
2h

}
.

Here, W 1
2h,W

2
2h and W 3

2h represent spaces of all mesh functions ψh (ζ) defined on the interval [−ρ, ρ]h
having the specific norm

∥∥∥ψh∥∥∥
Wk

2h

=

 ∑
y∈[−ρ,ρ]

k∑
i=0

ψhy · · · y︸ ︷︷ ︸
i time

(y)

2

hk


1
2

.

Note that χ1 does not depend on η, h, gh(tk), and Φh
k(y).
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Proof. DS (6) can be written in abstract form

uhk+2−3uhk+1+3uhk−u
h
k−1

η3
+Ah

uhk+2−u
h
k+1

η = bAhu
h
k−M + Φh

k , k ≥ 1,

uhk = ghk ,−M ≤ k ≤ 0,

(Υh + η2Ah)
uh1−uh0
η = ghζ (0), (Υh + η2Ah)

uh2−2uh1+uh0
η2

= ghζζ(0),

(Υh + η2Ah)
uhmM+2−2uhmM+1+uhmM

η2
=

uhmM−2uhmM−1+uhmM−2

η2
,

(Υh + η2Ah)
uhmM+1−u

h
mM

η =
uhmM−u

h
mM−1

η ,m = 1, 2, ...

(7)

in L2h which is a Hilbert space with SAPDO Ah = Ayh that is defined using the formula (4). Where,
ghk = ghk (y), Φh

k = Φh
k(y) and uhk = uhk(y) are known and unknown abstract mesh functions that are

defined on [−ρ, ρ]h with the values in H = L2h. Consequently, Theorem 2 proof relies on the theorem
4 below as well as the self-adjointness and positive definiteness of the space operator Ah (4) [20].

Theorem 4. [21] The following estimate holds for the solution of DS (7):

1

2
max

0≤k≤(m+1)M−2

∥∥∥∥∥A 1
2
h

uhk+2 − 2uhk+1 + uhk
η2

∥∥∥∥∥
H

, max
1≤k≤(m+1)M

∥∥∥∥∥Ahuhk − uhk−1

η

∥∥∥∥∥
H

,

max
0≤k≤(m+1)M

‖A
3
2
hu

h
k‖H ≤ χ1

[
(2 + η|b|(M− 2))mbh0

+
m∑
i=1

(2 + η|b|(M− 2))m−iη
iM∑

s=(i−1)M+1

‖A
1
2
HΦ(ζs)‖H

 ,m = 0, 1, ...,

where b0 = max

{
max
−M≤k≤0

‖A
1
2
h g
′′(ζk)‖H , max

−M≤k≤0
‖Ahghζ (ζk)‖H , max

−M≤k≤0
‖A

3
2
h g

h(ζk)‖H
}
.

2 Numerical algorithm for the third order delay partial differential equation

We give the algorithm for numerically solving the initial BVP for third order delay PDE having
involution and Robin boundary condition

∂3u(ζ,y)
∂ζ3

− ∂3u(ζ,y)
∂ζ∂y2

+ 8∂u(ζ,y)
∂ζ − 1

8
∂3u(ζ,−y)
∂ζ∂y2

+ ∂u(ζ,−y)
∂ζ

= −0.1(−∂2u(ζ−1,y)
∂y2

+ 8u(ζ − 1, y))

−35e−2ζ cos 2y + 1.2e−2(ζ−1) cos 2y,

0 < ζ <∞, −π < y < π,

u(ζ, y) = e−2ζ cos 2y, −1 ≤ ζ ≤ 0, −π ≤ y ≤ π,
u(ζ,−π)− e−2ζ = 28uy(ζ,−π),−u(ζ, π) + e−2ζ = 28uy(ζ, π), 0 ≤ ζ <∞.

(8)

The exact solution of problem (8) is u(ζ, y) = e−2ζ cos 2y,−π ≤ y ≤ π,−1 ≤ ζ < ∞. We use the set
of grid points [−1,∞)η × [−π, π]h = {(ζk, yn) : ζk = kη,−M ≤ k,Mη = 1, yn = nh, −Γ ≤ n ≤ Γ,
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Γh = π}, for the approximate solutions of the problem (8), we get the first order of accuracy DS in t



uk+2
n −3uk+1

n +3ukn−u
k−1
n

η3
− uk+2

n+1−u
k+1
n+1−2(uk+2

n −uk+1
n )+uk+2

n−1−u
k+1
n−1

ηh2

+8u
k+2
n −uk+1

n
η − 1

8

uk+2
−n+1−u

k+1
−n+1−2(uk+2

−n −u
k+1
−n )+uk+2

−n−1−u
k+1
−n−1

ηh2

+
uk+2
−n −u

k+1
−n

η = −(0.1)

(
−uk−M

n+1 −2uk−M
n +uk−M

n−1

h2
+ 8uk−M

n

)

−35e−2ζk cos 2yn + 1.2e−2(ζk−M) cos 2yn,

tk = kη, mM + 1 ≤ k ≤ (m+ 1)M− 2,

m = 0, 1, ..., −Γ + 1 ≤ n ≤ Γ− 1,

Mη = 1, yn = nh, −Γ + 1 ≤ n ≤ Γ− 1, Γh = π,

u0
n = cos(2nh),

u1n−u0n
η + η(−u1n+1−2u1n+u1n−1

h2
+ 8u1

n)

+η(
u0n+1−2u0n+u0n−1

h2
− 8u0

n) = −2 cos(2nh),

u2n−2u1n+u0n
η2

+ (−u2n+1−2u2n+u2n−1

h2
+ 8u2

n)

+2(
u1n+1−2u1n+u1n−1

h2
− 8u1

n)

+(−u0n+1−2u0n+u0n−1

h2
+ 8u0

n) = 4 cos(2nh), −Γ + 1 ≤ n ≤ Γ− 1,

umM+1
n −umM

n
η + η(−umM+1

n+1 −2umM+1
n +umM+1

n−1

h2
+ 8umM+1

n )

+η(
umM
n+1−2umM

n +umM
n−1

h2
− 8umM

n ) = umM
n −umM−1

n

η ,

umM+2
n −2umM+1

n +umM
n

η2
+ (−umM+2

n+1 −2umM+2
n +umM+2

n−1

h2
+ 8umM+2

n )

+2(
umM+1
n+1 −2umM+1

n +umM+1
n−1

h2
− 8umM+1

n ) + (−umM
n+1−2umM

n +umM
n−1

h2
+ 8umM

n )

= umM
n −2umM−1

n +umM−2
n

η2
, −Γ + 1 ≤ n ≤ Γ− 1, m = 1, 2, . . . ,

uk−Γ − e−2ζk = 28
h

(
uk−Γ+1 − uk−Γ

)
,

−ukΓ + e−2ζk = 28
h

(
ukΓ − ukΓ−1

)
, 0 ≤ k <∞,

mM ≤ k ≤ (m+ 1)M, m = 1, 2, . . .

(9)
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We rewrite (9) in the matrix form as in the following:

∆χk+2 + Θχk+1 + Λχk + Ωχk−1 = ϕ(χk−M),

k = 1, 2, 3, . . .

χ0 =



cos (2(−Γ)h)

cos (2(−Γ + 1)h)
...

cos (2(Γ− 1)h)

cos (2(Γ)h)


,

χ1 = LHχ0,

χ2 = Y Pχ1 + Y Qχ0,

χmM+1 = LJχmM + LWχmM−1,

χmM+2 = Y PχmM+1 + Y XχmM + Y SχmM−1

+Y ZχmM−2,

m = 1, 2, . . . ,

where ∆,Θ,Λ,Ω, F,H, J, P,Q, S, V,W,X and Z are (2Γ + 1) × (2Γ + 1) matrices, ϕ(χk−M), χ0, χ1

and χr, r = k, k ± 1, k + 2 are (2Γ + 1)× 1 column vectors defined by

∆ =



1 + 28
h −28

h 0 · 0 0 0 · 0 0 0
a b a · 0 0 0 · a∗ b∗ a∗

0 a b · 0 0 0 · b∗ a∗ 0
· · · · · · · · · · ·
0 0 0 · a 0 a∗ · 0 0 0
0 0 0 · b w1 b∗ · 0 0 0
0 0 0 · w1 w2 w1 · 0 0 0
0 0 0 · b∗ w1 b · 0 0 0
0 0 0 · a∗ 0 a · 0 0 0
· · · · · · · · · · ·
0 a∗ b∗ · 0 0 0 · b a 0
a∗ b∗ a∗ · 0 0 0 · b a
0 0 0 · 0 0 0 · 0 −28

h 1 + 28
h



,

Θ =



0 0 0 · 0 0 0 · 0 0 0
l c l · 0 0 0 · l∗ c∗ l∗

0 l c · 0 0 0 · c∗ l∗ 0
· · · · · · · · · · ·
0 0 0 · l 0 l∗ · 0 0 0
0 0 0 · c l + l∗ c∗ · 0 0 0
0 0 0 · l + l∗ c+ c∗ l + l∗ · 0 0 0
0 0 0 · c∗ l∗ + l c · 0 0 0
0 0 0 · l∗ 0 l · 0 0 0
· · · · · · · · · · ·
0 l∗ c∗ · 0 0 0 · c l 0
l∗ c∗ l∗ · 0 0 0 · l c l
0 0 0 · 0 0 0 · 0 0 0



,
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Λ =



0 0 0 0 · 0 0 0
0 d 0 0 · 0 0 0
0 0 d 0 · 0 0 0
· · · · · · · ·
0 0 0 0 · d 0 0
0 0 0 0 · 0 d 0
0 0 0 0 · 0 0 0


, Ω =



0 0 0 0 · 0 0 0
0 e 0 0 · 0 0 0
0 0 e 0 · 0 0 0
· · · · · · · ·
0 0 0 0 · e 0 0
0 0 0 0 · 0 e 0
0 0 0 0 · 0 0 0


,

W =



0 0 0 0 · 0 0 0
0 w 0 0 · 0 0 0
0 0 w 0 · 0 0 0
· · · · · · · ·
0 0 0 0 · w 0 0
0 0 0 0 · 0 w 0
0 0 0 0 · 0 0 0


, S =



0 0 0 0 · 0 0 0
0 s 0 0 · 0 0 0
0 0 s 0 · 0 0 0
· · · · · · · ·
0 0 0 0 · s 0 0
0 0 0 0 · 0 s 0
0 0 0 0 · 0 0 0


,

Z =



0 0 0 0 · 0 0 0
0 z 0 0 · 0 0 0
0 0 z 0 · 0 0 0
· · · · · · · ·
0 0 0 0 · z 0 0
0 0 0 0 · 0 z 0
0 0 0 0 · 0 0 0


, F =



1 + 28
h −28

h 0 · 0 0 0
f∗ f f∗ · 0 0 0
0 f∗ f · 0 0 0
· · · · · · ·
0 0 0 · f f∗ 0
0 0 0 · f∗ f f∗

0 0 0 · 0 −28
h 1 + 28

h


,

P =



0 0 0 · 0 0 0
p∗ p p∗ · 0 0 0
0 p∗ p · 0 0 0
· · · · · · ·
0 0 0 · p p∗ 0
0 0 0 · p∗ p p∗

0 0 0 · 0 0 0


,

V =



1 + 28
h −28

h 0 · 0 0 0
v∗ v v∗ · 0 0 0
0 v∗ v · 0 0 0
· · · · · · ·
0 0 0 · v v∗ 0
0 0 0 · v∗ v v∗
0 0 0 · 0 −28

h 1 + 28
h


, J =



0 0 0 · 0 0 0
j∗ j j∗ · 0 0 0
0 j∗ j · 0 0 0
· · · · · · ·
0 0 0 · j j∗ 0
0 0 0 · j∗ j j∗

0 0 0 · 0 0 0


,

H =



0 0 0 · 0 0 0
h∗ e∗ h∗ · 0 0 0
0 h∗ e∗ · 0 0 0
· · · · · · ·
0 0 0 · e∗ h∗ 0
0 0 0 · h∗ e∗ h∗

0 0 0 · 0 0 0


, X =



0 0 0 · 0 0 0
x∗ s∗ x∗ · 0 0 0
0 x∗ s∗ · 0 0 0
· · · · · · ·
0 0 0 · s∗ x∗ 0
0 0 0 · x∗ s∗ x∗

0 0 0 · 0 0 0


,
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Q =



0 0 0 · 0 0 0
q∗ q q∗ · 0 0 0
0 q∗ q · 0 0 0
· · · · · · ·
0 0 0 · q q∗ 0
0 0 0 · q∗ q q∗

0 0 0 · 0 0 0


, ϕ(k−M) =


ϕk−M
ϕk−M+1

...
ϕkM−1

ϕkM

 , χr =


χr0

χr−M+1
...

χrM−1

χrM

 ,

r = k, k ± 1, k + 2,
where

ϕkn = −(0.1)

(
−
uk−M
n+1 − 2uk−M

n + uk−M
n−1

h2
+ 8uk−M

n

)
− 35e−2ζk cos 2yn + 1.2e−2(ζk−M) cos 2yn,

ζk = kη, mM + 1 ≤ k ≤ (m+ 1)M− 2, m = 0, 1, ..., −Γ + 1 ≤ n ≤ Γ− 1.

Where, a = − 1
ηh2

, a∗ = − 1
8ηh2

, b = 1
η3

+ 2
ηh2

+ 8
η , b

∗ = 2
8ηh2

+ 1
η , c = − 3

η3
− 2

ηh2
− 8

η , c
∗ = −b∗, l =

−a, l∗ = −a∗, d = 3
η3
, e = − 1

η3
, w = − 1

η , s = − 2
η2

z = 1
η2
, f = 2η

h2
+ 1

η + 8η, f∗ = − η
h2
, p =

2
η2

+ 4
h2

+ 16, p∗ = − 2
h2
, v = 1

2p, v
∗ = 1

2p
∗, j = f + 1

η , j
∗ = f∗, h∗ = f∗, e∗ = f − 2, s∗ =

p∗ − 8, x∗ = −v∗, q = −1
, w1 = a+ a∗, w2 = b+ b∗, η2 − 2

h2
− 4, q∗ = x∗, L = F−1, Y = V −1.

3 Numerical analysis

Provided in Table below are the solutions obtained numerically for various values of M and Γ,
with ukn representing the solution of this DS at u(ζk, yn) numerically. The table consist of values for
M = Γ = 30, 60, 120 in ζ ∈ [0, 1], ζ ∈ [1, 2], ζ ∈ [2, 3] respectively and the errors are calculated by

mEM
M = max

mM+1≤k≤(m+1)M, −Γ≤n≤Γ
|u(ζk, yn)− ukn|.

T a b l e

Errors of DS (9)

(M,Γ) M = Γ = 30 M = Γ = 60 M = Γ = 120

ζ ∈ [0, 1] 0.1933 0.1012 0.0516

ζ ∈ [1, 2] 0.2350 0.1169 0.0583

ζ ∈ [2, 3] 0.1692 0.0780 0.0340

If M and Γ are doubled as shown in the above table, the values of the errors decrease by a factor
of approximately 1

2 for DS (9).

4 Conclusion

In this paper, the first order of accuracy DS for the numerical solution of the third order delay
PDE with IRC is considered. Numerical results are given for illustration.
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We study a source identification boundary value problem for a parabolic partial differential equation with
multi-point Neumann type boundary condition. Stability estimates for the solution of the overdetermined
mixed BVP for multi-dimensional parabolic equation were established. The first and second order of
accuracy difference schemes for the approximate solution of this problem were proposed. Stability estimates
for both difference schemes were obtained. The result of numerical illustration in test example was given.

Keywords: inverse problem, source identification, parabolic equation, difference scheme, stability, nonlocal
condition, boundary value problem, well-posedness, stability estimates, mixed problem.
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Introduction

Various techniques can be used to solve source identification problems (SIPs) for parabolic equa-
tions. These may include optimization algorithms, regularization methods, or numerical techniques
such as finite element and finite difference methods (see [1–28] a references therein).

In papers [3, 18], SIP for abstract differential equation with self-adjoint positive definite operator
A

dv(t)

dt
+Av(t) = p+ f(t), 0 < t < 1, (1)

v(0) = ϕ, v(1) = ψ (2)

in a Hilbert space H was investigated. In paper [3], for solution of SIP (1), (2), stability estimates in
the Hölder norms were obtained.

Some applications to boundary value problems (BVPs) for partial differential equation (PDE) and
approximate solutions were studied in [8, 12].

Let s1, µ1, s2, µ2, ..., sr, µr be given numbers so that

r∑
k=1

|µk| < 1, 0 ≤ s1 < s2 < . . . < sr < 1 (3)
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and elements ϕ, ψ ∈ H and function f : [0, 1] → H are given. In paper [15] SIP to find a pair (p, v)
for equation

dv(t)

dt
+Av(t) = p+ f(t), 0 < t < 1,

with multi-point nonlocal conditions

v(0) =

r∑
k=1

µkv(sk) + ψ, (4)

v(1) = ϕ (5)

was studied and stability estimates for the solution were given in the following theorem.
Theorem 1. [15] Assume that conditions (3) for interior points and coefficients are valid, ϕ ∈ H,

ψ ∈ D(A), f ∈ Cα(H) (α ∈ (0, 1)) are given. Then, for the solution (v(t), p) of SIP (1), (4), (5) the
stability estimates

‖v‖C(H) ≤M
[
‖ϕ‖H + ‖ψ‖H + ‖f‖C(H)

]
and

‖p‖H ≤M
[
‖Aϕ‖H + ‖Aψ‖H +

1

α
‖f‖Cα(H)

]
are fullfilled, where M ∈ R+ does not depend on f , ψ, ϕ and α. Here C(H), Cα(H) and Cα1 (H) are
the Banach spaces of H-valued functions u(t) with the corresponding norms

‖u‖C(H) = max
0≤t≤1

‖u(t)‖H , ‖u‖Cα(H) = ‖u‖C(H) + sup
0≤t<t+τ≤1

‖u(t+τ)‖H−‖u(t)‖H
τα ,

‖u‖Cα1 (H) = ‖u‖C(H) + sup
0≤t<t+τ≤1

(1−t)α‖u(t+τ)‖H−‖u(t)‖H
τα ,

(6)

respectively.

1 SI parabolic problem with multi-point boundary conditions

Now, we study a source identification (SI) BVP for the multi-dimensional PDE.
Let Ω = (0, 1)n ⊂ Rn with boundary S = ∂Ω, Ω = Ω ∪ S.
Denote by L2(Ω) andW 2

2 (Ω) the Hilbert spaces of integrable functions u(y), defined on Ω, equipped
with the corresponding norms

‖u‖L2(Ω) =

{ ∫
y∈Ω

|u(y)|2 dy1 . . . dyn

} 1
2

,

‖u‖W 2
2 (Ω) =

{ ∫
y∈Ω

(
|u(y)|2 +

n∑
i=1

n∑
j=1

∣∣uyiyj (y)
∣∣2) dy1 . . . dyn

} 1
2

.

Let ϕ ∈ L2(Ω), ψ ∈ W 2
2 (Ω), f ∈ Cα(L2(Ω)) be given functions, and ai : Ω → R+ be known

smooth function for any index i = 1, . . . , n.
In [0, 1] × Ω, we study multi-dimensional SIP for parabolic PDE with multi-point boundary and

nonlocal conditions 

vt(t, x)−
n∑
i=1

(ai(x)vxi(t, x))xi + σv(t, x) = f(t, x) + p(x),

x = (x1, . . . , xn) ∈ Ω, 0 < t < 1,
∂
∂−→n v(t, x) = 0, x ∈ S, 0 < t < 1,

v(0, x) =
r∑

k=1

µkv(sk, x) + ψ(x), v(1, x) = ϕ(x), x ∈ Ω,

(7)
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where −→n is the normal vector to Ω at corresponding boundary point.
The differential expression

Axu(x) = −
n∑
i=1

(ai(x)uxi(x))xi + σu(x)

defines SAPD operator Ax, which acts on the Hilbert space L2(Ω) with the domain

D(Ax) =

{
u | u ∈W 2

2 (Ω),
∂u

∂−→n
(x) = 0 on S

}
.

So, the SI BVP (7) for the multi-dimensional parabolic PDE can be replaced with the abstract problem
(1), (4), (5) for H = L2(Ω). By using stability estimates of Theorem 1, we obtain the following stability
estimates for solution of BVP (7).

Theorem 2. Suppose that conditions (3) are satisfied, ϕ,ψ ∈ W 2
2 (Ω) and f ∈ Cα(L2(Ω)). Then,

for the solution of multi-dimensional SIP for parabolic PDE (7), the following estimates are valid

‖p‖L2(Ω) ≤M
[
‖ϕ‖W 2

2 (Ω) + ‖ψ‖W 2
2 (Ω) +

1

α
‖f‖Cα(L2(Ω))

]
,

‖v‖C(L2(Ω)) ≤M
[
‖ϕ‖L2(Ω) + ‖ψ‖L2(Ω) + ‖f‖C(L2(Ω))

]
,

where positive number M is independent of f , ψ, ϕ and α.

2 First and second order of ADSs

We will use the set of uniform grid points

[0, 1]τ = {tk = kτ, k = 0, 1, . . . , N, Nτ = 1}.

To discretize problem (7) we use algorithm with two steps. Firstly, we define grid spaces

Ω̃h = {x = xm = (h1m1, . . . , hnmn); m = (m1, . . . ,mn),
mj = 0, . . . , Nj , hjNj = 1, j = 1, . . . , n} ,

Ωh = Ω̃h ∩ Ω, Sh = Ω̃h ∩ S.

Introduce difference operator Axh by formula

Axhv
h(x) = −

n∑
i=1

(
ai(x)vhxi(x)

)
xi,ji

+ σvh(x),

which acts in space of grid functions vh(x) and satisfies the condition Dvh(x) = 0 for all x ∈ Sh.
Applying Axh, we arrive at the multi-point nonlocal BVP for some infinite system of ordinary

differential equations. Secondly, by using Equation (26) [15; p. 1922], we get the first order of accuracy
difference scheme (ADS)

τ−1
(
vhk (x)− vhk−1(x)

)
+Axhv

h
k (x) = fh(tk, x) + ph(x), 1 ≤ k ≤ N, x ∈ Ω̃h,

vhN (x) = ϕh(x), vh0 (x) =

r∑
i=1

µiv
h
li

(x) + ψh(x), x ∈ Ω̃h.
(8)
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By using Equations (37)–(39) [15; p. 1925], we get the second order of ADS

τ−1
(
vhk (x)− vhk−1(x)

)
+Axh

(
I +

τAxh
2

)
vhk (x)

=

(
I +

τAxh
2

)(
fh(tk− τ

2
, x) + ph(x)

)
, 1 ≤ k ≤ N, x ∈ Ω̃h,

vhN (x) = ϕh(x), x ∈ Ω̃h,

vh0 (x) =
r∑
i=1

{
µi (1− ρi) vhli(x) + µi ρiv

h
li+1(x)

}
+ ψh(x), x ∈ Ω̃h.

(9)

Denote by L2h = L2(Ω̃h) and W 2
2h = W 2

2 (Ω̃h), the spaces of the grid functions
uh(x) = {u(h1m1, . . . , hnmn)} defined on Ω̃h, equipped with the corresponding norms

∥∥∥uh∥∥∥
L2h

=

∑
x∈Ω̃h

|uh(x)|2h1 · · ·hn

1/2

,

∥∥∥uh∥∥∥
W 2

2h

=
∥∥∥uh∥∥∥

L2h

+

∑
x∈Ω̃h

n∑
r=1

∣∣∣(uh(x))xrxr,mr

∣∣∣2 h1 · · ·hn

1/2

,

and by Cτ (L2h) = C([0, 1]τ , L2h), the Banach space of L2h-valued grid functions uτ = {uk}N1 with the
suitable norm ‖uτ‖Cτ (L2h) = max

1≤k≤N
‖uk‖L2h

.

Let Cα(L2h) = Cα([0, 1]τ , L2h) and Cατ (L2h) = Cατ ([0, 1]τ , L2h) be correspondingly Hölder and
weighted Hölder spaces with the corresponding norms defined by (6) for H = L2h.

Theorem 3. Suppose that τ and |h| =
√
h2

1 + · · ·+ h2
n are sufficiently small positive numbers,

ϕh ∈ L2h, ψh ∈ W 2
2h and

{
fhk
}N

1
∈ Cατ (L2h). Then, for the solution of difference schemes (DSs) (8)

and (9), the following stability estimates hold∥∥∥ph∥∥∥
Cτ (L2h)

≤M

[∥∥∥ϕh∥∥∥
L2h

+
∥∥∥ψh∥∥∥

W2h

+
1

α

∥∥∥∥{fhk}N1
∥∥∥∥
Cατ (L2h)

]
,

∥∥∥∥{vhk}N1
∥∥∥∥
Cτ (L2h)

≤M

[∥∥∥ϕh∥∥∥
L2h

+
∥∥∥ψh∥∥∥

L2h

+

∥∥∥∥{fhk}N1
∥∥∥∥
Cτ (L2h)

]
,

where M is independent of
{
fhk
}N

1
, ψh(x), ϕh(x) and τ .

The proof of Theorem 3 based on Theorems 3.1 and 3.2 of paper [15] on stability estimate for
solutions of corresponding DSs for approximate solution of abstract SIP (1), (4), (5) and the theorem
on the coercivity inequality for the solution of the elliptic difference problem in L2h.

3 Numerical analysis

For test example, we consider the SIP
vt(t, x)− (3 + 2 cosx)vxx (t, x) + 2 sinx·vx(t, x) + v(t, x) = f(t, x) + p(x),
0 < x < π, 0 < t < 1,
v(1, x) = ϕ (x),
v(0, x) = v(1

3 , x) + ψ(x), 0 ≤ x ≤ π,
vx(t, 0) = 0, vx(t, π) = 0, 0 ≤ t ≤ 1

(10)
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for one-dimensional parabolic PDE. Here

f(t, x) =
(
e−t − e−1

)
(3 cosx+ 2 cos 2x)− e−1 cosx, 0 < x < π, 0 < t < 1,

ϕ(x) = cosx, ψ(x) =
(

1− e−
1
3

)
cosx, 0 ≤ x ≤ π.

It is easy to check that the pair
(
e−1 (4 cosx+ 2 cos 2x) , e−t cosx

)
is the exact solution of problem (10).

An algorithm of finding the solution of problem (10) contains three stages. In the first stage, we
find the solution of auxiliary BVP

ut(t, x)− (3 + 2 cosx)uxx(t, x) + 2 sinx·ux(t, x) + u(t, x)
= (3 + 2 cosx) cosx− 2 sinx· sinx+ cosx+ f(t, x), 0 < x < π, 0 < t < 1,
u(1, x)− u(1

3 , x) = ψ(x), 0 ≤ x ≤ π,
ux(t, 0) = 0, ux(t, π) = 0, 0 ≤ t ≤ 1.

(11)

Then, in the second stage, we find p(x) by

p(x) = −(3 + 2 cosx)uxx(1, x) + 2 sinx·ux(1, x) + u(1, x).

In the third stage, we put p(x) in the right side of equation (10) and solve that problem for v(t, x).
Introduce the set of grid points

[0, 1]τ × [0, π]h = {(tk, xn) | tk = kτ, k = 1, . . . , N − 1, Nτ = 1,
xn = nh, n = 1, . . . ,M − 1, Mh = π}.

We use notation l =
[γ
τ

]
for greatest integer function of γτ and ρ = γ

τ − l.
So, we get the first order of ADS for SIP (10)

vkn−v
k−1
n

τ − (3+2 cosxn)(vkn+1−2vkn+vkn−1)
h2

+
sin (xn)(vkn+1−vkn−1)

h + vkn
= f(tk, xn) + p(xn), k = 1, . . . , N, n = 1, . . . ,M − 1,
vNn = ϕn, v

0
n − ρvln = ψn, n = 0, . . . ,M,

vk0 = vk1 , v
k
M = vkM−1, k = 0, . . . , N.

Later, p(xn) can be obtained by

p(xn) = −
(3 + 2 cos (xn))

(
uNn+1 − 2uNn + uNn−1

)
h2

+
sin (xn)

(
uNn+1 − uNn−1

)
h

+ uNn , (12)

where
{
ukn
}
is solution of the difference problem

ukn − uk−1
n

τ
−

(3 + 2 cos (xn))
(
ukn+1 − 2ukn + ukn−1

)
h2

+
sin (xn)

(
ukn+1 − ukn−1

)
h

+ ukn = f(tk, xn)− (3 + 2 cos (xn)) (ϕn+1 − 2ϕn + ϕn−1)

h2

+
sin (xn) (ϕn+1 − ϕn−1)

h
+ ϕn, k = 1, . . . , N, n = 1, . . . ,M − 1,

u0
n − uln = ψn, n = 0, . . . ,M,

uk0 − ukM = 0, ukM − ukM−1 = 0, k = 0, . . . , N,

(13)

which is the first order of ADS for approximate solution of the nonlocal BVP (11).
For computational reasons it is convenient to write (13) in the following matrix form

Anun+1 +Bnun + Cnun−1 = Iθn, n = 1, . . . ,M − 1,
u0 = u1, uM = uM−1.

(14)
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Here, θn is column vector, An, Bn, Cn, I are square matrices with (N + 1) rows and columns:

An =


0 . . . 0 0

anR

0
...
0

 , Cn =


0 . . . 0 0

cnR

0
...
0

 ,

Bn =



1 0 0 0 · · · −1 · · · 0 0 0 0
bn d 0 0 · · · 0 · · · 0 0 0 0
0 bn d 0 · · · 0 · · · 0 0 0 0
...

...
...

... · · · · · · · · ·
...

...
...

...
0 0 0 0 · · · 0 · · · 0 bn d 0
0 0 0 0 · · · 0 · · · 0 0 bn d


,

an = −(3 + 2 cos (xn))h−2 + sin (xn)h−1, d = 1
τ ,

bn = 1 + d+ 2(3 + 2 cos (xn))h−2,
cn = −(3 + 2 cos (xn))h−2 − sin (xn)h−1,

θn =

θ0
n
...
θNn

, un±1 =

 u0
n±1
...

uNn±1


(N+1)×1

, un =

 u0
n
...
uNn


(N+1)×1

.

R is the N ×N identity matrix, as well as

θ0
n = ψn, n = 1, . . . ,M − 1,

θkn = f(tk, xn)− (3+2 cos (xn))(ϕn+1−2ϕn+ϕ)
h2

+ sin (xn)(ϕn+1−ϕn−1)
h + ϕn,

k = 1, . . . , N, n = 1, . . . ,M − 1.

We search solution of (14) by reccurence formula

un = αn+1un+1 + βn+1, n = M − 1, . . . , 1,

where αn and βn (n = 1, . . . ,M − 1) are column vectors with (N + 1) elements. For the solution of
difference equation (14) we use the following formulas for αn, βn

αn = −(Bn + Cnαn−1)−1An,

βn = (Bn + Cnαn−1)−1(Rθn − Cnβn−1), n = 1, . . . ,M − 1,

where α1 is the (N + 1) × (N + 1) identity matrix and β1 is the column vector with (N + 1) zeros.
uM is computed by formula

uM = (AM +BM + CMαM )−1(IθM − CMβM ).

Second, applying appropriate approximation formulas for derivatives in the nonlocal BVP (10), we
get the second order of ADS in t and x

Mathematics Series. No. 3(115)/2024 71



C. Ashyralyyev, T.A. Ashyralyyeva



vkn−v
k−1
n

τ +
q2(vkn+1−vkn−1)

2h +
q3(vkn+1−2vkn+vkn−1)

h2

+ τq0
2

(vkn+2−3vkn+1+3vkn−vkn−1)
h3

+ τq1
2

(vkn+2−4vkn+1+6vkn−4vkn−1+vkn−2)
h4

= θkn + p(xn)− τ
2 ·

(3+2 sinxn) (p(xn+1)−2p(xn)+p(xn−1))
h2

− τ
2 ·

cos(xn)(p(xn+1)−p(xn−1))
h + τp(xn)

2 ,
k = 1, . . . N, n = 2, . . . ,M − 2,
−3vk0 + 4vk1 − vk2 = 0, − 3vkM + 4vkM−1 − vkM−2 = 0,
10vk0 − 15vk1 + 6vk2 − vk3 = 0,
10vkM − 15vkM−1 + 6vkM−2 − vkM−3 = 0, k = 0, . . . , N, n = 0, . . . ,M,

vNn = ϕn, v
0
n − (1− ρ)vln − ρvl+1

n = ψ(xn), n = 0, . . . ,M

for the approximate solution of the nonlocal BVP (10).
Later, we calculate p(xn) by using (12), where

{
ukn
}

is solution of the difference problem

ukn−u
k−1
n

τ +
q2(ukn+1−ukn−1)

2h +
q3(ukn+1−2ukn+ukn−1)

h2
+ τ

2

q0(ukn+2−2ukn+1+2ukn−1−ukn−2)
2h3

+ τ
2

q1(ukn+2−4ukn+1+6ukn−4ukn−1+ukn−2)
h4

= θkn, k = 1, . . . , N, n = 2, . . . ,M − 2,
−3uk0 + 4uk1 − uk2 = 0, − 3ukM + 4ukM−1 − ukM−2 = 0,
10uk0 − 15uk1 + 6uk2 − uk3 = 0,
10ukM − 15ukM−1 + 6ukM−2 − ukM−3 = 0, k = 0, . . . , N,
u0
n − (1− ρ)uln − ρul+1

n = ψ(xn), n = 0, . . . ,M,

(15)

which is the second order of ADS for nonlocal BVP (11).
For computational reasons it is convenient to rewrite the system (15) in the following matrix form

Anun+2 +Bnun+1 + Cnun +Dnun−1 + Enun−2 = Iθn, n = 2, . . . ,M − 2,

−3u0 + 4u1 − u2 =
−→
0 , − 3uM + 4uM−1 − uM−2 =

−→
0 ,

10u0 − 15u1 + 6u2 − u3 =
−→
0 , 10uM − 15uM−1 + 6uM−2 − uM−3 =

−→
0 ,

(16)

where θn is column vector, An, Bn, Cn, Dn, En, I are (N + 1)× (N + 1) square matrices, R is N ×N
identity matrix,

An =


0 . . . 0 0

enR

0
...
0

 , Bn =


0 . . . 0 0

ynR

0
...
0

 ,

Dn =


0 . . . 0 0

znR

0
...
0

 , En =


0 . . . 0 0

wnR

0
...
0

 ,

Cn =



1 0 0 · · · −(1− ρ) ρ · · · 0 0 0
rn d 0 · · · 0 0 · · · 0 0 0
0 rn d · · · 0 0 · · · 0 0 0
...

...
... · · · · · · · · · · · ·

...
...

...
0 0 0 · · · 0 0 · · · rn d 0
0 0 0 · · · 0 0 · · · 0 rn d


, θn =

 θ0
n
...
θNn

 ,
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en = τq0
4h3

+ τq1
2h4

, yn = q2
2h + 1

h2
q3 − τq0

2h3
− 2τq1

h4
,

rn = 1 + 1
τ + τ

2 −
2
h2
q3 + 3τq1

h4
,

zn = − q2
2h + 1

h2
q3 + τq0

h3
− 2τq1

h4
,

wn = − τq0
4h3

+ τq1
2h4

, n = 2, . . . ,M − 2.

We search solution of linear system equation (16) in the next form

un = αn+1un+1 + βn+1un+2 + γn+1, n = M − 2, . . . , 0,

uM = D−1
M ((3I − 2αM−2) γM−1 − 3γM−2) ,

uM−1 = D−1
M [(4I − αM−2) γM−1 − γM−2] ,

DM = (βM−2 + 5I)− (4I − αM−2)αM−1,

where
γ0 = γ1 =

−→
0 , α0 = 4

3I, β0 = −1
3I, α1 = 8

5I, β1 = −3
5I

γM−2 = γM−3 =
−→
0 , αM−2 = 4I, βM−2 = −3I, αM−3 = 8

5I, βM−3 = −3
5I,

and
Fn = (Cn +Dnαn−1 + Enβn−2 + Enαn−2αn−1) , n = 2, . . . ,M − 4.
αn = −F−1

n (Bn +Dnβn−1 + Enαn−2βn−1) , βn = −F−1
n An,

γn = −F−1
n (Iϕn −Dnγn−1 − Enαn−2γn−1 − Enγn−2) ,

Q11 = −3BM−2 − 8CM−2 − 8DM−2αM−3 − 3DM−2βM−3

−8EM−2αM−4αM−3 − 3EM−2αM−4βM−3 − 8EM−2βM−4,
Q12 = AM−2 + 4BM−2 + 9CM−2 + 9DM−2αM−3 + 4DM−2βM−3

+9EM−2αM−4αM−3 + 4EM−2αM−4βM−3 + 9EM−2βM−4,
Q21 = AM−1 − 3CM−1 − 8DM−1 − EM−1(8αM−3 + 3βM−3),
Q22 = BM−1 + 4CM−1 + 9DM−1 + EM−1(9αM−3 + 4βM−3),
G1 = IϕM−2 −DM−2γM−3 − EM−2αM−4γM−3 − EM−2γM−3,
G2 = IϕM−1 − EM−1γM−3,

uM = (Q11 −Q12Q
−1
22 Q21)−1(G1 −Q12Q

−1
22 G2),

uM−1 = Q−1
22 (G2 −Q21uM ).

Numerical illustration is carried out by using MATLAB program. Solutions of DSs are computed
for different values of (N,M). vkn and ukn correspond to the corresponding numerical values of v(t, x)
and u(t, x) at (t, x) = (tk, xn) and pn represents the numerical value of p(x) at point x = xn. The
errors are computed by

EvNM = max0≤k≤N

(
M−1∑
n=1

∣∣v(tk, xn)− vkn
∣∣2 h) 1

2

,

EuNM = max0≤k≤N

(
M−1∑
n=1

∣∣u(tk, xn)− ukn
∣∣2 h) 1

2

,

EpM =

(
M−1∑
n=1
|p(xn)− pn|2 h

) 1
2

.

Tables 1 and 2 illustrate the errors between the exact and approximate solutions of DSs for various
N and M, respectively. It can be seen from output results that the second order of ADS is more
accurate than the first order of ADS. The error analysis shown in Tables 1 and 2 indicate that both
DSs have correct convergence rates.
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T a b l e 1

Mesh grid absolute value of difference between exact solution and solution of first order of ADS

N=M 20 40 80 160
EvNM 0.034277 0.016674 0.008483 0.004278
EpM 0.086716 0.043925 0.022123 0.011104
EvNM 0.152320 0.075113 0.037321 0.018601

T a b l e 2

Mesh grid absolute value of difference between exact solution and solution of second order of ADS

N=M 20 40 80 160
EvNM 0.020123 0.004141 0.000920 0.000217
EpM 0.08946 0.024373 0.006796 0.001926
EvNM 0.089678 0.018803 0.004188 0.000969

Conclusion

In this work, SIP for a multi-dimensional parabolic partial differential equation with multi-point
nonlocal boundary condition was studied. Stability estimates for solution of inverse problem were
obtained. Well-posedness of three SIPs for the reverse parabolic partial differential equations was
established.
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A new method for solving the problem of controllability and optimal transient behavior of nonlinear systems
subject to boundary conditions and constraints on control values was proposed. Unlike existing methods,
this new approach is based on constructing a general solution of the integral equation for a linear controlled
system, followed by transforming the original problem into a special initial optimal control problem. We
propose a new method for studying the global asymptotic stability of dynamical systems with a cylin-
drical phase space with a countable equilibrium position based on a non-singular transformation of the
equation of motion and estimation of improper integrals along the solution of the system. Conditions for
global asymptotic stability were obtained without involving any periodic Lyapunov function, as well as the
frequency theorem. The effectiveness of the proposed method is shown with an example.
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Introduction

The first work on controllability of linear systems without constraints on control values is the
paper by R.E. Kalman [1]. In [1], minimal norm control is constructed for systems with constant
coefficients, and a rank criterion for controllability is established. Controllability of linear systems
based on l-problem methods is explored in [2]. Various issues such as minimal control vector dimension,
controllability of nonlinear systems with small parameters, and consequences of controllability for
linear systems are discussed in [3]. Positional control of linear systems based on Lyapunov functions is
examined in [4]. Geometric interpretations of controllability of linear systems are studied in [5], and
the relationship between controllability and stabilization of dynamic systems is investigated in [6].

The problem of optimal transient performance was first studied by L.S. Pontryagin and his stu-
dents [7]. Optimal fast operation under phase coordinate constraints is detailed in [8], and solutions
under uncertainty conditions are considered in [9]. Applications of the maximum principle to various
specific problems are presented in [10].

It is noteworthy that the problem of optimal fast operation is closely related to controllability.
The aforementioned works explore specific cases of the general problems of controllability and fast
operation without phase or integral constraints and without boundary condition restrictions. Cur-
rent and unresolved issues in controllability and optimal fast operation include obtaining necessary
and sufficient conditions for the solvability of general controllability and fast operation problems and
developing constructive methods for solving general problems of controllability and fast operation of
ordinary differential equations.

This paper proposes a new method for investigating controllability and optimal transient behavior
of ordinary differential equations based on the study of solvability and the construction of a general
solution of a Fredholm integral equation of the first kind with a fixed parameter.
∗Corresponding author. E-mail: korpebay.guldana1@gmail.com
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The solvability and construction of solutions of Fredholm integral equations of the first kind are
among the complex and unresolved problems in mathematics [11]. Known results on the solvability of
integral equations apply when the operator kernel is symmetric [12].

Results on solvability and construction of solutions of Fredholm integral equations of the first
kind and their applications to the qualitative theory of differential equations are presented in [12, 13].
Specific results on applying the study of Fredholm integral equations of the first kind to solving problems
of controllability and optimal control are found in [13]. A general theory of boundary value problems
for dynamic systems is provided in [12], and research on the dynamics of processes described by
integro-differential equations is detailed in [9].

The theory of controllability for nonlinear systems described by ordinary differential equations
remains a relatively underexplored area in the mathematical theory of control. It is shown that the
problem of controllability of ordinary differential equations, by constructing a general solution of a
Fredholm integral equation of the first kind with a fixed parameter, can be reduced to an initial
optimal control problem. Solutions to the problem of optimal fast operation can be derived from
solving the general controllability problem.

1 Problem Statement

Consider a controlled process described by ordinary differential equations:

ẋ = A(t)x+B(t) f(x, u, t), t ∈ I = [t0, t1], (1)

with boundary conditions
x(t0) = x0 ∈ Rn, x(t1) = x1 ∈ Rn, (2)

subject to control constraints

u(t) ∈ Λ(t) = {u(t) ∈ L2(I,Rm1)|u(t) ∈ V (t) ⊂ Rm1 almost everywhere t ∈ I}. (3)

Here, A(t), B(t) are matrices with piecewise continuous elements of sizes n×n and n×m, respec-
tively. The vector function f(x, u, t) is continuous in all variables (x, u, t) ∈ Rn×Rm1 × I, satisfying
conditions

|f(x, u, t)− f(y, u, t)| ≤ l(t)|x− y|, ∀(x, u, t), (y, u, t) ∈ Rn ×Rm1 × I, (4)

|f(x, u, t)| ≤ c0(|x|+ |u|2) + c1(t), t ∈ I, (5)

l(t) > 0, l(t) ∈ L1(I, R1), c0 = const > 0, c1(t) ≥ 0, c1(t) ∈ L2 (I, R1). (6)

From (4)–(6) it follows that differential equation (1) with initial condition x(t0) = x0, for any fixed
control u(t) ∈ L2(I,Rm1), has a unique solution. Assume Λ(t), t ∈ I is a given bounded convex closed
set in L2(I, Rm1). In particular, if A(t) ≡ 0, B(t) = In, where In, is the n× n, identity matrix, then
equation (1) takes the form ẋ = f(x, u, t).

Definition 1. The system (1)–(3) is called controllable, if there exists a control u(t) ∈ Λ(t), that
transforms the solution of differential equation (1) from initial state x0 = x(t0) at time t0 to state
x1 = x(t1) at time t1.

Along with system (1)–(3), consider the linear controllable system

ẏ = A(t)y +B(t) w(t), t ∈ I = [t0, t1], (7)

y(t0) = x0 ∈ Rn, y(t1) = x1 ∈ Rn, (8)

w(t) ∈ L2(I, Rm). (9)

78 Bulletin of the Karaganda University



Controllability and Optimal ...

The following problems are solved:
Problem 1. Find all control sets U(t) ⊂ L2(I, Rm), where each element U(t) function w(t) ∈ U(t)

transforms the solution of differential equation (7) under conditions (8), (9) from initial point x0 = y(t0)
to point x1 = y(t1).

Problem 2. Find control u(t) ∈ Λ(t), that transforms the trajectory of system (1)–(3) from initial
state x0 = x(t0) at time t0, to state x1 = x(t1) at time t1.

Problem 3. (Optimal Quick Action). Find control u(t) ∈ Λ(t) ⊂ L2(I, Rm) that moves the
trajectory of system (1)–(3) from poin x0 = x(t0) to point x1 = x(t1) in the shortest time, where t0 is
fixed and t1 is not fixed.

The problem of optimal quick action is formulated as

J(x, u, t1) =

∫ t1

t0

1 · dt = t1 − t0 → inf

subject to conditions (1)–(3).

2 Linear Controllable System

Consider solving Problem 1.
The solution of differential equation (7) takes the form

y(t) = Φ(t, t0) x0 +

∫ t

t0

Φ(t, τ)B(τ)w(τ)dτ, t ∈ I, (10)

where Φ(t, τ) = θ(t)θ−1(τ), θ(t) is the fundamental matrix of solutions of the linear homogeneous
equation ξ̇ = A(t)ξ. Note that the matrix θ(t), t ∈ I of order n × n is a solution of the matrix
equation θ̇(t) = A(t) θ(t), θ(t0) = In, where In is the identity matrix of order n × n. From (10) at
t ∈ t1, considering y(t1) = x0, we obtain

y(t1) = x1 = Φ(t1, t0)x0 +

∫ t1

t0

Φ (t1, t)B(t)w(t)dt.

Then ∫ t1

t0

Φ (t1, t)B(t)w(t)dt = x1 − Φ(t1, t0)x0.

Here, considering Φ(t1, t) = Φ(t1, t0) Φ(t0, t), Φ−1(t1, t0) = Φ(t0, t1), we have∫ t1

t0

Φ(t0, t)B(t)w(t) dt = Φ (t0, t1)x1 − x0. (11)

Let
K(t) = Φ(t0, t)B(t), a = Φ(t0, t1)x1 − x0, t ∈ I, a ∈ Rn. (12)

From (11) it follows that the control w(t) ∈ L2(I, Rm) drives the trajectory of system (7)–(9) from
any point x0 to any point x1, when u(t) satisfies the integral equation (11). The following theorem
establishes the necessary and sufficient condition for the solvability of integral equation (11) for any
vector a ∈ Rn from (12).

Theorem 1. The integral equation (11) has solutions for any vector a ∈ Rn if and only if the matrix

W (t0, t1) =

∫ t1

t0

Φ(t0, t) B(t) B∗(t) Φ∗(t0, t) dt =

∫ t1

t0

K(t) K∗(t)dt, (13)
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of order n× n is positive definite, where (*) denotes transposition.
The proof of Theorem 1 can be found in reference [1]. The following two theorems present new

results in the theory of controllability of linear systems.
Theorem 2. Suppose the matrix W (t0, t1) defined by formula (13) is positive definite. Then the

general solution of the integral equation (11) for any a ∈ Rn is given by

w(t) = v(t) + λ1(t, x0, x1) +N1(t) z(t1, v) ∈ L2(I,Rm), (14)

where v(t) ∈ L2(I, Rm) is any function. The function z(t) = z(t, v), t ∈ I is the solution of the
differential equation

ż = A(t)z +B(t) v(t), z(t0) = 0, v(t) ∈ L2(I,Rm), (15)

where

λ1(t, x0, x1) = B∗(t) Φ∗(t0, t) W
−1(t0, t1) a, N1(t) = −B∗(t) Φ∗(t0, t) W

−1(t0, t1) Φ(t0, t1), t ∈ I.
(16)

Proof. Introduce the following sets

W = {w (t) ∈ L2(I,Rm)|
∫ t1

t0

K(t) w(t) dt = a}, (17)

U = {w(t) ∈ L2(I,Rm)|w(t) = v(t)+λ1(t, x0, x1)+N1(t) z(t1, v), v(t) ∈ L2(I,Rm)−any function}.
(18)

The set W contains all solutions of the integral equation (11), when W (t0, t1) > 0. The theorem
asserts that a function w(t) ∈ L2(I, Rm) belongs toW if and only if it belongs to U . To proveW = U ,
it suffices to show U ⊂W and W ⊂ U .

Show U ⊂W . Indeed, if w(t) ∈ U , then from (18) the equality∫ t1

t0

K(t)w(t)dt =

∫ t1

t0

K(t) [v(t) + λ1(t, x0, x1) +N1(t) z(t1, v)]dt =

∫ t1

t0

K(t) v(t)dt+

+

∫ t1

t0

K(t) λ1(t, x0, x1)dt+

∫ t1

t0

K(t) N1(t)dt z(t1, v) =

=

∫ t1

t0

K(t) v(t)d+

∫ t1

t0

K(t)B∗(t)Φ∗(t0, t)dt W
−1(t0, t1) a+

+

∫ t1

t0

K(t) [−B∗(t) Φ∗(t0, t)]dt W
−1(t0, t1) Φ(t0, t1) z(t1, v).

Hence, considering that the solution of differential equation (15) has the form

z(t) = Φ(t, t0) z(t0) +

∫ t

t0

Φ(t, τ) B(τ) v(τ)dτ =

∫ t

t0

Φ(t, τ) B(τ) v(τ)dτ,

z(t1) =

∫ t1

t0

Φ(t1, t) B(τ) v(τ)dt = Φ(t1, t0)

∫ t

t0

Φ(t0, t) B(t) v(t)dt,

we get (K(t) = Φ(t0, t) B(t))∫ t1

t0

K(t) w(t)dt =

∫ t1

t0

Φ(t0, t)B(t) v(t) dt+

∫ t

t0

Φ(t0, t) B(t) B∗(t) Φ∗(t0, t)dt W
−1(t0, t1) a−
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−
∫ t

t0

Φ(t0, t) B(t) B∗(t)Φ∗(t0, t)dt W
−1(t0, t1) Φ(t0, t1) Φ(t1, t0)

∫ t1

t0

Φ(t0, t) B(t) v(t) dt =

=

∫ t1

t0

Φ(t0, t) B(t) v(t) dt+ a−
∫ t1

t0

Φ(t0, t) B(t) v(t) dt = a.

Therefore, w(t) ∈W, U ⊂W .
Show that W ⊂ U . Suppose w∗(τ) ∈W . Then from (17) it follows that∫ t1

t0

K(t) w∗(t)dt = a.

Note that in relation (14), the function v(t) ∈ L2(I, Rm) is arbitrary. In particular, we can choose
v(t) = w∗(τ), t ∈ I. Now, the function w(t) ∈ U can be expressed as.

w(t) = v(t) + λ1(t, x0, x1) +N1(t) z(t1, v) = w∗(t) +B∗(t) Φ∗(t0, t)W
−1(t0, t1)a−

−B∗(t) Φ∗(t0, t) W
−1(t0, t1) Φ(t0, t1) Φ(t1, t0)

∫ t

t0

Φ(t0, t)B(t) w∗(t)dt = w∗(t)+

+B∗(t) Φ∗(t0, t) W
−1(t0, t1) a−B∗(t) Φ∗(t0, t) W

−1(t0, t1)a = w∗(t) ∈ U.

Therefore, w∗(τ) = w(τ) ∈ U. Hence, W ⊂ U . From U ⊂W and W ⊂ U , it follows that U = W . The
theorem is proved.

From (14)–(18), it follows that all control sets, each element of which transforms the trajectory of
the system (7)–(9) from point x0 to point x1, are determined by formula (18).

Key properties of solutions to integral equation (11):
1. Function w(t) ∈ U can be represented as w(t) = w1(t)+w2(t), where w1(t) = K∗(t)W−1(t0, t1)a

is a particular solution of integral equation (11), and

w2(t) = v(t)−K∗(t)W−1(t0, t1)

∫ t1

t0

K(η) v(η) dη, t ∈ I

is a solution of the homogeneous integral equation.∫ t1

t0

K(t) w2(t)dt = 0.

Indeed, ∫ t1

t0

K(t) w1(t)dt =

∫ t1

t0

K(t) K∗(t) W−1(t0, t1) a = a,∫ t1

t0

K(t) w2(t)dt =

∫ t1

t0

K(t) v(t)dt−
∫ t1

t0

K(t) K∗(t)W−1(t0, t1)

∫ t1

t0

K(η) v(η)dη = 0.

2. Functions w1(t) ∈ L2(I, Rm), w2(t) ∈ L2(I, Rm) are orthogonal in L2, w1⊥w2. Indeed,

〈w1, w2〉L2 =

∫ t1

t0

w∗1(t) w2(t)dt = a∗W−1(t0, t1)

∫ t1

t0

K(t) v(t)dt−

−a∗W−1(t0, t1)

∫ t1

t0

K(t)K∗(t)W−1(t0, t1)

∫ t1

t0

K(η) v(η)dη = 0.

3. Function w1(t) = K∗(t)W−1(t0, t1)a, t ∈ I, is a solution of integral equation (11) with minimal
norm in L2(I, Rm). Indeed, ‖w‖2 ≥ ‖w1‖2 + ‖w2‖2, due to w1⊥w2. Hence, ‖w‖2 ≥ ‖w1‖2. If the
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function v(t) ≡ 0, t ∈ I, then the function w2(t) ≡ 0, t ∈ I. Therefore ‖w‖ = ‖w1‖, w(t) = w1(t),
t ∈ I.

4. The set of solutions of integral equation (11) is convex. Since w(t) ∈ U , U is a convex set.
Theorem 3. Let the matrix W (t0, t1) > 0. Then the solution of the differential equation (7)

corresponding to the control w(t) ∈ U is determined by the formula

y(t) = z(t1, v) + λ2(t, x0, x1) +N2(t)z(t1, v), t ∈ I, ∀v, v(t) ∈ L2(I,Rm), (19)

where

λ2(t, x0, x1) = Φ(t, t0)W (t, t1)W−1(t0, t1)x0 + Φ(t, t0)W (t0, t)W
−1(t0, t1)Φ(t0, t1)x1,

N2(t) = −Φ(t, t0)W (t0, t)W
−1(t0, t1)Φ(t0, t1), t ∈ I,

W (t0, t) =
∫ t
t0
K(τ)K∗(τ)dτ, W (t, t1) =

∫ t1
t K(τ)K∗(τ)dτ, t ∈ I.

(20)

Proof. Suppose the control is determined by formula (14). Then the function.

y(t) = Φ(t, t0) x0 +

∫ t

t0

Φ(t, τ) B(τ)[v(τ) + λ1(τ, x0, x1) +N1(τ) z(t1, v)]dτ =

=

∫ t

t0

Φ(t, τ) B(τ) v(τ) dτ + Φ(t, t0) x0 +

∫ t

t0

Φ(t, τ) B(τ) B∗(τ) Φ∗(t0, τ) dτ W−1(t0, t1),

[Φ(t1, t0)x1 − x0]−
∫ t

t0

Φ(t, τ) B(τ) B∗(τ) Φ∗(t0, τ) dτ W−1(t0, t1) Φ(t1, t0) z(t1, v).

Thus, considering that

W (t0, t) =

∫ t

t0

K(τ)K∗(τ)dτ =

∫ t

t0

Φ(t0, τ)B(τ) B∗(τ) Φ∗(t0, τ)dτ, W (t, t1) = W (t0, t1)−W (t0, t),

we obtain

y(t) = z(t, v) + [Φ(t, t0)−Φ(t, t0) W (t0, t)W
−1(t0, t1)] x0 + Φ(t, t0) W (t0, t) W

−1(t0, t1) Φ(t1, t0) x1−

−Φ(t, t0) W (t0, t) W
−1(t0, t1) Φ(t1, t0) z(t1, v) = z(t, v) + Φ(t, t0) W (t, t1) W−1(t0, t1) x0+

+Φ(t, t0) W (t0, t) W
−1(t0, t1) Φ(t0, t1)x1 − Φ(t, t0)W (t0, t)W

−1(t0, t1) Φ(t0, t1)z(t1, v) =

= z(t, v) + λ2(t, x0, x1) +N2(t)z(t1, v),

where λ2(t, x0, x1), N2(t), t ∈ I, are from (20). The theorem is proved.

3 Controllability of Nonlinear Systems

Consider the solution to problem 2.
Comparing systems (1)–(3) and (7)–(9), it is easy to see that they coincide when replacing the

function w(t) with f(x, u, t). This leads to considering the following optimization problem: minimize
the functional

J(v, u) =

∫ t1

t0

|v(t) + λ1(t, x0, x1) +N1(t)z(t1, v)− f(y(t), u(t), t)|2dt→ inf, (21)

subject to the constraints

ż = A(t)z +B(t)v(t), z(t0) = 0, t ∈ I = [t0, t1], (22)

82 Bulletin of the Karaganda University



Controllability and Optimal ...

v(t) ∈ L2(I,Rm), u(t) ∈ Λ(t) ⊂ L2(I,Rm1), (23)

where the function y(t), t ∈ I, is determined by formula (19).
Theorem 4. Suppose the matrix W (t0, t1) > 0. Then the system (1)–(3) is controllable if and only

if the value J(v∗, u∗) = 0, where the pair (v∗(t), u∗(t)) ∈ L2(I,Rm) × Λ(t) is the optimal control in
problem (21)–(23).

Proof. Necessity. Suppose the system (1)–(3) is controllable. We will show that J(v∗, u∗) = 0. From
the controllability of the system (1)–(3), it follows that there exists a solution to the differential equation
(1) the function x(t) = x(t; t0, x0, u∗), t ∈ I, such that x(t0) = x0, x(t1) = x1 for u∗ = u∗(t), t ∈ I.
Then f(x(t; t0, x0, u∗), u∗(t), t) = w∗(t) ∈ L2(I,Rm), and the system (1)–(3) can be written as
(x(t) = x(t; t0, x0, u∗)).

ẋ(t; t0, x0, u∗) = A(t)x(t; t0, x0, u∗) +B(t) w∗(t), t ∈ I = [t0, t1],

x(t0; t0, x0, u∗) = x0, x(t1; t0, x0, u∗) = x1, u∗(t) ∈ L2(I,Rm).

Let y(t) = x(t; t0, x0, u∗), t ∈ I. The function y(t), t ∈ I satisfies ẏ = A(t)y + B(t)w∗(t), y(t0) = x0,
y(t1) = x1. Therefore, the function w∗(t) ∈ L2(I,Rm) translates the trajectory y(t), t ∈ I from the
point x0 the point x1. According to Theorem 1, w∗(t) ∈ U , where w∗(t) = v∗(t) + λ1(t, x0, x1) +
N1(t)z(t1, v∗), t ∈ I. Thus,

J(v∗, u∗) =

∫ t1

t0

|v∗(t) + λ1(t, x0, x1) +N1(t)z(t1, v∗)− f(y(t), u∗(t), t)|2dt = 0.

Necessity is proved.
Sufficiency. Let the functional value J(v∗, u∗) = 0, for the pair (v∗(t), u∗(t)) ∈ L2(I,Rm) ×

Λ(t). We will demonstrate that the system (1)–(3) is controllable. Note that J(v, u) ≥ 0. Hence,
J(v∗, u∗) = 0 if and only if

v∗(t) + λ1(t, x0, x1) +N1(t) z(t1, v∗) = f(y(t, v∗), u∗(t), t), t ∈ I,

where we denote

w∗(t) = v∗(t) + λ1(t, x0, x1) +N1(t) z(t1, v∗) = f(y(t, v∗), u∗(t), t), t ∈ I,

with y(t0, v∗) = x0, y(t1, v∗) = x1. Now the system (7)–(9) can be written as

ẏ(t, v∗) = A(t)y(t, v∗) +B(t) w∗(t), y(t0) = x0, y(t1) = x1, w∗(t) ∈ L2(I,Rm).

From this, it follows that y(t, v∗) = x(t; t0, x0, u∗), x(t0) = x0, x(t1) = x1. Therefore, system (1)–(3)
is controllable. Sufficiency is proven. The theorem is proved.

Below are solutions to the optimization problem (21)–(23). It should be noted that: 1) in the opti-
mization problem (21)–(23), unlike the original boundary value problem (1)–(3), boundary conditions
are absent; 2) the optimization problem (21)–(23) is an initial problem of optimal control and can be
solved using known methods of successive approximations.

Let us introduce the following notations:

F0(q0, t) = |v + T1(t)x0 + T2(t)x1 +N1(t) z(t1, v)− f(y, u.t)|2 , (24)

where
λ1(t, x0, x1) = T1(t)x0 + T2(t)x1,

T1(t) = −B∗(t)Φ∗(t0, t)W−1(t0, t1), T2(t) = B∗(t)Φ∗(t0, t)W
−1(t0, t1) Φ∗(t0, t1),
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λ2(t, x0, x1) = C1(t)x0 + C2(t)x1,

C1(t) = Φ(t, t0)W (t, t1), W−1(t0, t1), C2(t) = Φ(t, t0)W (t0, t), W
−1(t0, t1) Φ(t0, t1),

y(t) = z(t, v) + C1(t)x0 + C2(t)x1 +N2(t) z(t1, v), t ∈ I,

q = (v, u, z, z(t1)) ∈ Rm ×Rm1 ×Rn ×Rn.

Lemma 1. Suppose matrix W (t0, t1) > 0, the function f(y, u, t) is defined and continuous with
respect to (y, u, t) ∈ Rn×Rm1 × I together with partial derivatives with respect to (y, u) ∈ Rn×Rm1 .
Then the partial derivatives are

∂ F0(q, t)

∂v
= 2[v + T1(t)x0 + T2(t)x1 +N1(t)z(t1)− f(z + C1(t) + C2(t) +N2(t)z(t1), u, t)], (25)

∂ F0(q, t)

∂u
= −2fu(y, u, t)[v + T1(t)x0 + T2(t)x1 +N1(t)z(t1)− f(y, u, t)], (26)

∂ F0(q, t)

∂z
= −2fx(y, u, t)[v + T1(t)x0 + T2(t)x1 +N1(t)z(t1)− f(y, u, t)], (27)

∂ F0(q, t)

∂z(t1)
= 2[N∗1 (t) +N∗2 (t)fx(y, u, t)][v + T1(t)x0 + T2(t)x1 +N1(t)z(t1)− f(y, u, t)]. (28)

Relations (25)–(28) are derived directly from (24) by differentiation.
Lemma 2. Suppose the conditions of Lemma 1 hold and the inequality

〈F0q(q1, t)− F0q(q2, t), q1 − q2〉 ≥ 0, ∀q1, q2 ∈ Rm+m1+2n, (29)

is satisfied, where

F0q(q, t) =
∂ F0(q, t)

∂q
= (

∂ F0

∂v
,
∂ F0

∂u
,
∂ F0

∂z
,
∂ F0

∂z(t1)
), t ∈ I.

Then the functional (21) under conditions (22), (23) is convex.
Proof. Inequality (29) is a necessary and sufficient condition for the convexity of the function

F0(q, t) with respect to q. Therefore,

F0(αq1 + (1− α)q2) ≤ αF0(q1, t) + (1− α)F0(q2, t), t ∈ I,

∀q1, q2 ∈ RN , N = m1 +m+ 2n, ∀α, α ∈ [0, 1].

Since for any v1(t), v2(t) ∈ L2(I,Rm), the value z(t, α v1 + (1− α) v2) = α z(t, v1) + (1− α) z (t, v2),
∀α, α ∈ [0, 1], t ∈ I, then

J(α v1 + (1− α) v2, α u1 + (1− α)u2) =

∫ t1

t0

F0(α v1 + (1− α) v2, α u1 + (1− α)u2),

z(t, α v1 + (1− α) v2), z(t1, αv1 + (1− α) v2))dt ≤ α
∫ t1

t0

F0(q1, t)dt+ (1− α)

∫ t1

t0

F0(q2, t)dt =

= αJ (v1, u1) + (1− α)J (v2, u2), ∀ v1, v2 ∈ L2(I,Rm), ∀u1, u2 ∈ L2(I,Rm1).

Thus, the lemma statement follows. Lemma is proved.
Definition 2. The partial derivatives (25)–(28) are said to satisfy the Lipschitz condition if∣∣∣∂ F0(q+∆q,t)

∂v − ∂ F0(q,t)
∂v

∣∣∣ ≤ L1 |∆q| ,
∣∣∣∂ F0(q+∆q,t)

∂u − ∂ F0(q,t)
∂u

∣∣∣ ≤ L2 |∆q| ,∣∣∣∂ F0(q+∆q,t)
∂z − ∂ F0(q,t)

∂z

∣∣∣ ≤ L3 |∆q| ,
∣∣∣∂ F0(q+∆q,t)

∂z(t1) − ∂ F0(q,t)
∂z(t1)

∣∣∣ ≤ L4 |∆q| ,
(30)

84 Bulletin of the Karaganda University



Controllability and Optimal ...

where Li = const > 0, i = 1, 4,∆q = (∆v, ∆u, ∆z, ∆z(t1)).
Theorem 5. Suppose the conditions of Lemma 1 and inequalities (30). Then the functional (21)

under conditions (22), (23) is continuously differentiable in the Frechet sense, and the gradient

J ′(v, u) = (J ′v(v, u), (J ′u(v, u)) ∈ L2(I,Rm)× L2(I,Rm1)

at any point (v, u) ∈ L2(I,Rm)× L2(I,Rm1) is defined by

J ′v(v, u) =
∂ F0(q(t), t)

∂v
−B∗(t)ψ(t), J ′u(v, u) =

∂ F0(q(t), t)

∂u
, (31)

where q(t) = (v(t), u(t), z(t, v), z(t1, v)), the function z(t) = z(t, v), t ∈ I is a solution of differential
equation (22), and ψ(t), t ∈ I is a solution of equation

ϕ̇ =
∂ F0(q(t), t)

∂z
−A∗(t)ψ, ψ(t1) = −

∫ t1

t0

∂ F0(q(t), t)

∂z(t1)
dt. (32)

Moreover, the gradients J ′(v, u) satisfy the Lipschitz condition

‖J ′(v1, u1)− J ′(v2, u2)‖ ≤ l1(‖v1 − v2‖2 + ‖u1 − u2‖2)
1/.2,

∀(v1, v2) ∈ L2(I,Rm), ∀(u1, u2) ∈ L2(I,Rm1).
(33)

Proof. Note that for any v(t), v(t) + h(t) ∈ L2(I,Rm), ∆z(t) = z(t, v + h) − z(t, v) satisfies the
differential equation

∆ż(t) = A(t)∆z(t) +B(t)h(t), ∆z(t0) = 0, t ∈ I,

where

∆z(t) =

∫ t

t0

Φ(t, τ) B(τ) h(τ)dτ, |∆z(t)| ≤
∫ t1

t0

‖Φ(t, τ)‖ ‖l(τ)‖ |h(τ)|dτ ≤ c1‖h‖L2 .

The increment of the functional

∆J = J(v + h, u+ ∆u)− J(v, u) =

∫ t1

t0

[h∗(τ)Fov(q(t), t) + ∆u∗(t)Fou(q(t), t)+

+z∗(t)Foz(q(t), t) + ∆z∗(t1)Foz(t1)(q(t), t)]dt+R,

where |R| ≤ c2(‖h‖2 + ‖∆u‖2), due to estimate (30),

F0v(q, t) =
∂ F0(q, t)

∂v
, F0u(q, t) =

∂ F0(q, t)

∂u
,

F0z(q, t) =
∂ F0(q, t)

∂z
, F0z(t1)(q, t) =

∂ F0(q, t)

∂z(t1)
.

The term

∆z∗(t1)

∫ t1

t0

Foz(t1)(q(t), t) = −
∫ t1

t0

∆z∗(t) ψ(t)dt−
∫ t1

t0

∆z∗(t) ψ̇(t)dt =

= −
∫ t1

t0

h∗(t) B∗(t) ψ(t)−
∫ t1

t0

∆z∗(t)Foz(q(t), t)dt.

Thus, the increment of the functional

∆J =

∫ t1

t0

{h∗(t) [Fov(q(t), t)−B∗(t) ψ(t)] + ∆u∗(t) Fou(q(t), t)}dt+R.
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From here, the first statement (31) of the theorem follows. Let’s show that estimate (33), where
ψ(t), t ∈ I is a solution of differential equation (32).

Let ξ(t) = (v(t), u(t)), t ∈ I. Then,

J ′(ξ1)− J ′(ξ2) = (Fov(q(t) + ∆q(t), t)− Fov(q(t), t)−B∗(t) ∆ψ(t),

Fou( q(t) + ∆q(t), t)− Fou(q(t), t)), ξ1 = (v1, u1), ξ2 = (v2, u2).

Therefore,
|J ′(ξ1)− J ′(ξ2)| = |Fov(q(t) + ∆q(t), t)− Fov(q(t), t)|+B∗max |∆ψ(t)|+

+|Fou( q(t) + ∆q(t), t)− Fou(q(t), t)| ≤ (L1 + L2) |∆q(t), t)|+B∗max |∆ψ(t)|,

where B∗max = sup
t0≤t≤t1

‖B∗(t)‖. Norm

‖J ′(ξ1)−J ′(ξ2)‖2 =

∫ t1

t0

|J ′(ξ1)−J ′(ξ2)|2dt ≤ 2 (L1 +L2)

∫ t1

t0

|∆q(t)|2dt+2(B∗max)2

∫ t1

t0

|∆ψ(t)|2dt ≤

≤ 2 c2
3 (L1 + L2) ‖∆ξ‖2 + 2 (B∗max)2

∫ t1

t0

|∆ψ(t)|2dt,

where ‖∆q‖ ≤ c3 ‖∆ξ‖2, ‖∆ξ‖2 = (‖h‖2 + ‖∆u‖2), ∆ξ = (h, ∆u). It can be shown that |∆ψ(t)| ≤
(L4 c3

√
t1 − t0 + L3 c3

√
t1 − t0) eA

∗
max(t1−t0)‖∆ξ‖, t ∈ I, where A∗max = sup

t0≤t≤t1
‖A∗(t)‖. Then

‖J ′(ξ1)− J ′(ξ2)‖2 ≤ l21 ‖∆ξ‖2, where

l1 = [2 c2
3 (L1 + L2)2 + 2 (B∗max)2 (t1 − t0)2(L3 + L4)2 c2

3 e
A∗

max(t1−t0)]
1/2.

Hence, estimate (33) is proven. Theorem is proved.
Theorem 6. Suppose the conditions of Theorem 5 are satisfied, and the sequences {vn} ⊂ L2(I,Rm),

{un} ⊂ Λ(t) ⊂ L2(I,Rm1) are defined by relations

vn+1 = vn − αn J ′v(vn, un), un+1 = PΛ[un − αn J ′u(vn, un)], n = 0, 1, 2, ... .
0 < ε0 ≤ αn ≤ 2

l1+2ε1
, ε1 > 0, n = 0, 1, 2, ... ,

(34)

where PΛ[·] is the projection of a point onto the set Λ. Then:
1) The numerical sequence {J(vn, un)} strictly decreases;
2) ‖vn − vn+1‖ → 0, ‖un − un+1‖ → 0 as n→ 0.

If, in addition, inequality (29), is satisfied, the set M(v0, u0) = {(v, u) ∈ L2(I,Rm) × Λ(t)|J(v, u) ≤
J(v0, u0)} is bounded, then

3) The sequences {vn}, {un} are minimizing sequences,

lim
n→∞

(vn, un) = J∗ = inf J(v, u), (v, u) ∈ X ∈ L2(I,Rm)× Λ(t);

4) The sequences {vn}, {un}, weakly converge to the set U∗, where

U∗ = {(v∗, u∗) ∈ X|J(v∗, u∗) = J∗ = inf J(v, u) = minJ (v, u), (v, u) ∈ X};

5) The rate of convergence estimate is valid:

0 ≤ J(vn, un)− J∗ ≤
m0

n
, n = 1, 2, ... , m0 = const > 0;
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6) The controllability problem (1), (2), (4) has a solution if and only if J(v∗, u∗) = J∗ = 0, in which
case x∗(t) = z(t, v∗) + λ2(t, x0, x1) +N2(t) z(t1, v∗), t ∈ I;

7) If J(v∗, u∗) > 0, это x∗(t), t ∈ I is the best approximate solution to the controllability problem
(1), (2), (4).

Proof. From the property of projection onto sets (34), we have

〈vn+1 − vn + αn J
′
v (vn, un), v − vn+1〉L2 = 0, ∀v, v ∈ L2(I,Rm) (35)

〈un+1 − un + αn J
′
u (vn, un), u− un+1〉L2 ≥ 0, ∀u, u ∈ Λ. (36)

Let θ = (v, u), θn = (vn, un), J ′(vn, un) = (J ′v(vn, un), J ′u(vn, un)). Then (35), (36) can be written
as

〈J ′(θn), θ − θn+1〉L2 ≥
1

αn
〈θn − θn−1, θ − θn−1〉, ∀θ, θ ∈ X. (37)

From the inclusion J(v, u) ∈ C1,1(X) the inequality

J(θ1)− J(θ2) ≥ 〈J ′(θ1), θ1 − θ2〉H −
l1
2
‖θ1 − θ2‖2, ∀θ1, θ2 ∈ X.

Therefore, specifically for θ1 = θn, θ
2 = θn+1, we obtain

J(θn)− J(θn−1) ≥ 〈J ′(θn), θn − θn+1〉 −
l1
2
‖θn − θn−1‖2. (38)

From (37), (38), (34), we have

J(θn)− J(θn−1) ≥ (
1

αn
− l1

2
) ‖θn − θn−1‖2 ≥ ε1 ‖θn − θn−1‖2, n = 0, 1, 2, ... (39)

From here, statements 1) and 2) of the theorem follow.
If inequality (29), is satisfied, then the functional (21) under conditions (22), (23) is convex, the

setM(v0, u0) is bounded, closed, and convex in H. Therefore, the setM(v0, u0) is weakly precompact.
The functional J(v, u) is weakly lower semicontinuous on the set M(v0, u0) and achieves its infimum,
U∗ 6= �, � empty set.

Let’s show that the sequence {ξn} = {vn, un} is minimizing. Indeed, from the convexity of
J(ξ) ∈ C1,1(M(v0, u0)), it follows that

J(ξn)− J(ξ∗) ≤ 〈J ′(ξn), ξn − ξ∗〉H ≤ ‖J ′(ξn)‖ ‖ξn − ξ∗‖ ≤ ‖J ′(ξn)‖ D, (40)

where ξ∗ = (v∗, u∗) ∈ U∗ ⊂M(v0, u0), D is diameter of M(v0, u0).
From (40), it follows that the sequence {ξn} ⊂M(ξ0) is minimizing, and ξn

weak→ ξ∗ weakly as n→∞,
where ξn

weak→ ξ∗ as n → ∞ means a special convergence of the sequence {ξn} to an element ξ∗. Thus,
statements 3) and 4) are proven.

Let an = J(ξn)− J(ξ∗). Then from (39), (40) we have

an − an−1 ≥
1

2l1
‖J ′(ξn)‖2, an ≤ D ‖J ′(ξn)‖. (41)

From (41) the rate of convergence estimate 5) follows. The theorem is proven.
Optimal Performance. Let t0 be fixed, t1 be unfixed. It is necessary to find the smallest value

t1 = t∗, for which the system (1), (2), (4) is controllable. It is necessary to find a pair (t∗, u∗(t)),
where u∗(t) ∈ Λ(t) ⊂ L2(I,Rm1).
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I. Setting t1 > t∗,. Using the algorithm outlined above, we find the control u∗t1(t), where t0, t1 are
known quantities.

Next, we choose t11 = t1
2 . We find a pair (v∗∗, u∗∗) ∈ X, t ∈ [t0, t11]. If J(v∗∗, u∗∗) = 0, for this

pair, then we choose t12 = t1
4 , t12 < t11 and solve optimization problem (41).

In case where J(v∗∗, u∗∗) > 0, optimization problem (41) is solved for 3t1
4 and so on. As a result,

the value t∗ is determined with the given accuracy ε = t1n − t∗.
II. Sequential Approximation Method. Consider the following optimization problem: minimize the

functional

J(v, u, t1) =

∫ t1

t0

|v(t)+λ1(t, x0, x1)+N1(t)z(t1, v)−f(y(t), u(t), t)|2dt =

∫ t1

t0

F0(q(t), t1, t)dt→ inf

subject to conditions (42), (43), t1 > t0. Find Frechet derivatives, J ′v(v, u, t1), J ′u(v, u, t1),

J ′t1(v, u, t1) = F0(q(t1), t1, t1) +

∫ t1

t0

∂ F0(q(t), t1, t)

∂t1
dt.

Next, we construct sequences {vn}, {un}, {t1n}, where

t1n+1 = t1n − αnJ ′t1(vn, un, t1n), n = 0, 1, 2, ...

4 Solution of the Model Problem

As an example, consider the Duffing equation with control [12].

ẍ+ x+ 2x3 = u(t), t ∈ I = [0, t1].

This equation can be represented as

ẋ1 = x2, ẋ2 = −x1 − 2x3
1 + u(t), t ∈ [0, t1] = I, (42)

where
x1(0) = 1, x2(0) = 0, x1(t1) = 0, x2(t1) = 0, (43)

u(t) ∈ Λ = {u(t) ∈ L2(I,R1)| − 2 ≤ u(t) ≤ +2 almost everywhere t ∈ I}. (44)

The system (42)–(44) is a mathematical model describing the motion of a rigid spring under the
influence of external force u(t) ∈ Λ. Consider the problem of optimal performance. For (42)–(44), the
linear controllable system takes the form

ẏ1 = y2, ẏ2 = w(t), t ∈ [0, t1] = I, u(t) ∈ Λ,

y1(0) = 1, y2(0), y1(t1) = 0, y2(t1) = 0.

For this example,

A =

(
0 1
0 0

)
, B =

(
0
1

)
, y =

(
y1

y2

)
, y(0) =

(
1
0

)
= x0, y(t1) = x1 =

(
0
0

)
.

Matrices

eAt =

(
1 t
0 1

)
, e−At =

(
1 −t
0 1

)
, θ(t) = eAt, Φ(t, τ) = eA(t−τ).
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Calculate the following vectors and matrices:

a = Φ(τ, t1)x1 − x0 =

(
−1
0

)
, W (0, t1) =

∫ t1

0
e−AtBB∗e−A

∗τdτ =

(
t31
3 − t21

2

− t21
2 t1

)
> 0,

W−1(0, t1) =

(
12
t31

6
t21

6
t21

4
t1

)
, λ1(t, x0, x1) = T1(t)x0 + T2(t)x1 =

12

t31
− 6

t21
,

N1(t) =

(
12

t31
− 6

t21
, −6t

t21
− 2

t1

)
, λ2(t, x0, x1) =

 t31+2t3−3t1t2

t31
6t2−6t t1

t31

 ,

N2(t) =

 2t3−3t2t1
t31

−t3+t1t2

t21
6t3−6t t1

t31

−3t2+2t t1
t21

 .

Then

w(t) = v(t) +
(

12t
t31
− 6

t21

)
+
(

12t
t31
− 6

t21

)
z1(t1, v)

(
−6t
t21

+ 2
t31

)
z2(t1, v),

y(t) =

(
y1(t)
y2(t)

)
, y1(t) = z1(t) +

t31+2t3−3t1t2

t31
+
(

2t3−3t2t1
t31

)
z1(t1, v) + −t3+t1t2

t21
z2(t1, v),

y2(t) = z2(t) + 6t2−6t t1
t31

+
(

6t2−3t2t1
t31

)
z1(t1, v) +

(
−3t2+2t t1

t21

)
z2(t1, v).

(45)

The optimal control problem (1) (21)–(23) for this example takes the form

J(v, u) =

∫ t1

t0

|v(t) + λ1(t, x0, x1) +N1(t)z(t1, v)− (−y1 − 2y3
1 + u(t))|2dt→ inf (46)

subject to conditions

ż1 = z2, ż2 = v(t), z1(0) = 0, z2(0) = 0, v(t) ∈ L2(I,R1), u ∈ Λ, (47)

where f(y, u, t) = −y1 − 2y3
1 + u(t), F0 = |w(t)− (−y1 − 2y3

1 + u)|2.
Partial derivatives:

∂ F0

∂v
= 2[v(t)− (−y1 − 2y3

1 + u(t)],
∂ F0

∂u
= −2[w(t)− (−y1 − 2y3

1 + u(t)],

∂ F0

∂z1
= −2(−1− 6y2

1)[w(t)− (−y1 − 2y3
1 + u],

∂ F0

∂z2
= 0,

∂ F0

∂z1(t1)
= 2[N∗1 (t) +N∗2 (t)fx(y, u, t)[w(t)− (−y1 − y3

1 + u],

where fx(y, u, t) =

(
−1− 3y2

1

0

)
, w(t), y1(t), y2(t), t ∈ I are determined by formula (45).

The Frechet derivative of the functional (46) under condition (47) is J ′(v, u) = (J ′v(v, u), J ′u(v, u)),
where J ′v(v, u) = ∂ F0

∂v −B
∗ψ(t), J ′u(v, u) = ∂ F0

∂u . The function ψ(t), t ∈ I = [0, t1] solving a differential
equation

ψ̇ =
∂ F0

∂z
−A∗ψ, ψ(t1) = −

∫ t1

0

∂ F0

∂z(t1)
dt.

Sequences {vn}, {un} are determined by the formulas:

vn+1 = vn − αnJ ′v(vn, un), un+1 = PΛ[un − αnJ ′u(vn, un)], n = 0, 1, 2, ...
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The solution of the optimization problem (44), (45) for t1 = 4 is:

v∗(t) =


−1, 0 ≤ t < 5

4 ,
+1, 5

4 ≤ t <
13
4

−1, 13
4 ≤ t < 4,

, u∗(t) =


− t2

2 + 2(1− t2

2 )3, τ ≤ t < 5
4 ,

t2

6 + 5t
2 + 57

16 + 2( t
2

2 −
5t
2 + 41

16)3, 0 ≤ t < 13
4 ,

( t
2

2 + 4t− 9) + 2(− t2

2 + 4t− 8)3, 13
4 ≤ t < 4.

−2 ≤ u∗(t) ≤ +2, t ∈ I = [0, 4],

x1∗(t) =


1− t2

2 , 0 ≤ t ≤ 5
4 ,

t2

2 −
5t
2 + 41

16 ,
5
4 ≤ t ≤

13
4 ,

− t2

2 + 4t− 8, 13
4 ≤ t ≤ 4,

x2∗(t) =


−t, 0 ≤ t ≤ 5

4 ,
t− 5t

2 ,
5
4 ≤ t ≤

13
4 ,

−t+ 4, 13
4 ≤ t ≤ 4.

The solution to the optimal performance problem for t1∗ = 2 is:

v∗(t) =

{
−1, 0 ≤ t < 1,
1, 1 ≤ t < 2,

u∗(t) =

{
− t6

4 + 3t4

2 −
7t2

2 + 2, 0 ≤ t < 1,
t6

4 − 3t5 + 15t4 − 40t3 + 121t2

2 − 50t+ 19, 1 ≤ t < 2,

−2 ≤ u∗(t) ≤ 2, t ∈ I = [0, 2].

x1∗(t) =

{
1− t2

2 , 0 ≤ t ≤ 1,
t2

2 − 2t+ 2, 1 ≤ t ≤ 2,
x2∗(t) =

{
−t, 0 ≤ t ≤ 1,
t− 2, 1 ≤ t ≤ 2.

5 Conclusion

A new method for solving the controllability problem of nonlinear systems described by ordinary
differential equations has been developed. The scientific novelty of the obtained results lies in the
following:

– all sets of controls for linear systems have been found, each element of which transforms the
system trajectory from any initial state to any desired final state (Theorem 2);

– a general solution to the linear controllable system corresponding to the control from the selected
set of all controls has been constructed (Theorem 3);

– necessary and sufficient conditions for the controllability of nonlinear systems have been derived
(Theorem 4);

– the controllability problem has been reduced to solving the initial optimal control problem for
nonlinear control systems (Lemmas 1, 2);

– the gradient of the functional has been found, minimizing sequences have been constructed, and
their convergence has been studied (Theorems 5, 6);

– an algorithm for solving the problem of optimal speed was formulated;
– theoretical research results have been demonstrated using an example by solving the nonlinear

Duffing equation control problem.
This completes the summary and conclusions of the paper regarding the methods and results

obtained for solving the optimal speed control problem for nonlinear systems.
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The theory of m-convex (m− cv) functions is a new direction in the real geometry. In this work, by using
the connection m− cv functions with strongly m-subharmonic (shm) functions and using well-known and
rich properties of shm functions, we show a number of important properties of the class of m−cv functions,
in particular, we study Hessians Hk(u), k = 1, 2, ..., n−m+ 1, in the class of bounded m− cv functions.

Keywords: Convex function, m-convex function, Strongly m-subharmonic function, Borel measures, Hes-
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Introduction

It is well known that m-convex functions are a real analogue in Rn strongly m-subharmonic (shm)
functions in the complex space Cn. Let us recall the definition of the class shm of functions, which at
this time has become the subject of research by many authors (Z. B locki [1], S. Dinew and S. Kolodziej
[2–4], S. Li [5], H.C. Lu [6, 7], H.C. Lu and V.D. Nguyen [8], A. Sadullaev and his students [9–11],
etc.).

A twice differentiable function u(z) ∈ C2(D), D ⊂ Cn, is said to be strongly m-subharmonic, if at
each point of the domain D it holds inequalities

(ddcu)k ∧ βn−k ≥ 0, k = 1, 2, ..., n−m+ 1,

where β = ddc‖z‖2 is the standard volume form in Cn.
It’s clear that psh = sh1 ⊂ sh2 ⊂ ... ⊂ shn = sh. Operators (ddcu)k ∧ βn−k are closely re-

lated to the Hessians. For a twice differentiable function u ∈ C2(D), the second-order differential
ddcu = i

2

∑
j,t

∂2u
∂zj∂z̄t

dzj ∧ dz̄t (at a fixed point o ∈ D) is a Hermitian quadratic form. After a suitable uni-

tary coordinate transform, it is reduced to the diagonal form ddcu = i
2 [λ1dz1 ∧ dz̄1 + ...+ λndzn ∧ dz̄n],

where λ1, ..., λn are the eigenvalues of the Hermitian matrix
(

∂2u
∂zj∂z̄t

)
, which are real: λ = (λ1, ..., λn) ∈ Rn.

Note that the unitary transformation does not change the differential form. β = ddc‖z‖2. Therefore,
it is not difficult to see that

(ddcu)k ∧ βn−k = k!(n− k)!Hk
o (u)βn,

where Hk
o (u) =

∑
1≤j1<...<jk≤n

λj1 ...λjk is the Hessian of dimension k of the vector λ = λ(u) ∈ Rn.

∗Corresponding author. E-mail: sharipovr80@mail.ru; r.sharipov@urdu.uz
This research was funded by scientific research grant of the Ministry of Higher Education, Science and Innovation of

the Republic of Uzbekistan (No. IL-5421101746).
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Consequently, the twice differentiable function u(z) ∈ C2(D), D ⊂ Cn, is stronglym-subharmonic,
if at each point o ∈ D the next inequalities hold

Hk(u) = Hk
o (u) ≥ 0, k = 1, 2, ..., n−m+ 1. (1)

The following theorem is important
Theorem 1. (see [1]). For any twice differentiable shm ∩ C2(D) functions v1, ..., vk ∈ shm(D) ∩

C2(D), 1 ≤ k ≤ n−m+ 1, the relation

ddcv1 ∧ ... ∧ ddcvk ∧ βm−1 ≥ 0

is valid. In particular, for u ∈ shm(D) ∩ C2(D) and for any v1, ..., vn−m ∈ shm(D) ∩ C2(D) it holds

ddcu ∧ ddcv1 ∧ ... ∧ ddcvn−m ∧ βm−1 ≥ 0. (2)

The last property has dual character: if a twice differentiable function u, it satisfies (2) for all
v1, ..., vn−m ∈ shm(D) ∩ C2(D), then the function u is certainly shm function. Moreover, the class of
second-order polynomials of the form is sufficient here (see [1, 2])

vj =
n∑
k=1

cj,k |zk|2 ∈ shm (Cn) , cj,k ∈ R is const. (3)

Theorem 1 allows us to define shm functions in the class L1
loc.

Definition 1. A function u ∈ L1
loc(D) is called shm in the domain D ⊂ Cn, if it is upper semi-

continuous and for any twice differentiable shm functions v1, ..., vn−m of the form (3), the current
ddcu ∧ ddcv1 ∧ ... ∧ ddcvn−m ∧ βm−1 defined as[

ddcu ∧ ddcv1 ∧ ... ∧ ddcvn−m ∧ βm−1
]

(ω) =

=

∫
uddcv1 ∧ ... ∧ ddcvn−m ∧ βm−1 ∧ ddcω, ω ∈ F 0,0

is positive,
∫
u ddcv1 ∧ ... ∧ ddcvn−m ∧ βm−1 ∧ ddcω ≥ 0, ∀ω ∈ F 0,0, ω ≥ 0.

1 m-convex functions and associated measures

In this section, similarly to (1), we define Hessians Hk(u), k = 1, 2, ..., n −m + 1, in the class of
bounded m-convex functions as Borel measures. This method of defining Hk(u) as a measure belongs
to A. Sadullaev.

Let D ⊂ Rn and u(x) ∈ C2(D). Then matrix
(

∂2u
∂xj∂xt

)
is orthogonal, ∂2u

∂xj∂xt
= ∂2u

∂xt∂xj
. Therefore,

after a suitable orthonormal transformation, it is transformed into a diagonal form,

(
∂2u

∂xj∂xt

)
→


λ1 0 ... 0
0 λ2 ... 0
... ... ... ...
0 0 ... λn

 ,

where λj = λj(x) ∈ R are the eigenvalues of the matrix
(

∂2u
∂xj∂xt

)
. Let

Hk(u) = Hk (λ) =
∑

1≤j1<...<jk≤n
λj1 ...λjk

be Hessian of the dimension k of the vector λ = (λ1, λ2, ..., λn).
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Definition 2. A twice differentiable function u ∈ C2(D) is called m-convex in D ⊂ Rn,
u ∈ m− cv(D), if its eigenvalue vector λ = λ(x) = (λ1(x), λ2(x), ..., λn(x)) satisfies the conditions

m− cv ∩ C2(D) =
{
Hk(u) = Hk(λ(x)) ≥ 0, ∀x ∈ D, k = 1, ..., n−m+ 1

}
.

Potential theory of m − cv functions is poorly-studied and is a new direction in the theory of
real geometry. However, when m = 1, this class 1 − cv ∩ C2(D) = {H1(λ) ≥ 0} = {λ1 ≥ 0, λ2 ≥
0, ..., λn ≥ 0} coincides with the convex functions in Rn, and when m = n, the class n− cv ∩C2(D) =
{λ1 +λ2 + ...+λn ≥ 0} coincides with the class of subharmonic functions in Rn, cv = 1−cv ⊂ 2−cv ⊂
... ⊂ n− cv = sh. The class of convex functions is well studied A. Aleksandrov [12], I. Bakelman [13],
A. Pogorelov [14], A. Artykbaev [15] and others. When m > 1 this class has been studied in a series
of works N. Trudinger, H. Wang, N. Ivochkina and other mathematicians (see [16–22].

Principal difficulties in the theory of m − cv are the introduction of the class m − cv ∩ L1
loc, i.e.

definition m− cv(D) of functions in the class of upper semicontinuous, locally integrable or bounded
functions and the definition of HessiansHk(u), u ∈ m−cv∩L1

loc. So form = n (the case of subharmonic
functions) in the class of upper semicontinuous, locally integrable functions u(x) ∈ n−cv(D) are defined
as a distribution and the Laplace operator ∆u = ddcu ∧ βn−1 is a Borel measure.

To define operators (ddcu)k ∧ βn−k ≥ 0, k = 1, 2, ..., n−m+ 1 for the function u(z) ∈ shm(D) in
a domain D ⊂ Cn the function u(z) must be locally bounded, i.e. u(z) ∈ L∞loc(D). In this case, the
operators (ddcu)k ∧ βn−k ≥ 0, k = 1, 2, ..., n−m+ 1 are also positive Borel measures (see [10]).

In this work, by using the connection of m− cv functions with strongly m-subharmonic functions
and using well-known and rich properties shm of functions, we show a number of important properties
of the class of m − cv functions, in particular, of the Hessians Hk(u), k = 1, 2, ..., n −m + 1, in the
class of bounded m− cv functions.

We embed Rnx into Cn, by Rnx ⊂ Cnz = Rnx + iRny (z = x+ iy), as a real n−dimensional subspace of
the complex space Cn.

Proposition 1. (see [23]). A twice differentiable function u(x) ∈ C2(D), D ⊂ Rnx, is m− cv in D,
if and only if a function uc(z) = uc(x + iy) = u(x) that does not depend on variables y ∈ Rny , is shm
in the domain D × Rny .

Proof. We establish a connection between the Hessians Hk(u) and Hk(uc). We have,

∂uc

∂zj
=

1

2

[
∂uc

∂xj
− ∂uc

∂yj

]
=

1

2

∂uc

∂xj
;

∂2uc

∂zj∂z̄t
=

1

2

∂

∂z̄t

[
∂uc

∂xj

]
=

1

4

[
∂2uc

∂xj∂xt
+

∂2uc

∂xj∂yt

]
=

1

4

∂2uc

∂xj∂xt
.

Thus,
(

∂2uc

∂zj∂z̄t

)
= 1

4

(
∂2u

∂xj∂xt

)
and therefore, Hk(u) = 4kHk(uc), that is the proof of the proposition.

Let now u(x) be an upper semicontinuous function in the domain D ⊂ Rnx. Then uc(z) also will be
upper semicontinuous function in the domain D × Rny ⊂ Cnz .

Definition 3. An upper semicontinuous function u (x) in a domain D ⊂ Rnx is called m-convex in
D, if the corresponding function uc(z) is strongly m-subharmonic, uc(z) ∈ shm

(
D × Rny

)
.

Let u(x) be a locally bounded m-convex function in the domain D ⊂ Rnx. Then uc(z) will be
also locally bounded, strongly m-subharmonic function in the domain D × Rny ⊂ Cnz . Therefore, the
operators

(ddcuc)k ∧ βn−k, k = 1, 2, ..., n−m+ 1

are defined as Borel measures in the domain D × Rny ⊂ Cnz , µk = (ddcuc)k ∧ βn−k.
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Since for a twice differentiable function (ddcuc)k ∧βn−k = k!(n−k)!Hk(uc)βn, then for a bounded,
strongly m-subharmonic function in the domain D×Rny ⊂ Cnz , it is natural to determine its Hessians,
equating them to the measure

Hk (uc) =
µk

k!(n− k)!
=

1

k!(n− k)!
(ddcuc)k ∧ βn−k.

We can now define Hessians Hk, k = 1, 2, ..., n−m+ 1 in the class of locally bounded, m-convex
domain D ⊂ Rnx functions.

Definition 4. Let a function u(x) be locally bounded and m-convex in the domain D ⊂ Rnx. Let us
define Borel measures in the domain D × Rny ⊂ Cnz ,

µk = (ddcuc)k ∧ βn−k, k = 1, 2, ..., n−m+ 1.

Since uc ∈ shm(D × Rny ) does not depend on y ∈ Rny , then for any Borel sets Ex ⊂ D, Ey ⊂ Rny ,
the measures 4k

mesEy
µk(Ex×Ey) do not depend on the set Ey ⊂ Rny , i.e. 4k

mesEy
µk (Ex × Ey) = νk(Ex).

The Borel measures

νk : νk (Ex) =
4k

mesEy
µk (Ex × Ey) , k = 1, 2, ..., n−m+ 1,

we call by HessiansHk, k = 1, 2, ..., n−m+1, for a locally bounded,m-convex function u(x) ∈ m− cv(D)
in the domain D ⊂ Rnx.

For twice differentiable function u(x) ∈ m − cv(D) ∩ C2(D) the Hessians are ordinary functions,
however, for a non-twice differentiable, bounded semicontinuous function u(x) ∈ m− cv(D)∩L∞(D),
the Hessians Hk, k = 1, 2, ..., n−m+ 1 are positive Borel measures.

Using Theorem 1 and Preposition 1 (see also Definition 3) m− cv functions are defined as

Definition 5. A function u(x) ∈ L1
loc(D) is called m-convex function in the domain D ⊂ Rnx,

u(x) ∈ m− cv(D), if it is upper semicontinuous and for any twice differentiable m− cv(D) functions
v1, ..., vn−m, the current ddcuc ∧ ddcvc1 ∧ ... ∧ ddcvcn−m ∧ βm−1 defined as[

ddcuc ∧ ddcvc1 ∧ ... ∧ ddcvcn−m ∧ βm−1
]

(ω) =

=

∫
ucddcvc1 ∧ ... ∧ ddcvcn−m ∧ βm−1 ∧ ddcω, ω ∈ F 0,0

(
D × Rny

)
is positive.

2 General definitions of m-convex functions

In various works (see, for example, [18, 19]) m-convex functions in the class of bounded upper
semicontinuous m − cv(D) functions define using the “viscosity” definition: an upper semicontinuous
function u(x) is called m− cv(D), u(x) ∈ m− cv(D), if any quadratic polynomial q(x) for which the
difference u(x) − q(x) achieves a local maximum only at a finite number of points x1, ..., xq ∈ D, is
m− cv(D), q(x) ∈ m− cv(D).

The following important proposition belongs to Trudinger-Wang [19]

Lemma 1. A semicontinuous function u(x) is in m− cv(D), if for each domain G ⊂⊂ D and each
function v(x) ∈ C2(D) : Hm(v) ≤ 0 from u|∂G ≤ v|∂G ⇒ uG ≤ v|G.

Lemma 2. A semicontinuous function u(x) is in m− cv(D), if and only if for any domain G ⊂⊂ D
there exists uj(x) ∈ C2(G) ∩m− cv(G) : uj(x) ↓ u(x).
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Lemma 3. If m < n
2 + 1, then m− cv(D) ⊂ C0,γ = Lipγ , where γ = 2− n

n−m+1 , 0 < γ ≤ 1.

Corollary 1. If m < n
2 + 1, then u(x) ∈ m− cv(D) continuous.

For our purpose, it is convenient to use the Trudenger-Wang’s definition based on Lemma 2:

Definition 6. An upper semicontinuous function u(x) is called m-convex m − cv(D), if for any
domain G ⊂⊂ D there exists a sequence of functions uj(x) ∈ C2(G) ∩m− cv(G) : uj(x) ↓ u(x).

In fact, the two main ones, Definition 3 and Definition 6, are equivalent.

Theorem 2. A function u(x) is m− cv(D) in the sense of Definition 3, if and only if it is m− cv(D)
in the sense of Definition 6.

Proof. Let the function u(x) have a monotonically decreasing sequence of functions uj(x) ∈ m −
cv(G) : uj(x) ↓ u(x). Let us put Rnx in Cnz , Rnx ⊂ Cnz = Rnx + iRny (z = x + iy), and construct
a monotonically decreasing sequence ucj(z) = uj(x) ∈ shm

(
G× Rny

)
. Then lim

j→∞
ucj(z) = uc(z) ∈

shm
(
G× Rny

)
and u(x) = uc(x) is m− cv(G).

On the other side, let the function u(x) be such that uc(z) = u(x) ∈ shm
(
D × Rny

)
. Let us

construct a standard approximation ucj(z) = uc ◦K 1
j
(w − z), j = 1, 2, .... (see [10]). For any compact

domain G ⊂⊂ D, starting from a certain number j ≥ j0, they are defined, infinitely smooth functions
ucj(z) ∈ shm(G) : ucj(z) ↓ uc(z). Moreover, it is easy to see that ucj(z) do not depend on y ∈ Rny .
Therefore, ucj(x) = uj(x) ↓ u(x), uj(x) ∈ m− cv(G) ∩ C∞(G).

3 Example (fundamental solution)

χm(x, 0) =


|x|2−

n
n−m+1 if m < n

2 + 1,

ln |x| if m = n
2 + 1,

−|x|2−
n

n−m+1 if m > n
2 + 1.

Thus, when m < n
2 + 1, the fundamental solution is bounded and Lipschitz, when m ≥ n

2 + 1, it
is equal −∞ at the point x = 0. Note that at m = n, i.e. for the subharmonic case it coincides with
fundamental solution of the Laplass operator ∆.

4 Weakly convergence of m-convex functions

We will continue our study of Borel measures{
Hk(u) ≥ 0, ∀x ∈ D, k = 1, 2, ..., n−m+ 1

}
in the class u(x) ∈ m− cv(D) ∩ L∞loc(D).

Theorem 3. If u(x) ∈ m− cv(D)∩L∞loc(D) and uj(x) ∈ m− cv(D) are sequences of monotonically
decreasing functions, converging to u(x), uj(x) ↓ u(x), then there is weakly convergence of measures
Hk(uj) 7→ Hk(u), k = 1, 2, ..., n−m+ 1.

Proof. Let us continue the functions u(x), uj(x) from D ⊂ Rnx to D×Rny , as shm− functions uc(z),
ucj(z) ∈ shm

(
D × Rny

)
. Then uc(z) ∈ shm

(
D × Rny

)
∩ L∞loc

(
D × Rny

)
and ucj(z) ↓ uc(z). According to

Theorem Sadullaev-Abdullaev (see. [10]), Borel measures

Hk(ucj) =
µk

k!(n− k)!
=

1

k!(n− k)!

(
ddcucj

)k ∧ βn−k
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weakly converges: Hk(ucj) 7→ Hk(uc), k = 1, 2, ..., n − m + 1. This implies weakly convergence
Hk(uj) 7→ Hk(u), k = 1, 2, ..., n−m+ 1.

As is known, if {uα(z)} ⊂ shm
(
D × Rny

)
, D × Rny ⊂ Cn, a family of uniformly bounded, strongly

m-subharmonic functions, then for any compact set K ⊂⊂ D there exists a constant C(K), such that
the integral averages ∫

K

(ddcuα)k ∧ βn−k ≤ C (K) , k = 1, 2, ..., n−m+ 1

(see. [10]). From this it follows that the Hessians

Hk(uα) =
1

k!(n− k)!
(ddcuα)k ∧ βn−k,

which are Borel measures, are uniformly bounded on average on compact subsets of the domain D.
This fact, discovered by Chern-Levine-Nirenberg [24] for a class of psh functions, then it played a main
role in the construction of the theory of potential in the class psh and shm functions.

Here we will prove a similar fact for HessiansHk(u), k = 1, 2, ..., n−m+1, in the class ofm−cv(D),
D ⊂ Rn, functions. At the same time, we note that, if in a class shm

(
D × Rny

)
, D×Rny ⊂ Cn, the proof

is based on differential forms and Stokes’ Theorem, then for the estimate Hk(u), k = 1, 2, ..., n−m+1,
in the class of m− cv(D), D ⊂ Rn, we do not have this technique.

Theorem 4. If {uα(x)} ⊂ m− cv(D), D ⊂ Rnx, is a family of locally uniformly bounded m-convex
functions, then the family of measures

{
Hk(uα)

}
, k = 1, 2, ..., n −m + 1, in Hessians are uniformly

bounded on average on compact subsets of the domain D. In other words, for any compact set K ⊂⊂ D
there is a constant C(K) that is upper bound for integral averages∫

K

Hk(uα) ≤ C(K), k = 1, 2, ..., n−m+ 1.

Proof. Let us use Proposition 1 and Definition 3. We put Rnx in Cn, Rnx ⊂ Cnz = Rnx + iRny
(z = x+ iy), as a real n−dimensional subspace of a complex space Cn and construct a family of locally
uniformly bounded functions. {ucα(z)} ⊂ shm

(
D × Rny

)
. For this family Borel measures

{
Hk(ucα)

}
,

k = 1, 2, ..., n −m + 1 is uniformly bounded on average on compact subsets of the domain. D × Rny .
From the definition of measures

{
Hk(uα)

}
in Hessians it follows that the family of measures

{
Hk(uα)

}
,

k = 1, 2, ..., n−m+ 1 is uniformly bounded on average on compact subsets of the domain D.
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Synthesis of uniformly distributed optimal control with nonlinear
optimization of oscillatory processes
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In the article the problem of synthesizing uniformly distributed optimal control for nonlinear optimization
of oscillatory processes described by integro-differential partial differential equations with the Volterra
integral operator was explored. The study was conducted according to the Bellman-Egorov scheme and an
algorithm for constructing a uniformly distributed optimal control in the form of a functional from the state
of the controlled process was developed. Sufficient conditions for the solvability of the synthesis problem
in nonlinear optimization were established.

Keywords: generalized solution, Volterra operator, nonlinear optimization, Bellman functional, Frechet
differential, Bellman type equations, synthesis of optimal control.

2020 Mathematics Subject Classification: 49K20.

Introduction

With the advent of studies [1–7], methods of the theory of optimal control with distributed param-
eter systems began to penetrate into various fields of science and attract the attention of researchers.

However, despite the large flow of research, methods for solving optimal control problems with
processes described by integrodifferential partial differential equations [8] have not been sufficiently
developed. In particular, the development of methods for solving the synthesis problem is one of the
most pressing problems. Research is continuing in this direction, and several papers have been pub-
lished [9–13]. This article examines the solvability of the problem of synthesis of uniformly distributed
optimal control, with nonlinear optimization of oscillatory processes described by integro-differential
partial differential equations with the Volterra integral operator. Building on the methodology out-
lined in [10], we developed synthesis problem-solving method based on the Bellman-Egorov scheme.
A Bellman type equation is obtained, which is a non-linear integro-differential equation of a nonstan-
dard form. The structure of its solution is found, which makes it possible to transform Bellman-type
equations into a system of two equations, one of which is solved independently of the second. This
circumstance significantly simplifies the procedure for constructing a synthesizing control.

The issues of constructing a generalized solution to the boundary value problem of a controlled pro-
cess with an integral Volterra operator are described in detail and sufficient conditions for unambiguity
of the solvability of the synthesis problem are established.

1 A generalized solution to the boundary value problem of a controlled process

Let’s consider an oscillatory process described by the function V (t, x), which in the domain
QT = Q× (0, T ) satisfies the integro-differential equation
∗Corresponding author. E-mail: akl7@rambler.ru
Received: 15 December 2023; Accepted: 31 May 2024.
c© 2024 The Authors. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
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Vtt −AV = λ

∫ t

0
K(t, τ)V (τ, x)dτ + g(t, x)f [u(t)], (t, x) ∈ QT , (1)

along with initial conditions at the boundary of the domain QT

V (0, x) = ψ(x), Vt(0, x) = ψ2(x), x ∈ Q ⊂ Rn, (2)

and a boundary condition

ΓV (t, x) ≡
n∑

i,k=1

aik(x)Vxk(t, x) cos (σ, xi) + a(x)V (t, x) = 0, (t, x) ∈ γT = γ × (0, T ), (3)

where A is an elliptic operator, Q is a domain in Euclidean space Rnc with a piecewise-smooth boundary
γ, σ is the normal vector coming from the point xεγ; λ is a parameter; K(t, τ) is a function defined in
the domain {0 ≤ t, τ ≤ T} and satisfies the condition∫ T

0

∫ T

0
K2(t, τ)dτdt = K0 <∞.

The functions ψ1(x) ∈ H1(Q), ψ2(x) ∈ H(Q), g(t, x) ∈ H (QT ) , aik(x), a(x) are considered
known; the external source function f [u(t)] ∈ H(0, T ) is nonlinear and monotonic with respect to the
functional variable u(t), t ∈ [0, T ]; u(t) ∈ H(0, T ) is the control function; H(Y)−Y denotes a Hilbert
space of square-integrable functions defined on the set Y; H1(Q) is the first-order Sobolev space; T is
a fixed point in time.

In the context of the problem under consideration, the given functions may be discontinuous, and
the existence of a classical solution to the boundary value problem is unlikely. In this regard, following
the methodology of reference [9], we will use the following definition of a generalized solution.

Definition 1. A generalized solution of the boundary value problem (1)–(3) is a function
V (t, x) ∈ H1 (QT ) that satisfies the integral identity

∫
Q

(Vt(t, x)Φ(t, x))t2t1 dx =

∫ t2

t1

{[∫
Q
Vt(t, x)Φt(t, x) −

−
∞∑

i,k=1

aik(x)Vxk(t, x)Φxi(t, x)− c(x)V (t, x)Φ(t, x)+

+

(
λ

∫ t

0
K(t, τ)V (τ, x)dτ + g(t, x)f [u(t)]

)
Φ(t, x)

)]
dx−

−
∫
γ
a(x)V (T, x)Φ(t, x)

}
dt (4)

for all t (0 ≤ t ≤ t2 ≤ T ) and for any function Φ(t, x) ∈ H1 (QT ), as well as the initial condition (2) in
the weak sense, i.e., as t1 → 0∫

Q
[(V (t, x)− ψ1(x))] Φ0(x)dx = 0,

∫
Q

[Vt(t, x)− ψ2(x)] Φ1(x)dx = 0
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for any functions Φ0(x) ∈ H(Q) and Φ1(x) ∈ H(Q).
We seek the generalized solution of the boundary value problem (1)–(3) in the form

V (t, x) =
∞∑
n=1

Vn(t)zn(x), Vn(t) =

∫ ·
Q
V (t, x)zn(x)dx, (5)

where zn(x) is a generalized eigenfunction of the boundary value problem of the form [9]

Dn [V (t, x), zj(x)] ≡

≡
∫
Q

 n∑
i,k=1

aik(x)Vxk(t, x)zjxi(x) + c(x)V (t, x)zj(x)

 dx+

+

∫
γ
a(x)V (t, x)zj(x)dx = λ2

j

∫
Q
V (t, x)zj(x)dx,

Γzj(x) = 0, j = 1, 2, 3, . . .

and the corresponding eigenvalues satisfy the properties

λj ≤ λj+1 ≤ · · · and lim
j→∞

λj =∞

and the functions zn(x), n = 1, 2, 3, . . ., form a complete orthonormal system of generalized eigenfunc-
tions of the boundary value problem (6) in a closed domain Q̄ = Q ∪ γ.

According to the methodology of [9], it can be shown that the Fourier coefficients Vn(t) are deter-
mined as the solution of the Cauchy problem

V ′′n (t) + λ2
nVn(t) = λ

∫ t

0
K(t, τ)Vn(τ)dτ + gn(t)f [u(t)],∀t ∈ [t1, t2] ,

Vn (t1) =

∫
Q
V (t1, x) zn(x)dx, V ′n (t1) =

∫
Q
Vt (t1, x) zn(x)dx,

gn(t) =

∫
Q
g(t, x)zn(x)dx, n = 1, 2, 3, . . . ,

which is obtained from the integral identity (4) with Φ(t, x) ≡ zn(x).
We find the solution of this problem using the formula

Vn(t) =

∫
Q
V (t1, x) zn(x)dx cosλnt+

1

λn

∫
Q
Vt (t1, x) zn(x)dx sinλnt+

+
1

λn

∫ t

t1

sinλn(t− τ)

[
λ

∫ τ

0
K(τ, y)Vn(y)dy + gn(τ)f [u(τ)]

]
dτ

which as t1 → 0 becomes

Vn(t) = ψ1n cosλnt+
1

λn
ψ2n sinλnt+

1

λn

∫ t

0
sinλn(t− τ)

[
λ

∫ t

0
K(τ, y)Vn(y)dy + qn(τ)f [u(τ)]

]
dτ,

where
ψ1n = lim

t1→0

∫
Q
V (t1, x) zn(x)dx, ψ2n = lim

t1→0

∫
Q
Vt (t1, x) zn(x)dx.

Using the Liouville approach, this solution can be represented as a linear integral equation of the
Volterra 2nd kind of the following form:
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Vn(t) = λ

∫ t

0
Kn(t, y)Vn(y)dy + qn(t), n = 1, 2, . . . , (6)

where

Kn(t, y) =

∫ t

y

1

λn
sinλn(t− τ)K(τ, y)dτ, (7)

qn(t) = ψ1n cosλnt+
1

λn
ψ2n sinλnt+

∫ t

0

1

λn
sinλn(t− τ)gn(τ)f [u(τ)]dτ.

The solution of equation (6) is found using the formula [14]

Vn(t) = λ

∫ t

0
Rn(t, y, λ)qn(y)dy + qn(t), (8)

where the resolvent Rn(t, y, λ) is the sum of the Neumann series, i.e.,

Rn(t, y, λ) =

∞∑
i=1

λi−1Kn,i(t, y),

Kn,i+1(t, y) =

∫ t

y
Kn(t, τ)Kn,i(τ, y)dτ, i = 1, 2, 3, . . . .

By direct calculations, we establish the estimates

|Kn,i(t, y)| ≤ Ki
0T

i−1

λin
· (t− y)i

i!
, i = 1, 2, 3 . . .

which imply the ratio

|Rn(t, y, λ)| ≤
∞∑
i=1

|λ|i−1 |Kn,i(t, y)| ≤

≤ 1

|λ|T

( ∞∑
i=0

1

i!

[
|λ|K0T

λn
(t− y)

]i
− 1

)
1

|λ|T

(
e
|λ|K0T
λn

(t−y) − 1

)
,

from which it follows that the resolvent Rn(t, y, λ) for each n = 1, 2, 3 . . ., for any value of the parameter
λ 6= 0 is a continuous function of the arguments. Note that for the resolvent, there is an estimate

∫ ]T

0
|Rn(t, y, λ)|2 dy ≤

∫ T

0

[
1

|λ|T 2

(
e
|λ|K0T
λn

(t−y) − 1

)]2

dy ≤

≤ 2

|λ|2T 2

∫ T

0

(∫ T

0

(
e

2|λ|K0T
λn

(t−y) + 1

))
dy ≤ (9)

≤ 2

|λ|2T

(
eαn − 1

λn
+ 1

)
≤ 2

|λ|2T

(
eλ1 − 1

λ1
+ 1

)
since

αn =
2|λ|K0T

2

λn
and lim

αn→0

eαn − 1

αn
= 1, as λn →∞.

Next, we substitute the Fourier coefficients Vn(t) found by formula (8) into (5), and we find the
formal solution of the boundary value problem (1)–(3) using the formula
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V (t, x) =
∞∑
n=1

(
λ

∫ t

0
Rn(t, y, λ)qn(y)dy + qn(t)

)
zn(x), (10)

where the function qn(t) has the form (7).
Lemma 1.1 The function (10) is an element of the space H1 (QT ).
Proof. Differentiating (10) by t, we obtain the function

Vt(t, x) =

∞∑
n=1

(
λ

∫ t

0
R′nt(t, y, λ)qn(y)dy + λRn(t, y, λ)qn(t) + q′n(t)

)
zn(x). (11)

Taking into account (9) and (10)-(11), by direct calculations, the following relations are established:

‖V (t, x)‖2H(QT ) ≤
6T

λ1
2

(
1 + 2

(
eα1−1

α1
+ 1

))
×

×
(
‖ψ1(x)‖2H1(Q) + ‖ψ2(x)‖2H(Q)

+ ‖g(t, x)‖2H(QT )‖f [u(t)]‖2H(0,T )

)
<∞;

‖Vt(t, x)‖2H(QT ) ≤ 9T

(
1 +

λ2K2
0T

2

λ4
1

· e
α1−1

α1

)
×

×
(
‖ψ1(x)‖2H1(Q) + ‖ψ2(x)‖2H(Q)

+ ‖g(t, x)‖2H(QT )‖f [u(t)]‖2H(0,T )

)
<∞.

From these relations, the statement of the lemma follows.
Theorem 1.1 Let the given functions and parameters satisfy the conditions of the boundary value

problem (1)–(3). Then the boundary value problem (1)–(3), for any value of the parameter λ, has a
unique generalized solution of the form (10).

Proof. According to Lemma 1.1, the function of the form (10) belongs to the space H1 (QT ). By
construction, it satisfies the integral identity, and its Fourier coefficients are uniquely determined as
the solution to the Cauchy problem. It is also worth noting that due to the monotonicity of the
function f [u(t)] with respect to the functional variable, there is a one-to-one correspondence between
the elements of the control space {u(t)} = H(0, T ) and the space of states of the controlled process
{V (t, x)}. If we assume the existence of two generalized solutions, we will arrive at a contradiction.

2 Formulation of the optimal control synthesis problem

Let’s consider a nonlinear optimization problem, where the goal is to minimize the integral func-
tional

I[u(t)] =

∫
Q
‖w(T, x)− ξ(x)‖2dx+ β

∫ T

0
p[t, u(t)]dt, β > 0, (12)

over the set of generalized solutions of the boundary value problem (1)-(3). Here, the symbol ‖ · ‖
denotes the norm of a vector; w(t, x) = {V (t, x), Vt(t, x)} is the vector function describing the state
of the controlled process, the vector function ξ(x) = {ξ1(x), ξ2(x)} ∈ H2(Q) = H(Q) × H(Q) is
considered known; and the function p[t, u(t)] ∈ H(0, T ) is convex with respect to the functional variable
u(t) ∈ H(0, T ).

In the optimal control synthesis problem, the sought control u0(t) ∈ H(0, T ) is to be found as a
function (functional) of the state vector of the controlled process, i.e., in the form u0(t) = u[t, w(t, x)].

First, let’s note one property of the functional (12).
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Lemma 1.2 Suppose the function f [t, u(t)] is monotonic and the function p[t, u(t)] is convex with
respect to the functional variable u(t), ∀t ∈ [0, T ]. Then, the functional I[u(t)] attains its minimum
value at a unique element u0(t) ∈ H(0, T ).

Proof. The monotony condition of the function f [t, u(t)] implies, that each control [u(t)] corresponds
to a unique state of the controlled process w(t, x). For example, for the control u1(t) + u2(t) the
corresponding state of the controlled process is w1(t, x) + w2(t, x), leading to the relationship:

I

(
u1(t) + u2(t)

2

)
=

∫
Q

∥∥∥∥w1(T, x) + w2(T, x)

2
− ξ(x)

∥∥∥∥2

dx+ β

∫ T

0
p

[
t,
u1(t) + u2(t)

2

]
dt. (13)

By analogy with the known methodology [1], direct calculations easily establish the equality

I [u1(t)] + I [u2(t)] = 2

∫
Q

∥∥∥∥w1(T, x) + w2(T, x)

2
− ξ(x)

∥∥∥∥2

dx+

+
1

2

∫
Q
‖w1(T, x)− w2(T, x)‖2 dx+ β

∫ T

0
(p [t, u1(t)] + p2 [t, u2(t)]) dt,

from which, considering the convexity property of the function p[t, u(t)], we obtain the inequality

I [u1(t)] + I [u2(t)] ≥ 2

∫
Q

∥∥∥∥w1(T, x) + w2(T, x)

2
− ξ(x)

∥∥∥∥2

dx+

+
1

2

∫
Q
‖w1(T, x)− w2(T, x)‖2 dx+ 2β

∫ T

0
p

(
t,
u1(t) + u2(t)

2

)
dt >

> 2I

[
u1(t) + u2(t)

2

]
. (14)

Suppose that the functional I[u(t)] attains its minimum value Imin for the controls u1(t) and u2(t).
Then, according to (13)-(14), we obtain the inequality

I

[
u1(t) + u2(t)

2

]
< I [u1(t)] + I [u2(t)] = 2Imin ,

which contradicts the optimality of the controls u1(t) and u2(t).

3 About the solvability of the synthesis problem

According to (12), the Bellman functional takes the form

S[t, w(t, x)] = min
u(τ)∈U
t≤τ≤T

{
β

∫ T

t
p[τ, u(τ)]dτ +

∫
Q
‖w(T, x)− ξ(x)‖2dx

}
, (15)

where U is the set of admissible control values u(t) ∈ H(0, T ). According to the Bellman-Egorov
scheme, assuming that S[t, w(t, x)] as a function is differentiable by t and as a functional is differentiable
by Fresche, the relation (15) is reduced to the form

− ∂S[t, w(t, x)]

∂t
∆t = min

u(τ)∈U
t≤τ≤t

{
β

∫ t+∆t

t
p[τ, u(τ)]dτ + ds[t, w(t, x); ∆w(t, x)] +

+o1(∆t) + δ[t, w(t, x); ∆w(t, x)]} = min
u(τ)∈U

{
β

∫ t+∆t

t
p[τ, u(τ)]dτ +

∫
Q
m∗(t, x)∆w(t, x)dx+ o1(∆t) +

+δ[t, w(t, x); ∆w(t, x)]} , (16)
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wherem(t, x) = {m1(t, x),m2(t, x)} is the gradient of the functional S[t, w(t, x)]; o1(∆t), δ[t, w(t, x); ∆w(t, x)
are infinitesimal quantities; * denotes transposition.

Further, using an identity of the form
m∗(t, x)∆w(t, x) = m1(t, x)∆V (t, x) −∆m2(t, x)Vt(t + ∆t, x)+ (Vt(t, x)m2(t, x)) t+∆t

t ; and an in-
tegral identity ∫

Q
(Vt(t, x)m2(t, x))t+∆t

t dx =

∫ t+∆t

t

{∫
Q

[Vt(y, x)m2t(y, x) −

−
k∑

i,k=1

ai,k(x)Vxk(y, x)m2xi(y, x)− c(x)V (y, x)m2(y, x)+

+

(
λ

∫ y

0
K(y, τ)V (τ, x)dτ + g(y, x)f [y, u(y)]

)
m2(y, x)

]
dx−

−
∫
γ
a(x)V (y, x)m2(y, x)dx

}
dy,

which is derived from (4) with t1 = t, t2 = t+ ∆t,Φ(t, x) ≡ m2(t, x), relation (16) can be represented
as

− ∂S[t, w(t, x)]

∂t
∆t = min

u(τ)∈U
t≤τ≤t+∆t

{
β

∫ t+∆t

t
p[τ, u(τ)]dτ +

+

∫
Q

(m1(t, x)∆V (t, x)−∆m2(t, x)Vt(t+ ∆t, x)) +

+

∫ t+∆t

t

(∫
Q

[ Vt(y, x)m2t(y, x)−
n∑

i,k=1

ai,k(x)Vxk(y, x)m2xi(y, x)− c(x)V (y, x)m2(y, x)+

+

(
λ

∫ y

0
K(y, τ)V (τ, x)dτ + g(y, x)f [y, u(y)]

)
m2(y, x)

]
dx−

−
∫
γ
a(x)V (y, x)m2(y, x)dx

)
dy + o1(∆t) + δ[t, w(t, x); ∆w(t, x)]

}
.

We divide this equality by ∆t and for ∆t → 0, after simple calculations, we have equality in the
limit

− ∂S[t, w(t, x)]

∂t
= min

u(τ)∈U
t≤τ≤t

{
βp[t, u(t)] +

∫
Q
g(t, x)m2(t, x)dxf [t, u(t)] +

∫
Q

[m1(t, x)Vt(t, x) −

−
n∑

i,k=1

ai,k(x)Vxk(t, x)m2xi(t, x)− c(x)V (t, x)m2(t, x)+

+

(
λ

∫ t

0
K(t, τ)V (τ, x)dτ

)
m2(t, x)

]
dx−

−
∫
γ
a(x)V (t, x)m2(t, x)dx

}
, (17)

which we will call the Bellman-type equation. Note that here the equality holds for the variable
t ∈ (0,T) almost everywhere. We will consider this equation together with the condition

S[T,w(T, x)] =

∫
Q
‖w(T, x)− ξ(x)‖2dx. (18)
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Thus, the Bellman functional S[t, w(t, x)] should be found as a solution for the Cauchy-Bellman
problem (17)-(18), which is called the Cauchy-Bellman problem.

In the first stage of solving equation (17), we will consider the minimization problem over the control
u(t), ∀t ∈ [0, T ], which, depending on the properties of the set U , is solved by different methods.

Let U be an open set. Then, the extremal problem is solved by the classical method, and the
first-order optimality condition is given by

βpu[t, u(t)] +

∫
Q
g(t, x)m2(t, x)dxfu[t, u(t)] = 0, (19)

and the second-order optimality condition is determined by a differential inequality of the form

βpuu[t, u(t)] +

∫
Q
g(t, x)m2(t, x)dxfuu[t, u(t)] > 0,

which, with (19) taken into account, can be transformed into the form [10–13]

fu[t, u(t)]

(
pu[t, u(t)]

fu[t, u(t)]

)
u

> 0. (20)

This inequality is one of the constraints, meaning that the problem of optimal control synthe-
sis in nonlinear optimization of controlled processes is solvable only for those pairs of functions
(f [t, u(t)], p[t, u(t)]) that satisfy condition (20). When condition (20) is met, according to the im-
plicit function theorem, equation (19) is uniquely solvable for the control u(t). In other words, there
exists a unique function ϕ(·), such that

u0(t) = ϕ

[
t,

∫
Q
g(t, x)m2(t, x)dx, β

]
. (21)

Substituting the found u0(t) into (17), we obtain a simplified version of the Bellman type equation.

−∂S[t, w(t, x)]

∂t
= βp

[
t,

∫
Q
g(t, x)m2(t, x)dx, β

]
+

+

∫
Q
g(t, x)m2(t, x)dxf

[
t,

∫
Q
g(t, x)m2(t, x)dx, β

]
+

+

∫
Q

[m2(t, x)Vt(t, x) −

−
n∑

i,k=1

ai,k(x)Vxk(t, x)m2xi(t, x)− c(x)V (t, x)m2(t, x)+

+λ

∫ t

0
K(t, τ)V (τ, x)dτ

)
m2(t, x)

)]
dx−

−
∫
γ
a(x)V (t, x)m2(t, x)dx. (22)

This equation is a nonlinear integro-differential equation of a complex nature and is not of a
standard form. According to the methodology developed by A. Kerimbekov [10–13], we seek the
solution to equation (22) in the form

S[t, w(t, x)] = S0[t, w(t, x)] + λS1(t), (23)
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where S0[t, w(t, x)] and S1(t) are to be determined. In this case, equation (22) splits into two equations,
and the functional S0[t, w(t, x)] is determined as the solution to a problem of the form

−∂S0[t, w]

∂t
= βp

[
t,

∫
Q
g(t, x)m2(t, x)dx, β

]
+

+

∫
Q
g(t, x)m2(t, x)dxf

[
t,

∫
Q
g(t, x)m2(t, x)dx, β

]
+

+

∫
Q

[m1(t, x)Vt(t, x) −

−
n∑

i,k=1

ai,k(x)Vxk(t, x)m2xi(t, x)− c(x)V (t, x)m2(t, x)

 dx−
−
∫
γ
a(x)V (t, x)m2(t, x)dx, (24)

S0[T,w(T, x)] =

∫
Q
‖w(T, x)− ξ(x)‖2dx, (25)

and the function S1(t) is determined as the solution to the following problem

−∂S1(t)

∂t
=

∫
Q
m2(t, x)

∫ t

0
K(t, τ)V (τ, x)dτdx, (26)

S1(T ) = 0. (27)

According to (23), the equality

gradS[t, w(t, x)] = gradS0[t, w(t, x)]

holds, which implies that in formula (21) the function m2(t, x) can be determined by solving prob-
lem (24)-(25). This circumstance significantly simplifies the procedure of constructing optimal control
depending on the state of the controlled process, i.e. the solution of the synthesis problem.

Let S0[t, w(t, x)] be the solution to problem (24)-(25), and S1(T ) be the solution to problem
(26)-(27). Then, according to (23) and (15), the minimum value of the functional (12) is found by the
formula

I
[
u0(t)

]
= S[0, w(0, x)] = S0 [0, V (0, x), Vt(0, x)] + λS1(0) =

= S0 [0, ψ1(x), ψ2(x)] + λS1(0).

In conclusion, it should be noted that in the general case, methods for solving problem (24)-(25)
are not developed. However, in some particular cases, it is possible to find the solution to problem
(24)-(25) and, using formula (21), to write down the explicit form of the sought control u0(t) depending
on the state of the controlled process.
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Introduction

The basis of our understanding of the world is frequently based on classical calculus, which involves
the operation of derivatives and integrals on integer orders. However, many real-world phenomena
exhibit memory effects and non-local interactions that cannot be fully captured by these integer-
order operations. At this point in the discussion, the concept of fractional calculus presents itself as a
relevant topic that should be considered [1]. Fractional calculus is a fascinating field of mathematics
that extends the concepts of differentiation and integration to non-integer orders [2,3]. This extension
facilitates a more sophisticated representation of memory-dependent processes, in which the current
state is affected by the entire history of the process. See [4–10] for recent works.

Fractional integro-differential equations (FIDEs) are of great importance in the area of fractional
calculus. Fractional derivatives and integral terms are combined in FIDEs, making them effective tools
for modeling many systems. For instance, FIDEs provide a flexible framework for modeling intricate
financial systems with memory effects, such as long-range dependencies in market behavior, and non-
classical diffusion processes characterized by varying anomalous diffusion rates, diverging from classical
diffusion. Furthermore, FIDEs effectively capture the delayed response of viscoelastic materials to
external forces, as these materials exhibit a combination of elastic and viscous properties [11–13].

Monotone iterative technique (MIT) proposes a powerful combination of theoretical and practical
tools for nonlinear problems. It provides a theoretical framework to determine the existence and
uniqueness of solutions for certain equations, while also offering an efficient iterative algorithm to
approximate these solutions numerically, making it valuable for various applications. MIT produces
a sequence of functions in which each iteration is derived by substituting the preceding one into the
specified linear differential equation. The fundamental principle of MIT is the notion of monotonicity,
which guarantees that the sequence is either consistently growing or consistently decreasing, hence
∗Corresponding author. E-mail: ali.yakar@gop.edu.tr
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gradually converging towards the solution of the given nonlinear problem. Under specific conditions,
MIT guarantees that the generated sequences converges uniformly in a closed set to the unique solution
of the differential equation lying between the initial lower and upper solutions (LUSs) [14]. Recently
MIT was adapted for some types of fractional differential or integro-differential equations involving
initial or boundary conditions. See [15–22] and the references therein.

In this work, we discuss the following FIDE with boundary conditions of the form:

CDq1u (t) = F (t, u (t) , Iq2u (t)) , h (u (0) , u (T )) = 0, (1)

where F ∈ C [J × R× R,R], J = [0, T ], h ∈ C
[
R2,R

]
, and 0 < q2 ≤ q1 < 1.

It should be observed that supplementary conditions h (u (0) , u (T )) = 0 may indicate initial,
boundary or other general conditions, depending on the selection of the function h. Therefore, prob-
lem (1) can be seen as a more comprehensive version of the boundary value problems that were
previously mentioned.

The basic objective of the study is to utilize the MIT in order to solve the problem (1), consequently
getting the extremal (minimal and maximal) solutions as the limit of the functions of sequences which
converge uniformly, by considering several types of coupled lower and upper solutions (LUSs) of (1).

The remainder of this article is structured as follows: Section 1 provides a brief overview of fractional
calculus and FIDEs with necessary definitions and lemmas, required for the proofs of main results.
The subsequent part presents the main results including the existence and uniqueness theorem for the
solution via selection of coupled LUSs. Final section offers concluding remarks and potential directions
for future research.

1 Mathematical preliminaries

Definition 1. [3] Let [0, T ] ⊂ R, Re(θ) > 0 and f ∈ L1[0, T ]. Then the Riemann-Liouville(R-L)
fractional integrals Iθ0+ of order θ is given by

Iθ0+f (x) =
1

Γ (θ)

x∫
0

f (t) dt

(x− t)1−θ , x ∈ (0, T ] .

Definition 2. The Caputo derivative of order 0 ≤ θ < 1 for t ∈ [0, T ], designated by cD0+ is given
by

cD0+f(x) := I1−θ
0+ Df (x) =

1

Γ (1− θ)

x∫
0

f ′ (t) dt

(x− t)θ
.

We offer multiple definitions regarding coupled LUSs to problem (1).

Definition 3. Let ϑ, ω ∈ C1[J,R]. Then ϑ and ω are said to be

(i) natural LUSs of (1) if
CDq1ϑ (t) ≤ F (t, ϑ (t) , Iq2ϑ (t)) , h (ϑ (0) , ϑ (T )) ≤ 0,

CDq1ω (t) ≥ F (t, ω (t) , Iq2ω (t)) , h (ω (0) , ω (T )) ≥ 0;

(ii) coupled LUSs of type 1 of (1) if
CDq1ϑ (t) ≤ F (t, ϑ (t) , Iq2ω (t)) , h (ϑ (0) , ϑ (T )) ≤ 0,

CDq1ω (t) ≥ F (t, ω (t) , Iq2ϑ (t)) , h (ω (0) , ω (T )) ≥ 0;
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(iii) coupled LUSs of type 2 of (1) if
CDq1ϑ (t) ≤ F (t, ω (t) , Iq2ϑ (t)) , h (ϑ (0) , ϑ (T )) ≤ 0,
CDq1ω (t) ≥ F (t, ϑ (t) , Iq2ω (t)) , h (ω (0) , ω (T )) ≥ 0;

(iv) coupled LUSs of type 3 of (1) if
CDq1ϑ (t) ≤ F (t, ω (t) , Iq2ω (t)) , h (ϑ (0) , ϑ (T )) ≤ 0,
CDq1ω (t) ≥ F (t, ϑ (t) , Iq2ϑ (t)) , h (ω (0) , ω (T )) ≥ 0.

Definition 4. The functions % and r, both belonging to the space C1[J,R], are called to be coupled
minimal and maximal solutions (MMSs) of (1), if, for any coupled solutions ϑ and ω, it holds that
% ≤ ϑ, ω ≤ r.

Next result is related to the solution of a linear fractional integro-differential equation.
Lemma 1. Let ϕ ∈ C1 [J,R] , 0 < q2 ≤ q1 < 1 and L,M be real numbers. Then, there exists a

unique solution ϕ ∈ C1 [J,R] of the problem

CDq1ϕ (t) = Lϕ (t) +MIq2ϕ (t) , ϕ (0) = ϕ0, (2)

such that

ϕ (t) =
∞∑
n=0

∞∑
m=0

(M)n (L)m
(
n+m
m

)
tq1(n+m)+nq2

Γ (q1 (n+m) + nq2 + 1)
ϕ0.

Proof. The proof and more general form of this result can be found in [23,24].

Lemma 2. [23] Suppose that ϑ and ω are natural LUSs of (1). Moreover following condition holds

F (t, u1 (t) , v1 (t))− F (t, u2 (t) , v2 (t)) ≤ L (u1 − u2) +M (v1 − v2) ,

L,M ≥ 0, whenever u1 ≥ u2, v1 ≥ v2.
Then ϑ (0) ≤ ω (0) implies ϑ (t) ≤ ω (t) on J .
Corollary 1. ([23]) Let p belongs to the space C1 [J,R] and L ≥ 0, M ≥ 0. If the inequality

CDq1p (t) ≤ Lp (t) +MIq2p (t) , p (0) ≤ 0,

holds, then we get p (t) ≤ 0 on J .
Analogously, CDq1p (t) ≥ −Lp (t)−MIq2p (t) , p (0) ≥ 0 implies p (t) ≥ 0 on J .

2 Main results

In this section, we formulate the monotone technique for the problem (1) via coupled LUSs with
the aid of the method of LUSs. We construct monotone functions of sequences, whose iterations are
generated by unique solutions of corresponding Caputo type fractional linear initial value problems,
hence converging uniformly and monotonically to the minimal and maximal solutions of the given BVP
problem (1).

In the following theorem, we first employ natural LUSs to reach the main objective.
Theorem 1. Assume that

(A1) ϑ0, ω0 ∈ C1 [J,R] are natural LUSs of problem (1) with ϑ0 (t) ≤ ω0 (t) on J ;

(A2) h (u, v) ∈ C
[
R2,R

]
is non-increasing in the second variable and there is a positive constant M

satisfying
h (u1, v)− h (u2, v) ≤M (u1 − u2) ,

for ϑ0 (0) ≤ u2 ≤ u1 ≤ ω0 (0) , ϑ0 (T ) ≤ v ≤ ω0 (T );
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(A3) the function F ∈ C [J × R× R,R] satisfies

F (t, u1 (t) , v1 (t))− F (t, u2 (t) , v2 (t)) ≥ −L (u1 − u2)−M (v1 − v2) , (3)

where ϑ0 ≤ u2 ≤ u1 ≤ ω0 and ϑ0 ≤ v2 ≤ v1 ≤ ω0 and L > 0, M > 0.
Then there exist monotone sequences {ϑn (t)}, {ωn (t)} converging uniformly and monotonically

to the functions % and r on J , indicating that % and r serve as minimal and maximal solutions of (1),
respectively.

Proof. For any function µ ∈ C1 [J,R], we define the linear initial value problem

CDq1u (t) = F (t, µ (t) , Iq2µ (t))− L (u− µ)−MIq2 (u− µ) , (4)

u (0) = µ (0)− 1

M
h (µ (0) , µ (T )) . (5)

where ϑ0 ≤ µ ≤ ω0. Pay attention to the fact that the right-hand side of the equation (4) is Lipschitzian,
thus unique solution exits for every µ.

Consider A as an operator, such that Aµ = u, which assists in the construction the sequences {ϑn}
and {ωn}.

We have to prove that

(i) ϑ0 ≤ A ϑ0 and ω0 ≥ Aω0;

(ii) the operator A is monotone on the sector [ϑ0, ω0] =
{
u ∈ C1 [J,R] : ϑ0 ≤ u ≤ ω0

}
.

To prove (i) , set Aϑ0 = ϑ1, where ϑ1 is the unique soluion of (4)-(5) with µ = ϑ0. Setting
p (t) = ϑ1 (t)− ϑ0 (t) for t ∈ J , we see that

CDq1p (t) = CDq1ϑ1 (t)−C Dq1ϑ0 (t)

≥ F (t, ϑ0 (t) , Iq2ϑ0 (t))− L (ϑ1 − ϑ0)−MIq2 (ϑ1 − ϑ0)

−F (t, ϑ0 (t) , Iq2ϑ0 (t))

= −Lp (t)−MIq2p (t) ,

and

p (0) = ϑ1 (0)− ϑ0 (0)

= ϑ0 (0)− 1

M
h (ϑ0 (0) , ϑ0 (T ))− ϑ0 (0)

≥ 0.

This gives, from Corollary 1, p (t) ≥ 0 on J , hence ϑ0 ≤ ϑ1. In the similar way, one can form
p (t) = ω0 (t)− ω1 (t), where Aω0 = ω1. Then, we obtain

CDq1p (t) = CDq1ω0 (t)−C Dq1ω1 (t)

≥ F (t, ω0 (t) , Iq2ω0 (t))− (F (t, ω0 (t) , Iq2ω0 (t))− L (ω1 − ω0)−MIq2 (ω1 − ω0))

= −Lp (t)−MIq2p (t)

and

p (0) = ω0 (0)− ω1 (0)

= ω0 (0)−
(
ω0 (0)− 1

M
h (ω0 (0) , ω0 (T ))

)
=

1

M
h (ω0 (0) , ω0 (T ))

≥ 0.
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This ensures that p(t) ≥ 0, thus meaning ω0 ≥ ω1 on J .
To achieve (ii) , consider µ1, µ2 ∈ [ϑ0, ω0] , such that µ1 ≤ µ2. Suppose that Aµ1 = u1 and Aµ2 = u2.

Set p (t) = u2 (t)− u1 (t), then

CDq1p (t) = CDq1u2 (t)−C Dq1u1 (t)

= F (t, µ2 (t) , Iq2µ2 (t))− L (u2 − µ2)−MIq2 (u2 − µ2)

−F (t, µ1 (t) , Iq2µ1 (t)) + L (u1 − µ1) +MIq2 (u1 − µ1)

= F (t, µ2 (t) , Iq2µ2 (t))− F (t, µ1 (t) , Iq2µ1 (t)) + L (u1 − µ1 − u2 + µ2)

+MIq2 (u1 − µ1 − u2 + µ2) .

Using the inequality (2), we receive

F (t, µ2 (t) , Iq2µ2 (t))− F (t, µ1 (t) , Iq2µ1 (t)) ≥ −L (µ2 − µ1)−MIq2 (µ2 − µ1) .

If the expression is plugged into the last inequality, we derive

CDq1p (t) ≥ −L (µ2 − µ1)−MIq2 (µ2 − µ1) + L (u1 − µ1 − u2 + µ2) +MIq2 (u1 − µ1 − u2 + µ2)

= −Lp (t)−MIq2p (t) .

Also we obtain

p (0) = u2 (0)− u1 (0)

= µ2 (0)− 1

M
h (µ2 (0) , µ2 (T ))− µ1 (0) +

1

M
h (µ1 (0) , µ1 (T ))

= µ2 (0)− µ1 (0) +
1

M
(h (µ1 (0) , µ1 (T ))− h (µ2 (0) , µ2 (T )))

≥ µ2 (0)− µ1 (0) +
1

M
(h (µ1 (0) , µ2 (T ))− h (µ2 (0) , µ2 (T )))

≥ µ2 (0)− µ1 (0) +
1

M
(−M) (µ2 (0)− µ1 (0))

= 0.

Therefore, by applying Corollary 1, we can conclude that Aµ2 ≥ Aµ1.
We now define the sequences ϑn = Aϑn−1 and ωn = Aωn−1 for n = 1, 2, .... Based on the mono-

tonicity argument of the operator, we can infer that

ϑ0 ≤ ϑ1 ≤ ... ≤ ϑn ≤ ωn ≤ ... ≤ ω1 ≤ ω0,

on [0, T ] for all n ∈ N. These functions correspond to solutions of the following linear equations:

CDq1ϑn+1 (t) = F (t, ϑn (t) , Iq2ϑn)− L (ϑn+1 − ϑn)−MIq2 (ϑn+1 − ϑn) , (6)

ϑn+1 (0) = ϑn (0)− 1

M
h (ϑn (0) , ϑn (T )) . (7)

CDq1ωn+1 (t) = F (t, ωn (t) , Iq2ωn)− L (ωn+1 − ωn)−MIq2 (ωn+1 − ωn) , (8)

ωn+1 (0) = ωn (0)− 1

M
h (ωn (0) , ωn (T )) . (9)

Now we have to prove that the monotone sequences {ϑn} and {ωn} converge uniformly. In order to
accomplish this, we will utilize the Arzela-Ascoli’s theorem once we have revealed that the sequences
are equicontinuous and uniformly bounded.
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Given that ϑ0, ω0 ∈ C1 [J,R] are bounded on J , a constant K > 0 exists, such that |ϑ0 (t)| ≤ K
and |ω0 (t)| ≤ K on J . In the light of the fact that ϑ0 ≤ ϑn ≤ ωn ≤ ω0, it can be concluded that for
all n ∈ N , |ϑn (t)| ≤ K and |ωn (t)| ≤ K on J . As a result, {ϑn} and {ωn} are uniformly bounded on
J . Our next objective is to demonstrate that {ϑn} is equicontinuous. To do so, let 0 ≤ t1 ≤ t2 ≤ T .
Then for n > 0,

|ϑn (t1)− ϑn (t2)| =

=

∣∣∣∣∣∣ϑn (0) +
1

Γ (q1)

t1∫
0

(t1 − σ)q1−1 [F (σ, ϑn−1 (σ) , Iq2ϑn−1 (σ))− L (ϑn − ϑn−1)−MIq2 (ϑn − ϑn−1)] dσ

−ϑn (0)− 1

Γ (q1)

t2∫
0

(t2 − σ)q1−1 [F (σ, ϑn−1 (σ) , Iq2ϑn−1 (σ))− L (ϑn − ϑn−1)−MIq2 (ϑn − ϑn−1)] dσ

∣∣∣∣∣∣
≤ 1

Γ (q1)

t1∫
0

(
(t1−σ)q1−1−(t2−σ)q1−1

)
|F (σ, ϑn−1 (σ) , Iq2ϑn−1 (σ))−L (ϑn−ϑn−1)−MIq2 (ϑn−ϑn−1)| dσ

+
1

Γ (q1)

t2∫
t1

(t2 − σ)q1−1 |F (σ, ϑn−1 (σ) , Iq2ϑn−1 (σ))− L (ϑn − ϑn−1)−MIq2 (ϑn − ϑn−1)| dσ.

Since {ϑn}, {ωn} , {Iq2ϑn} and {Iq2ωn} are uniformly bounded, there exist a K1 > 0, independent of
n, such that

|F (t, ϑn (t) , Iq2ϑn (t))| ≤ K1,

|F (t, ωn (t) , Iq2ωn (t))| ≤ K1,

|Iq2ϑn (t)| ≤ K1,

and
|Iq2ωn (t)| ≤ K1.

Thus, if these expressions are substituted into the inequality above, we get

|ϑn (t1)− ϑn (t2)|

≤ K2

Γ (q1)

t1∫
0

(
(t1 − σ)q1−1 − (t2 − σ)q1−1

)
dσ +

K2

Γ (q1)

t2∫
t1

(t2 − σ)q1−1 dσ

= − K2

q1Γ (q1)
(t1 − σ)q1

∣∣∣∣σ=t1

σ=0

+
K2

q1Γ (q1)
(t2 − σ)q1

∣∣∣∣σ=t1

σ=0

− K2

q1Γ (q1)
(t2 − σ)q1

∣∣∣∣σ=t2

σ=t1

=
K2

Γ (q1 + 1)
tq11 +

K2

Γ (q1 + 1)
(t2 − t1)q1 − K2

Γ (q1 + 1)
tq12 +

K2

Γ (q1 + 1)
(t2 − t1)q1

=
K2

Γ (q1 + 1)
[(t1)q1 − (t2)q1 ] +

2K2

Γ (q1 + 1)
(t2 − t1)q1

≤ 2K2

Γ (q1 + 1)
(t2 − t1)q1

=
2K2

Γ (q1 + 1)
|t2 − t1|q1 ,
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where K2 = K1 + 2LK + 2MK1. We conclude, that for given ε > 0, there is a δ (ε) =
(
εΓ(q1+1)

2K2

) 1
q1

(which merely depends on ε), such that |t2 − t1| < δ imply that |ϑn (t1)− ϑn (t2)| < ε. Therefore {ϑn}
is equicontinuous on J and so is {ωn} in the similar fashion. The use of Arzela-Ascoli’s theorem allows
us to conclude, that there exist subsequences {ϑnk

} and {ωnk
} that uniformly converge to % and r

respectively. Due to their monotonic nature, the entire sequences {ϑn} and {ωn} converge uniformly
to % and r respectively on J .

We can prove that the limit functions (%, r) satisfy the problem (1). To do so, we establish corre-
sponding integral equations to (6)-(7) and (8)-(9), then take limits as n −→∞.

Finally, it is required to clarify that (r, % ) occurs as the maximal and minimal solutions of (1),
respectively. For any given solution u of (1) such that ϑ0 (t) ≤ u (t) ≤ ω0 (t) on J , we need to check
that

ϑ0 (t) ≤ % (t) ≤ u (t) ≤ r (t) ≤ ω0 (t) ,

on J . To achieve this, it is sufficient to demonstrate ϑn (t) ≤ u (t) ≤ ωn (t) on J . This fact is
obvious for n = 0. By applying induction principle, we claim that for some k > 0, the inequality
ϑk (t) ≤ u (t) ≤ ωk (t) on J is true. It is necessary to prove that the following relation holds:

ϑk+1 (t) ≤ u (t) ≤ ωk+1 (t) ,

on J . Taking p (t) = u (t)− ϑk+1 (t) leads to
CDq1p (t) = CDq1u (t)−C Dq1ϑk+1 (t)

= F (t, u (t) , Iq2u (t))− [F (t, ϑk (t) , Iq2ϑk)− L (ϑk+1 − ϑk)−MIq2 (ϑk+1 − ϑk)] .

Since we know that ϑk (t) ≤ u (t) , we can use the inequality (3) to attain

F (t, u (t) , Iq2u (t))− F (t, ϑk (t) , Iq2ϑk) ≥ −L (u− ϑk)−MIq2 (u− ϑk) .

By inserting the foregoing expression into the equation above, we acquire
CDq1p (t) ≥ −L (u− ϑk)−MIq2 (u− ϑk) + L (ϑk+1 − ϑk) +MIq2 (ϑk+1 − ϑk)

= −Lp (t)−MIq2p (t) .

Meanwhile, if we recall the characteristics of the function h (u, v), we can deduce

p (0) = u (0)− ϑk+1 (0)

= u (0)− 1

M
h (u (0) , u (T ))−

[
ϑk (0)− 1

M
h (ϑk (0) , ϑk (T ))

]
= u (0)− ϑk (0)− 1

M
(h (u (0) , u (T ))− h (ϑk (0) , ϑk (T )))

≥ u (0)− ϑk (0)− 1

M
(h (u (0) , ϑk (T ))− h (ϑk (0) , ϑk (T )))

≥ u (0)− ϑk (0)− 1

M
M (u (0)− ϑk (0))

= 0.

Owing to Corollary 1, it directly results in p (0) ≥ 0 on J . As a result, ϑk+1 (t) ≤ u (t). In the same
manner, we are able to demonstrate that u (t) ≤ ωk+1 (t) on J . Therefore, for all n, we get

ϑn (t) ≤ u (t) ≤ ωn (t) .

By taking the limit, as n approaches infinity, we may deduce that

% (t) ≤ u (t) ≤ r (t) ,

on J , which establishes the validity of the proof.
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Theorem 2. Along with the assumptions stated in Theorem 1, further assume that for L > 0,
M > 0

F (t, u1 (t) , v1 (t))− F (t, u2 (t) , v2 (t)) ≤ L (u1 − u2) +M (v1 − v2) ,

where ϑ0 ≤ u2 ≤ u1 ≤ ω0 and ϑ0 ≤ v2 ≤ v1 ≤ ω0. Thereafter, a unique solution to equation (1) exists
in which % = u = r.

Proof. If we continue by keeping the fact % ≤ r aside, let p (t) = r (t)− % (t). Then, it follows that

CDq1p (t) = CDq1r (t)−C Dq1% (t)

= F (t, r (t) , Iq2r (t))− F (t, % (t) , Iq2% (t))

≤ L (r − %) +MIq2 (r − %)

= Lp (t) +MIq2p (t) ,

and

p (0) = r (0)− % (0)

= 0.

This facts indicate that p (t) ≤ 0. As a consequence, we arrive at % = u = r meaning that the sequences
approach to the same solution of (1).

In the subsequent result, we employ coupled LUSs of type 1 to derive monotone sequences that
uniformly and monotonically converge to coupled MMSs of the problem (1).

Theorem 3. Assume that

(B1) ϑ0, ω0 ∈ C1 [J,R] are coupled LUSs of type 1 of problem (1) with ϑ0 (t) ≤ ω0 (t) on J ;

(B2) (A2) holds;

(B3) F (t, u, v) ∈ C [J × R× R,R] is non-decreasing in u and is non-increasing in v and

F (t, u1 (t) , v (t))− F (t, u2 (t) , v (t)) ≥ −L (u1 − u2) , (10)

F (t, u (t) , v1 (t))− F (t, u (t) , v2 (t)) ≤M (v1 − v2) , (11)

whenever u1 ≥ u2 , v1 ≥ v2 and L > 0, M > 0.

Then there exist monotone sequences {ϑn (t)}, {ωn (t)} converging uniformly and monotonically to
the functions % and r on J . It is implied that % and r coupled MMSs of (1), respectively.

Proof. Let ψ, ξ ∈ C1 [J,R] such that ϑ0 ≤ ψ ≤ ω0 and ϑ0 ≤ ξ ≤ ω0. We set the linear fractional
integro-differential initial value problems (IVPs):

CDq1u (t) = F (t, ψ (t) , Iq2ω0 (t))− L (u− ψ) , (12)

u (0) = ψ (0)− 1

M
h (ψ (0) , ψ (T )) , (13)

CDq1v (t) = F (t, ω0 (t) , Iq2ξ (t)) +MIq2 (v − ξ) , (14)

v (0) = ξ (0)− 1

M
h (ξ (0) , ξ (T )) . (15)

Define the mapping A and B by Aψ = u and Bξ = v and use it to construct the sequences {ϑn} and
{ωn} . We aim to prove that

(i) ϑ0 ≤ Aϑ0 and ω0 ≥ Bω0;

Mathematics Series. No. 3(115)/2024 119



H. Kutlay, A. Yakar

(ii) the operators A and B are monotone on the sector [ϑ0, ω0].
To prove (i) , take Aϑ0 = ϑ1, where ϑ1 is the unique solution of (12)-(13) with ψ = ϑ0. By letting

p (t) = ϑ1 (t)− ϑ0 (t) , we see that
CDq1p (t) = CDq1ϑ1 (t)−C Dq1ϑ0 (t)

≥ F (t, ϑ0 (t) , Iq2ω0 (t))− L (ϑ1 − ϑ0)− F (t, ϑ0 (t) , Iq2ω0 (t))

= −Lp (t) ,

and

p (0) = ϑ1 (0)− ϑ0 (0)

= ϑ0 (0)− 1

M
h (ϑ0 (0) , ϑ0 (T ))− ϑ0 (0)

≥ 0.

According to Corollary 1, it appears that p (t) ≥ 0, which implies ϑ0 (t) ≤ ϑ1 (t) on J . Similarly, let
Bω0 = ω1, where ω1 is the unique solution of (14)-(15) with ξ = ω0. Setting p (t) = ω1 (t)− ω0 (t) , we
get

CDq1p (t) = CDq1ω1 (t)−C Dq1ω0 (t)

≤ F (t, ω0 (t) , Iq2ω0 (t)) +MIq2 (ω1 − ω0)− F (t, ω0 (t) , Iq2ϑ0 (t))

= F (t, ω0 (t) , Iq2ω0 (t))− F (t, ω0 (t) , Iq2ϑ0 (t)) +MIq2 (ω1 − ω0)

≤ F (t, ω0 (t) , Iq2ϑ0 (t))− F (t, ω0 (t) , Iq2ϑ0 (t)) +MIq2 (ω1 − ω0)

= MIq2p (t) ,

and

p (0) = ω1 (0)− ω0 (0)

= ω0 (0)− 1

M
h (ω0 (0) , ω0 (T ))− ω0 (0)

= − 1

M
h (ω0 (0) , ω0 (T ))

≤ 0.

By utilizing Corollary 1 yields ω0 (t) ≥ ω1 (t) on J .
To prove (ii) , let ψ1, ψ2 ∈ [ϑ0, ω0], such that ψ1 ≤ ψ2 and put Aψ1 = u1 and Aψ2 = u2. It is

enough to define p (t) = u2 (t)− u1 (t) in a manner that
CDq1p (t) = CDq1u2 (t)−C Dq1u1 (t)

= F (t, ψ2 (t) , Iq2ω0 (t))− L (u2 − ψ2)− F (t, ψ1 (t) , Iq2ω0 (t)) + L (u1 − ψ1)

= F (t, ψ2 (t) , Iq2ω0 (t))− F (t, ψ1 (t) , Iq2ω0 (t)) + L (u1 − ψ1 − u2 + ψ2) .

Using the inequality (10) and recalling the fact that ψ1 ≤ ψ2 , we may deduce that

F (t, ψ2 (t) , Iq2ω0 (t))− F (t, ψ1 (t) , Iq2ω0 (t)) ≥ −L (ψ2 − ψ1) .

Substituting that expression into previous equation yields
CDq1p (t) = F (t, ψ2 (t) , Iq2ω0 (t))− F (t, ψ1 (t) , Iq2ω0 (t)) + L (u1 − ψ1 − u2 + ψ2)

≥ −L (ψ2 − ψ1) + L (u1 − ψ1 − u2 + ψ2)

= −L (ψ2 − ψ1 − u1 + ψ1 + u2 − ψ2)

= −L (u2 − u1)

= −Lp (t) ,
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and

p (0) = u2 (0)− u1 (0)

= ψ2 (0)− 1

M
h (ψ2 (0) , ψ2 (T ))− ψ1 (0) +

1

M
h (ψ1 (0) , ψ1 (T ))

= ψ2 (0)− ψ1 (0) +
1

M
(h (ψ1 (0) , ψ1 (T ))− h (ψ2 (0) , ψ2 (T )))

≥ ψ2 (0)− ψ1 (0) +
1

M
(h (ψ1 (0) , ψ2 (T ))− h (ψ2 (0) , ψ2 (T )))

≥ ψ2 (0)− ψ1 (0) +
1

M
(−M) (ψ2 (0)− ψ1 (0))

= 0.

It follows that Aψ2 ≤ Aψ1, whenever ψ1 ≤ ψ2 on J .
Similarly, assume that ξ1, ξ2 ∈ [ϑ0, ω0] such that ξ1 ≤ ξ2. Let Bξ1 = v1, Bξ2 = v2 and set

p (t) = v2 (t)− v1 (t), so that

CDq1p (t) = CDq1v2 (t)−C Dq1v1 (t)

= F (t, ω0 (t) , Iq2ξ2 (t)) +MIq2 (v2 − ξ2)− F (t, ω0 (t) , Iq2ξ1 (t))−MIq2 (v1 − ξ1) .

Furthermore, utilizing the inequality (11), we have

F (t, ω0 (t) , Iq2ξ2 (t))− F (t, ω0 (t) , Iq2ξ1 (t)) ≤MIq2 (ξ2 − ξ1) .

When the last phrase is included into previous relation, it gives

CDq1p (t) ≤ MIq2 (ξ2 − ξ1) +MIq2 (v2 − ξ2)−MIq2 (v1 − ξ1)

= MIq2p (t) .

We can figure out that p (0) ≤ 0 implies p (t) ≤ 0, based on the implications outlined in Corollary 1.
At this point, one may specify the sequences ϑn = Aϑn−1 and ωn = Bωn−1 for n = 1, 2, .... In this

case, the monotone sequences {ϑn} and {ωn} can be represented by the following iterative schemes.

CDq1ϑn+1 (t) = F (t, ϑn (t) , Iq2ωn)− L (ϑn+1 − ϑn) , (16)

ϑn+1 (0) = ϑn (0)− 1

M
h (ϑn (0) , ϑn (T )) . (17)

CDq1ωn+1 (t) = F (t, ωn (t) , Iq2ωn) +MIq2 (ωn+1 − ωn) , (18)

ωn+1 (0) = ωn (0)− 1

M
h (ωn (0) , ωn (T )) . (19)

Suppose that u is an arbitrary solution to the problem (1) satisfying ϑ0 (t) ≤ u (t) ≤ ω0 (t). Then we
must demonstrate that ϑn (t) ≤ u (t) ≤ ωn (t) for n ∈ N. The proof is clear for n = 0. Assume that for
some k, ϑk (t) ≤ u (t) ≤ ωk (t) is true on J . Thus, we prove the validity of the subsequent relationship

ϑk+1 (t) ≤ u (t) ≤ ωk+1 (t)

on J . In order to verify this, we implement p (t) = u (t)− ϑk+1 (t) and, have

CDq1p (t) = CDq1u (t)−C Dq1ϑk+1 (t)

= F (t, u (t) , Iq2u (t))− [F (t, ϑk (t) , Iq2ωk)− L (ϑk+1 − ϑk)]
≥ −L (u− ϑk) + L (ϑk+1 − ϑk)
= −Lp (t) .
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Reviewing the fundamental characteristics of the function g, we get

p (0) = u (0)− ϑk+1 (0)

= u (0)−
[
ϑk (0)− 1

M
h (ϑk (0) , ϑk (T ))

]
− 1

M
h (u (0) , u (T ))

= u (0)− ϑk (0) +
1

M
(h (ϑk (0) , ϑk (T ))− h (u (0) , u (T )))

≥ u (0)− ϑk (0) +
1

M
(h (ϑk (0) , u (T ))− h (u (0) , u (T )))

≥ u (0)− ϑk (0) +
1

M
(−M) (u (0)− ϑk (0))

= 0.

Following Corollary 1, we see that ϑk+1 (t) ≤ u (t) on J . By using a similar approach, we can show
that u (t) ≤ ωk+1 (t) on J . This result in for all n,

ϑ0 ≤ ϑ1 ≤ ... ≤ ϑn ≤ u ≤ ωn ≤ ... ≤ ω1 ≤ ω0.

By employing standard techniques as in the preceding result, we reveal that the sequences {ϑn} and
{ωn} converge uniformly and monotonically to the functions % and r, respectively. To prove that %
and r are coupled solutions of the main problem, one can establish the corresponding Volterra integral
equations to the problems (16–19) and then taking limits as n→∞, that is,

CDq1% (t) = F (t, % (t) , Iq2r (t)) , h (% (0) , % (T )) = 0,

and
CDq1r (t) = F (t, r (t) , Iq2% (t)) , h (r (0) , r (T )) = 0.

Finally, we need to demonstrate that (%, r) are coupled MMSs of (1), respectively. Let u be any solution
of (1) such that ϑ0 (t) ≤ u (t) ≤ ω0 (t) on J. After proving the inequality ϑn (t) ≤ u (t) ≤ ωn (t) with
the same approach as before and considering the limit as n −→ ∞, we receive % (t) ≤ u (t) ≤ r (t) ,
which concludes the proof.

Theorem 4. In addition to conditions of Theorem 3, suppose also

F (t, u1 (t) , v (t))− F (t, u2 (t) , v (t)) ≤ L (u1 − u2) ,

F (t, u (t) , v1 (t))− F (t, u (t) , v2 (t)) ≥ −M (v1 − v2) ,

whenever u1 ≥ u2 , v1 ≥ v2 and L > 0, M > 0. Then we have unique solution of (1) such that
% = u = r.

If we utilize coupled LUSs of type 2 of (1), we get also monotone sequences that converge uniformly
and monotonically to the extremal solutions of (1) that we state as the next result.

In order to prevent repetition, we shall omit the details of the proofs for the subsequent results.

Theorem 5. Suppose that

(C1) ϑ0, ω0 ∈ C1 [J,R] are coupled LUSs of type 2 of problem (1) with ϑ0 (t) ≤ ω0 (t) on J ;

(C2) (A2) holds;
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(C3) F (t, u, v) ∈ C [J × R× R,R] is non-increasing in u and non-decreasing in v, moreover

F (t, u1 (t) , v (t))− F (t, u2 (t) , v (t)) ≤ L (u1 − u2) ,

F (t, u (t) , v1 (t))− F (t, u (t) , v2 (t)) ≥ −M (v1 − v2) ,

where u1 ≥ u2 , v1 ≥ v2 and L > 0, M > 0.

Then there exist two sequences {ϑn (t)}, {ωn (t)} such that limn−→∞ ωn = r , limn−→∞ ϑn = % uni-
formly and monotonically on J and that (%, r) are coupled MMSs of (1).

Remark 1. Observe that coupled LUSs of type 1 together with increasing and decreasing properties
of F in Theorem 3 result in the natural ULSs and coupled ULSs of type 3 separately, hence both yield
the coupled LUSs of type 2 at the end. The analogous approach for coupled LUSs of type 2 is true
and this can be stated in the opposite manner.

In the following theorem, we take coupled LUSs of type 3 and find the similar conclusion as in
Theorem 1.

Theorem 6. Let the following conditions hold:

(D1) ϑ0, ω0 ∈ C1 [J,R] are coupled LUSs of type 3 of (1) with ϑ0 (t) ≤ ω0 (t) on J ;

(D2) (A2) holds;

(D3) the function F (t, u, v) ∈ C [J × R× R,R] is non-increasing in both u, v for each t ∈ J and

F (t, u1 (t) , v1 (t))− F (t, u2 (t) , v2 (t)) ≤ L (u1 − u2) +M (v1 − v2) ,

where ϑ0 ≤ u2 ≤ u1 ≤ ω0 and ϑ0 ≤ v2 ≤ v1 ≤ ω0 and L > 0, M > 0.

Then we obtain the sequences {ϑn (t)}, {ωn (t)} such that ϑn −→ % and ωn −→ r as n −→ ∞
uniformly and monotonically on J and % and r are the MMSs of (1), respectively.

Remark 2. Note that the assumption (D1) with the non-increasing property of F (t, u, v) in both u
and v for each t ∈ J implies the natural LUSs of (1) for the functions ϑ0, ω0.

3 Conclusion

We have considered the boundary value problem of a Caputo fractional integro-differential equation
to analyze the existence and uniqueness of the problem. We employ the monotone iterative technique
generating monotone sequences that converge uniformly to the extremal solutions of the main problem.
It would be valuable to explore extensions and refinements of the monotone iterative technique for
solving more general classes of FIDEs, as well as to investigate its applicability to practical problems
arising in real-world applications. Additionally, the development of computational algorithms based on
the theoretical results could lead to the implementation of efficient numerical solvers for FIDEs with
boundary conditions.
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This paper is devoted to a new type of boundary-value problems for Sturm-Liouville equations defined
on three disjoint intervals (−π,−π + d), (−π + d, π − d) and (π − d, π) together with eigenparameter
dependent boundary conditions and with additional transmission conditions specified at the common end
points −π + d and π − d, where 0 < d < π. The considered problem cannot be treated by known
techniques within the usual framework of classical Sturm-Liouville theory. To establish some important
spectral characteristics we introduced the polynomial-operator formulation of the problem. Moreover, we
develop a new modification of the Rayleigh method to obtain lower bound of eigenvalues.

Keywords: boundary-value-transmission problems, eigenvalues, generalized eigenfunctions, lower bound
estimation, Rayleigh’s method, transmission conditions.
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Introduction

This work is motivated by the problem of understanding the nature of the spectral characteris-
tics of the class of boundary-value problems (BVPs) for Sturm-Liouville equations (SLEs) defined of
finite number of nonintersecting intervals together with additional interaction conditions specified at
the common endpoints of these intervals. Moreover, the spectral parameter appears linearly in both
differential equation and boundary conditions (BCs). Such type of BVPs (the so-called many-interval
boundary value transmission problems (MIBVTPs)) are encountered in solving various transfer prob-
lems of mathematical physics. For example, some MIBVTPs arise in heat transfer problems, mass
transfer problems, diffraction problems, seismic behavior of the Earth’s, waves in the atmosphere,
etc. (see, [1–7]). Its solutions are determined by different special functions, such as Bessel functions,
Chebyshev polynomials, Legendre polynomials, Hypergeometric functions etc. Important studies have
been carried out recently regarding MIBVTPs [8–24].

The aim of this work is to investigate the following MIBVTP, consisting of three-interval SLE

− g′′(x) + q(x)g(x) = λr(x)g(x) (1)

defined on three-interval (−π,−π + d) ∪ (−π + d, π − d) ∪ (π − d, π), together with the λ-dependent
BCs given by

cosϕ g(−π + d) + sinϕ g′(−π + d) = 0 , 0 < ϕ < π, (2)

αg(π) − α
′
g′(π) + λ

(
βg(π) − β

′
g′(π)

)
= 0 (3)

∗Corresponding author. E-mail: hayatiolgar@gmail.com
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and with the additional transmission conditions (TCs) at the points of interaction −π + d and π − d
given by

T−π+d(g) = 0 , T−π+d(g
′) = θ1 g(−π + d), (4)

Tπ−d(g) = 0 , Tπ−d(g
′) = θ2 g(π − d), (5)

where 0 < d < π, Tx(g) is the linear form defined by Tx(g) = limδ→0 g(x + |δ|) − limδ→0 g(x − |δ|),
α, α

′
, β, β

′
, θ1, θ2 are real numbers, q(x) is a real-valued function, q ∈ L2(−π, π). Everywhere we shall

assume that

θ3 :=

∣∣∣∣ α′ α

β
′
β

∣∣∣∣ > 0.

To study some important spectral characteristic of the considered MIBVTP (1)-(5) we introduced a
corresponding operator-polynomial in appropriate Hilbert space. Note that, MIBVTPs have been an
important research in recent years [25–31].

1 Operator-pencil treatment of the problem

To study some spectral characteristics of the MIBVTP (1)–(5) we shall use the operator-pencil
theory and Rayleigh theory. Let us formulate some definitions and facts, which is needed for further
consideration.

Let k ≥ 0 be an integer. The Sobolev space W k
2 (a, b) is defined to be the linear space consisting

of all functions g ∈ L2(a, b) having generalized derivatives g′, g′′, ..., g(k) ∈ L2(a, b) equipped with the
inner product

〈g, h〉Wk
2 (a,b) :=

k∑
j=0

〈g(j), h
(j)〉L2(a,b)

and corresponding norm ‖g‖2
Wk

2 (a,b)
= 〈g, g〉Wk

2 (a,b). Here, L2(a, b) denotes the space of all complex-

valued functions g, such that
∫ b
a |g

2(x)|dx <∞, equipped with the inner product

〈g, h〉L2(a,b) :=

∫ b

a
g(x) h(x)dx.

Denote Ω1 = (−π,−π+d), Ω2 = (−π+d, π−d), Ω3 = (π−d, π) and Ω = Ω1∪Ω2∪Ω3. For investigation
of the BVTP (1)–(5) we shall use the discret sum space ⊕L2 := L2(Ω1) ⊕ L2(Ω2) ⊕ L2(Ω3) with the
inner-product

〈g, h〉0 :=
3∑
i=1

∫
Ωi

g(x)h(x)dx

and direct sum space

⊕W 1
2 =

{
g ∈ ⊕L2

∣∣g ∈W 1
2(Ωi)(i = 1, 2, 3), g(−π + d+ 0) = g(−π + d− 0),
g(π − d+ 0) = g(π − d− 0)

}

with the inner-product

〈g, h〉1 :=
3∑
i=1

∫
Ωi

(
g′(x)h

′
(x) + g(x)h(x)

)
dx.

We can show that the inner-product spaces ⊕L2 and ⊕W 1
2 are Hilbert spaces.
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In the Hilbert space ⊕W 1
2 we define a new inner-product by

〈g, h〉2 :=

3∑
i=1

∫
Ωi

{
g′(x)h

′
(x) + q(x)g(x)h(x)

}
dx

with the corresponding norm ‖g‖22 = 〈g, g〉2. Obviously, there are positive constants m and M, such
that

m ‖g‖1 < ‖g‖2 < M ‖g‖1
for all g ∈ ⊕W 1

2 .
Using the well-known embedding properties for Sobolev spaces (see [20]) we can show that

|g(xj)|2 ≤ ` ||g′||20 +
2

`
||g||20, (6)

|g(ξ)| ≤ C(ξ) ||g||2 (7)

for any g ∈ ⊕W 1
2 where j = 1, 2, 3, 4, x1 = −π, x2 = −π+d∓0, x3 = π−d∓0, x4 = π, ` is a positive

number (small enough), ξ ∈ Ω, the constant C(ξ) is independent of the function g and dependent only
of ξ. Let us introduce to the consideration the Hilbert space H, consisting of all vector-functions(
χ(x), χ1

)
∈ ⊕W 1

2 ⊕C := H equipped with the inner product

〈Γ,Ψ〉H := 〈χ, ϕ〉1 + χ1 ϕ1,

where Γ = (χ, χ1) and Ψ = (ϕ, ϕ1) ∈ H.
The concept of weak eigenfunction is based on the weak solutions of the problem (1)–(5), which we

shall define by the following procedure. By multiplying the differential equation (1) by the conjugate
of an arbitrary h ∈ ⊕W 1

2 satisfying the conditions h(π − d+ 0) = h(π − d− 0) and h(−π + d+ 0) =
h(−π + d− 0) and then integrating by parts over the intervals Ωi (i = 1, 2, 3) we have

3∑
i=1

∫
Ωi

{
g′(x)h

′
(x) + q(x)g(x)h(x)

}
dx− β

β′
g(π)h(π)− cosϕ

sinϕ
g(−π)h(−π) +

+ θ1g(−π + d)h(−π + d) + θ2g(π − d)h(π − d) +
κ

β′
h(π) = λ

3∑
i=1

∫
Ωi

ghdx, (8)

and

g(π)

β′
− α

′

β′
κ

θ3
= λ

κ

θ3
, (9)

where κ := βg(π)− β′g′(π). Thus the BVTP (1)–(5) is transformed into the system of equalities (8)
and (9), all terms of which are defined for the g, h ∈ ⊕W 1

2 .

Definition 1. The element Γ = (g(x), κ) ∈ ⊕W 1
2 is said to be a weak solution of the BVTP (1)–(5)

if the equations (8)-(9) are satisfied for any h ∈ ⊕W 1
2 .

Let us introduce to the consideration the following bilinear forms:

τ0(g, h) := − β

β′
g(π)h(π)− cosϕ

sinϕ
g(−π)h(−π) + θ1g(−π + d)h(−π + d) +

+ θ2g(π − d)h(π − d), (10)
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τ1(g, h) :=
3∑
i=1

∫
Ωi

r(x)g(x) h(x)dx, (11)

and
τ2(κ, h) :=

κ

β′
h(π). (12)

The reduction of identities (8)-(9) to an operator equation is based on the following result.

Theorem 1. There are bounded linear operators S0, S1 : ⊕W 1
2 → ⊕W 1

2 and S2 : C → ⊕W 1
2 such

that

τn(g, h) = 〈Sng, h〉2 for n = 0, 1 and
τn(κ, h) = 〈Snκ, h〉2 for n = 2. (13)

Proof. τn(g, h), n = 0, 1, are linear functionals in h ∈ ⊕W 1
2 for any given g ∈ ⊕W 1

2 and that
τ2(κ, h) is a linear functional in h ∈ ⊕W 1

2 for any given κ ∈ C.
Let g ∈ ⊕W 1

2 be any function. From (10)–(12), it follows immediately that

|τ0(g, h)| ≤ C1 {|g(π)||h(π)|+ |g(−π)||h(−π)|+ |g(−π + d)||h(−π + d)| +

+|g(π − d)||h(π − d)|} ,

|τ1(g, h)| ≤ C2‖g‖‖h‖,

|τ2(κ, h)| ≤ C3|κ| |h(π)|.

Here and below, the symbols Ck, for k = 1, 2, . . . denote different positive constants whose exact values
are not important for the proof.

The interpolation inequalities (6)-(7) imply

‖g‖ ≤ C4‖g‖2 and |g(ξ)| ≤ C5‖g‖2 for any ξ ∈ Ω.

Hence, the functionals τn (n = 0, 1, 2) allow the following estimates:

|τ0(g, h)| ≤ C6 ‖g‖2 ‖h‖2,
|τ1(g, h)| ≤ C7 ‖g‖2 ‖h‖2,
|τ2(κ, h)| ≤ C8 |κ| ‖h‖2.

Therefore, τn (n = 0, 1, 2) are linear continuous functionals in h ∈ ⊕W 1
2 for any given g ∈ ⊕W 1

2 ,
n = 0, 1, and κ ∈ C, n = 2, respectively. Then, the existence of linear bounded operators S0, S1 and S2

follows immediately from the well-known Riesz representation theorem (see, for example, [25]).

Theorem 2. The operators S0, S1 : ⊕W 1
2 → ⊕W 1

2 are self-adjoint and the operator S1 is positive.

Proof. Let g, h ∈ ⊕W 1
2 be arbitrary functions. By (10) and (13), we have that

〈g, S0h〉⊕W 1
2

= 〈S0h, g〉⊕W 1
2

= τ0(h, g) = τ0(g, h) = 〈S0g, h〉⊕W 1
2
.

Hence, the operator S0 is self-adjoint in ⊕W 1
2 . The proof of the self-adjointness of S1 is totaly similar.

The positivity of S1 follows immediately from the fact that the function r(x) is positive definitely.

Theorem 3. The operators Si : ⊕W 1
2 → ⊕W 1

2 (i = 0, 1), S2 : C→ ⊕W 1
2 and S∗2 : ⊕W 1

2 → C are
compact, where S∗2 is the adjoint of S2.
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Proof. To prove the compactness of the operator S0 it is sufficient to show that any weakly con-
vergent sequence {gk}(k = 1, 2, ...) in ⊕W 1

2 is transformed by S0 into a strongly convergent sequence
{S0gk} in the same space. The boundedness of S0 implies the weakly convergence of {S0gk} to S0g
in ⊕W 1

2 , where g(x) is the weak limit of {gk}. Since the embedding operator J : ⊕W 1
2 ↪→ ⊕L2

is compact [20], the sequences (gk) and (S0gk) converge strongly to g and S0g in ⊕ L2 respectively.
In addition, since for each bounded interval I ⊂ R the embedding operator J : W 1

2 (I) ↪→ C(I)
is compact and the sequences {gk} and {S0gk} are bounded in ⊕W 1

2 it follows that these sequences
converge in C(Ω1)⊕ C(Ω2)⊕ C(Ω3).

Further, the compactness of the embedding operator J : ⊕W 1
2 ↪→ C(Ω1)⊕ C(Ω2)⊕ C(Ω3) (see,

for example, [20]) implies that the sequences {gk(di)} and {(S0gk)(di)} converge in C to g(di) and
(S0g)(di) (i = 1, 2, 3, 4) with d1 = −π or d2 = −π+ d ∓ 0 or d3 = π− d ∓ 0 or d4 = π, respectively.
The representations (10)–(12) and inequalities (6) imply

‖ S0(gk − gm)‖22 = 〈S0(gk − gm), S0(gk − gm)〉2 = τ0

(
gk − gm, S0(gk − gm)

)
≤ C1 {|(gk(π)− gm(π))|+ |(gk(−π)− gm(−π))|}
+ C1 {|(gk(−π + d+ 0)− gm(−π + d− 0))|+ |(gk(π − d+ 0)− gm(π − d− 0))|} .

Therefore, ‖S0(gk − gm) ‖2 → 0 as k, m→∞. Hence, the sequence {S0gk} is the Cauchy sequence in
the space ⊕W 1

2 and therefore converges strongly in ⊕W 1
2 . Thus the compactness of the operator S0

is proven. The proof of the compactness of the operator S1 is totally similar.
It is easy to show that the adjoint operator S∗2 is defined by the equality S∗2g = g(π)

β′
, from which

it follows that this operator is compact. Then by virtue of well-known theorem of Functional Analysis
the operator S2 is also compact. The proof is complete.

2 Positiveness of the operator-pencil

It is evident that the BVTP (1)–(5) can be written as the operator-pencil equation in H, given by

A(λ) Γ = 0 , A(λ) = ∆− λ Λ, (14)

where the operators ∆ and Λ are defined by

∆(g, κ) =

(
g + S0g + S2κ , S∗2g −

α
′

β′
κ

θ3

)
, (15)

Λ(g, κ) =

(
S1g ,

κ

θ3

)
, (16)

respectively.

Lemma 1. For all real λ0, the operator A(−λ0) = ∆ + λ0 Λ is self-adjoint in the Hilbert space H.

Proof. Using Theorem 2, it is easy to show that the linear operators ∆ and Λ are self-adjoint.
Therefore, the operator-pencil A(−λ0) = ∆ + λ0 Λ is also self-adjoint in the Hilbert space H.

Lemma 2. The operator-polynomial A(−λ0) is positive definite for sufficiently large positive values
of λ0.

Proof. Taking in view the equality

A(−λ0)Γ =
(
g(x) + S0g(x) + S2κ+ λ0S1g(x) , S∗2g(x)− α

′

β′
κ
θ3

+ λ0
κ
θ3

)
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for Γ = (g(x), κ), we get

〈A(−λ0)Γ,Γ〉H = 〈g(x), g(x)〉2 + 〈S0g(x), g(x)〉2 + 〈S2κ, g(x)〉2 + (S∗2g(x))κ−

− α
′

β′ θ3
|κ|2 + λ0

{
〈S1g(x), g(x)〉2 +

1

θ3
|κ|2
}
. (17)

Let us define the following functionals

P (g) := 〈g′, g′〉0, Q(g) := 〈qg, g〉0, R(g) := 〈rg, g〉0. (18)

From the well-known embedding theorems for Sobolev spaces it follows easily that the inequalities

|g(xj)|2 ≤ Cj1εjP (g) +
Cj2
εj
Q(g) (19)

hold for sufficiently small positive εj , where g ∈ ⊕W 1
2 (j = 1, 2, 3, 4), Cjk (k = 1, 2) are positive

constants; x1 = −π, x2 = −π + d∓ 0, x3 = π − d∓ 0, x4 = π.
Using (18) and (19) and applying the well-known Young inequality, we have the following estimates

〈S0g(x), g(x)〉2 = − β

β′
|g(π)|2 − cosϕ

sinϕ
|g(−π)|2 + θ1|g(−π + d)|2 + θ2|g(π − d)|2

≥
(
−cosϕ

sinϕ
C11ε1 + θ1C21ε2 + θ2C31ε3 −

β

β′
C41ε4

)
P (g)

+

(
−cosϕ

sinϕ

C12

ε1
+ θ1

C22

ε2
+ θ2

C32

ε3
− β

β′
C42

ε4

)
Q(g). (20)

〈S2κ, g(x)〉2 + (S∗2g(x))κ =
2

β′
Re(κ g(π))

≥ − 1

|β′ | γ
|g(π)|2 − γ

|β′ |
|κ|2

≥ − 1

|β′ | γ

{
C41ε4P (g) +

C42

ε4
Q(g)

}
− γ

|β′ |
|κ|2 (21)

for arbitrary γ > 0. It is easy to see that,

〈S1g, g〉2 = R(g) ≥M1Q(g) (22)

for some M1 > 0.
Taking in view the equality

‖g‖22 = P (g) +Q(g) , g ∈ ⊕W 1
2 (23)

and substituting (20)–(23) into (17) we have

〈A(−λ0)Γ,Γ〉H ≥ Φ1P (g) + Φ2(λ0)Q(g) + Φ3(λ0)|κ|2, (24)

Mathematics Series. No. 3(115)/2024 131
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where

Φ1 := 1−
∣∣∣∣cosϕ

sinϕ

∣∣∣∣C11ε1 + θ1 C21 ε2 + θ2 C31 ε3

−
(∣∣∣∣ ββ′

∣∣∣∣+
1

γ |β′ |

)
C41ε4, (25)

Φ2(λ0) := 1−
∣∣∣∣cosϕ

sinϕ

∣∣∣∣ C12

ε1
+ θ1

C22

ε2
+ θ2

C32

ε3

−
(∣∣∣∣ ββ′

∣∣∣∣+
1

γ|β′ |

)
C42

ε4
+ λ0M, (26)

Φ3(λ0) = −

∣∣∣∣∣α
′

β′

∣∣∣∣∣ 1

θ3
− γ

|β′ |
+
λ0

θ3
. (27)

Since θ3 > 0, it is possible to choose the positive parameters γ, ε1, ε2, ε3 and ε4 so small and the
positive parameter λ0 so large that Φ1 > 0, Φ2(λ0) > 0, Φ3(λ0) > 0. Now denoting

Φ(λ0) := min (Φ1 , Φ2(λ0) , Φ3(λ0)) ,

we have

〈A(− λ0)Γ,Γ〉H ≥ Φ(λ0) ‖Γ‖2H

for all Γ ∈ H. Consequently the operator pencil A(−λ0) is positive definite for sufficiently large
λ0 > 0. The proof is complete.

3 Modified Rayleigh quotient and estimation of the eigenvalues

For finding lower bound estimation for eigenvalues we shall introduce a new spectral parameter
µ = λ+ λ0, where λ0 is the parameter from Lemma 2. Then the operator pencil equation A(λ) Γ = 0
is transformed to the spectral problem

A(−λ0) Γ − µΛΓ = 0 (28)

with the new spectral parameter µ. This problem can be rewritten as

µ =
〈
(
∆ + λ0 Λ

)
Γ , Γ〉H

〈ΛΓ , Γ〉H
. (29)

Let h = g in (8). Then equation (8) is converted into the form

〈g, g〉2 + 〈S0g, g〉2 + 〈S2κ, g〉2 = λ〈S1g, g〉2. (30)

Using (30), we have the following Rayleigh quotient

µ =
〈g, g〉2 + 〈S0g, g〉2 + 〈S2κ, g〉2 + (S∗2g)κ− α

′

β′θ3
|κ|2 + λ0

{
〈S1g, g〉2 + 1

θ3
|κ|2
}

〈S1g, g〉2 + 1
θ3
|κ|2

.

(31)

Using (14)–(16), (20)–(27) and (28)–(31) we have the following inequality

µ ≥ Φ1P (g) + Φ2(λ0)Q(g) + λ0R(g) + Φ3(λ0)|κ|2

|κ|2 + 1
θ3
|κ|2

. (32)
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It is easy to show that there are M2 > 0 and M3 > 0, such that

R(g) ≤M2Q(g) ≤ M3‖g‖2

for all g.
Then from inequality (32) we get

µ ≥ min (M2Φ2(λ0) + λ0 , θ3Φ3(λ0)) .

Thus, we have the lower bound estimation for eigenvalues of the BVTP (1)–(5) given by

λk ≥ −λ0 + min (M2Φ2(λ0) + λ0 , θ3Φ3(λ0)) .

Conclusion

In this work, we investigated a new type of boundary value problems (BVPs) for Sturm-Liouville
equations. The problem addressed in our study is different from standard Sturm-Liouville problems
in the sense that the differential equation is defined on three non-overlapping intervals (−π,−π + d),
(−π+d, π−d) and (π−d, π) and the boundary conditions are included four additional conditions at the
interaction points x = −π+d and x = π−d, so-called transmission conditions. Spectral analysis, such
type of multi-interval boundary value transmission problems (MIBVTPs), is much more complicated
to analyze than BVPs. It is not obvious how to apply the known classical methods to such MIBVTPs.
To establish some important spectral characteristics, we introduced a new type polynomial-operator
formulation of the considered MIBVTP. We then proved that this polynomial-operator is self-adjoint
and positive definite for sufficiently large positive values of the spectral parameter λ. Moreover, we
have been developed a new modification of the Rayleigh method to obtain a lower bound for the
eigenvalues.

Acknowledgments

The authors wish to express their sincere thanks to the referees and the editorial team for their
valuable comments, suggestions and contributions for the improvement of the paper.

Funding information

This study was presented partially in ICAAM 2018 (Fourth International Conference on Analysis
and Applied Mathematics).

Author Contributions

All the authors equally contributed to this work. They all read and approved the final version of
the paper.

Conflict of Interest

The authors declare no conflict of interest.

Mathematics Series. No. 3(115)/2024 133
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Introduction

The neutron transport equation describes the distribution of neutrons in terms of their positions
in space and time, their energies and their travel directions. The various neutron transport equations
are studied by many researchers (see, [1–4] and the references given therein). Identification problems
play an important role in applied sciences and engineering applications and have been investigated in
various papers (see, e.g., [5–27] and the references given therein). In the present paper, we consider
the time-dependent source identification problem for two dimensional neutron transport equation

∂u(t,x,y)
∂t = ∂u(t,x,y)

∂x + ∂u(t,x,y)
∂y + p (t) q (x, y) + f (t, x, y) ,

t ∈ (0, T ) , x, y ∈ (0, L) ,

u (0, x, y) = ϕ (x, y) , x, y ∈ [0, L] ,

u (t, 0, y) = 0, u (t, x, 0) = 0, t ∈ [0, T ] , x, y ∈ [0, L] ,

u(t, l, y) = α (t, y) , t ∈ [0, T ] , y ∈ [0, L] , l ∈ (0, L] .

(1)

Here, u (t, x, y) and p (t) are unknown functions, f (t, x, y) , q (x, y) , ϕ (x, y) , and α (t, y) are
given sufficiently smooth functions and all compatibility conditions are satisfied.

In the rest of paper, the theorem on the stability of differential problem (1) is established. For
the approximate solution of problem (1), a first order of accuracy difference scheme is proposed. The
theorem on stability of this difference scheme is established. Some results of numerical experiment are
presented.
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1 Stability of differential equation

To formulate our results, we introduce the Banach space C (E) = C ([0, T ] , E) of all abstract
continuous functions φ (t) defined on [0, T ] with values in E equipped with the norm

‖φ‖C(E) = max
0≤t≤T

‖φ (t)‖E .

Let E = C[0,L]×[0,L] be the space of all continuous functions ψ (x, y) defined on [0, L]× [0, L] equipped
with norm

‖ψ‖C[0,L]×[0,L]
= max

0≤x,y≤L
|ψ (x, y)|

and C(1)
[0,L]×[0,L] be the space of all continuously differentiable functions ψ (x, y) defined on [0, L]× [0, L]

equipped with norm

‖ψ‖
C

(1)
[0,L]×[0,L]

= ‖ψ‖C[0,L]×[0,L]
+ max

0<x,y<L
|ψx (x, y)|+ max

0<x,y<L
|ψy (x, y)| .

We introduce the positive operator A, defined by formula

Au = −
(
∂u (x, y)

∂x
+
∂u (x, y)

∂y

)
with the domain

D (A) =
{
u : u, ux, uy ∈ C[0,L]×[0,L], u (0, y) = u (x, 0) = 0, 0 ≤ x, y ≤ L

}
.

Throughout the present paper, M denotes positive constants, which may differ in time and thus
are not a subject of precision. However, we will use M(α, β, γ,...) to stress the fact that the constant
depends only on α, β, γ,... .

We have the following theorem on the stability of problem (1):

Theorem 1. Assume that ϕ ∈ C(1)
[0,L]×[0,L], f (t, x, y) is a continuously differentiable function in t and

continuous in x and y, and α (t, y) is a continuously differentiable function in t and continuous in y.
Then, for the solution of problem (1) the following stability estimates hold:∥∥∥∥∂u∂t

∥∥∥∥
C(C[0,L]×[0,L])

+ ‖u‖
C
(
C

(1)
[0,L]×[0,L]

) + ‖p‖C[0,T ] ≤M (q)

[
‖ϕ‖

C
(1)
[0,L]×[0,L]

+

+ ‖f (0, .)‖C[0,L]×[0,L]
+

∥∥∥∥∂f∂t
∥∥∥∥
C(C[0,L]×[0,L])

+ ‖α(0, ·)‖C[0,L] + ‖αt‖C(C[0,L])

]
.

Proof. We will use the following substitution

u (t, x, y) = w (t, x, y) + η (t) q (x, y) ,

where η (t) is the function defined by formula

η (t) =

t∫
0

p (s) ds, η (0) = 0. (2)

It is clear that w (t, x, y) is the solution of the following initial boundary value problem
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

∂w(t,x,y)
∂t = ∂w(t,x,y)

∂x + ∂w(t,x,y)
∂y + η (t) (qx (x, y) + qy (x, y)) + f (t, x, y) ,

t ∈ (0, T ) , x, y ∈ (0, L) ,

w (0, x, y) = ϕ (x, y) , x, y ∈ [0, L] ,

w (t, 0, y) = 0, t ∈ [0, T ] , y ∈ [0, L] ,

w (t, x, 0) = 0, t ∈ [0, T ] , x ∈ [0, L] ,

q (x, 0) = 0, q (0, y) = 0, q (l, y) 6= 0,

w (t, l, y) = α (t, y)− η (t) q (l, y) , t ∈ [0, T ] , y ∈ [0, L] .

(3)

Applying the over determined condition u (t, l, y) = α (t, y) at substitution (2), we get

w (t, l, y) + η (t) q (l, y) = α (t, y) ,

η (t) =
α (t, y)− w (t, l, y)

q (l, y)
.

From that and p (t) = η′ (t) , it follows

p (t) =
αt (t, y)− wt (t, l, y)

q (l, y)
. (4)

From identity (4) and the triangle inequality, we get the estimate

|p (t)| =
∣∣∣∣αt (t, y)− wt (t, l, y)q (l, y)

∣∣∣∣ ≤M (q) [|αt (t, y)|+ |wt (t, l, y)|] ≤

≤M (q)

[
max
0≤t≤T

|αt (t, y)|+ max
0≤t≤T

max
0≤y≤L

|wt (t, l, y)|
]
.

From that it follows

‖p‖C[0,T ] ≤M (q)
[
‖αt‖C(C[0,T ], C[0,L]) + ‖wt‖C(C[0,T ], C[0,L])

]
. (5)

Using operator A with the domain D (A) we can rewrite problem (3) in the abstract form as an initial
value problem 

dw
∂t +Aw = −α(t,.)−w(t,l,.)

q(l,.) Aq + f (t) ,

w (0) = ϕ.

By the Cauchy formula, the solution can be written as

w (t) = e−tAϕ+

t∫
0

e−(t−s)A
{
−α (s, .)− w (s, l, .)

q (l, .)
Aq + f (s)

}
ds.
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Taking derivative with respect to t and using Leibniz integral rule, we obtain

wt (t) = −Ae−tAϕ+
{
−α(t,.)−w(t,l,.)

q(l,.) Aq + f (t)
}
+

t∫
0

−Ae−(t−s)A
{
−α(s,.)−w(s,l,.)

q(l,.) Aq + f (s)
}
ds.

Applying the integration by parts formula, we get

wt (t) = −Ae−tAϕ+ e−tA
{
−α(0,.)−w(0,l,.)

q(l,.) Aq + f (0)
}
+

+
t∫
0

e−(t−s)A
{
−αs(s,.)−ws(s,l,.)

q(l,.) Aq + f ′ (s)
}
ds =

3∑
k=1

Gk (t) ,

where
G1 (t) = −Ae−tAϕ,

G2 (t) = e−tA
{
−α(0,.)−w(0,l,.)

q(l,.) Aq + f (0)
}
,

G3 (t) =
t∫
0

e−(t−s)A
{
−αs(s,.)−ws(s,l,.)

q(l,.) Aq + f ′ (s)
}
ds.

Now, we estimate, G1, G2, and G3, separately. Using the triangle inequality, we obtain

‖wt‖E ≤ ‖G1 (t)‖E + ‖G2 (t)‖E + ‖G3 (t)‖E .

It is known (see [20]) that for any t ∈ [0, T ] ,∥∥e−tA∥∥
E→E ≤Me−δt, M > 0, δ > 0. (6)

Applying the definition of norm of the spaces E and estimate (6), we get

‖G1 (t)‖E =
∥∥−Ae−tAϕ∥∥

E
≤
∥∥e−tA∥∥

E→E ‖Aϕ‖E ≤M1 (δ) ‖Aϕ‖E . (7)

Let us estimate G2 (t) . Using the triangle inequality, we get

‖G2 (t)‖E =

∥∥∥∥e−tA{−α (0, .)− w (0, l, .)

q (l, .)
Aq + f (0)

}∥∥∥∥
E

≤

≤
∥∥e−tA∥∥

E→E

[[∣∣∣∣α (0, .)

q (l, .)

∣∣∣∣+ ∣∣∣∣w (0, l, .)

q (l, .)

∣∣∣∣] ‖Aq‖E + ‖f (0)‖E
]
,

‖G2 (t)‖E ≤
∥∥e−tA∥∥

E→E

‖Aq‖E→E ‖α (0, .)‖E + ‖w (0, l, .)‖E
min

0≤y≤L
|q (l, .)|

+ ‖f (0)‖E

 .

Hence,
‖G2 (t)‖E ≤M2 (δ, q) [‖α (0, .)‖E + ‖ϕ‖E + ‖f (0)‖E ] (8)

for any t, t ∈ [0, T ] .
Let us estimate G3 (t) . Using the triangle inequality, we get

‖G3 (t)‖E ≤
t∫
0

∥∥e−(t−s)A∥∥
E→E

{
max

0≤s≤T
|αs(s,.)|

E
′+‖ws(s,.)‖E

min
0≤y≤L

|q(l,.)| ‖Aq‖E + ‖f ′ (s)‖E
}
ds ≤

≤M3 (δ, q)
t∫
0

[
max
0≤s≤T

‖f ′ (s)‖E + max
0≤s≤T

|αs (s, .)|
]
ds+

t∫
0

M4 (δ, q) ‖ws (s)‖E ds,

(9)
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where E′ ⊂ E .
Combining estimates (7), (8), and (9), we get

‖wt‖E ≤M1 (δ) ‖Aϕ‖E +M2 (δ, q) [‖α (0, .)‖E + ‖ϕ‖E + ‖f (0)‖E ] +

+M3 (δ, q)
t∫
0

[
max
0≤s≤T

‖f ′ (s)‖E + max
0≤s≤T

‖αs (s, .)‖E′
]
ds+

t∫
0

M4 (δ, q) ‖ws (s)‖E ds.

Using Grönwall’s inequality, we can write

‖wt‖E ≤M5e
M4(δ,q)T ,

where

M5 =M6 (δ, q)

[
‖Aϕ‖E + ‖α (0, .)‖E + ‖ϕ‖E + ‖f (0)‖E + max

0≤s≤T
‖f ′ (s)‖E + max

0≤s≤T
|αs (s, .)|

]
.

(10)
Finally, combining estimates (10) and (5) it completes the proof of Theorem 1.

2 Stability of difference scheme

For the approximate solution of problem (1) we present the first order of accuracy difference scheme

ukn,m−u
k−1
n,m

τ =
ukn+1,m+1−ukn,m+1

h +
ukn,m+1−ukn,m

h + pkqn,m + fkn,m,

fkn,m = f (tk,xn,ym) , qn,m = q (xn, ym) , xn = nh, ym = mh,

tk = kτ, 1 ≤ k ≤ N, 1 ≤ n,m ≤M − 1, Mh = L, Nτ = T,

u0n,m = ϕ (xn, ym) , 0 ≤ n,m ≤M,

uk0,m = 0, ukn,0 = 0, 0 ≤ k ≤ N, 0 ≤ n,m ≤M,

uks,m = α (tk, ym) , 0 ≤ k ≤ N, 0 ≤ m ≤M, s =
⌊
l
h

⌋
.

(11)

To formulate the results on difference problem, we introduce the Banach space

Cτ (E) = C ([0, T ]τ , E)

of all grid functions
φτ = {φ (tk)}Nk=0

defined on
[0, T ]τ = {tk : tk = kτ, 0 ≤ k ≤ N, Nτ = T}

with values in E equipped with the norm

‖φτ‖Cτ (E) = max
0≤k≤N

‖φ (tk)‖E .

Let Ch = C[0,L]h×[0,L]h and C
(1)
h = C

(1)
[0,L]h×[0,L]h

be spaces of all grid functions ψh = {ψn,m}Mm,n=1

defined on [0, L]h × [0, L]h = {xn = nh, ym = mh, 0 ≤ n,m ≤M} equipped with the norms∥∥∥ψh∥∥∥
Ch

= max
0≤n,m≤M

|ψn,m| ,
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∥∥ψh∥∥
C

(1)
h

=
∥∥ψh∥∥

Ch
+ 1

h max
0≤n≤M

max
1≤m≤M

|ψn,m − ψn,m−1|+ 1
h max
1≤n≤M

max
0≤m≤M

|ψn,m − ψn−1,m| ,

respectively.
Moreover, we introduce difference neutron transport operator A

h

Ahuh = −
{
un+1,m+1 − un,m+1

h
+
un,m+1 − un,m

h

}M−1
n,m=1

acting in the space of grid functions uh = {un,m}Mn,m=1 , u0,m = 0, un,0 = 0, 0 ≤ n,m ≤M.

Then, the following theorem on stability of problem (11) is established.
Theorem 2. For the solution of problem (11), the following stability estimates hold∥∥∥∥∥∥

{{
ukn,m−u

k−1
n,m

τ

}N
k=1

}M
n,m=0

∥∥∥∥∥∥
Cτ (Ch)

+

∥∥∥∥{{ukn,m}Nk=1

}M
n,m=0

∥∥∥∥
Cτ

(
C

(1)
h

) + ‖pτ‖Cτ ≤

≤M1 (q)
[
‖ϕh‖

C
(1)
h

+
∥∥f1,h∥∥

Ch
+

∥∥∥∥∥∥
{{

fk
n,m
−fk−1

n,m

τ

}N
k=2

}M
n,m=0

∥∥∥∥∥∥
Cτ (Ch)

+

+

∥∥∥∥∥∥
{{

αks,m−α
k−1
s,m

τ

}N
k=2

}M
m=0

∥∥∥∥∥∥
Cτ(C[0,L]h)

+
∥∥∥{α1

m

}M
m=0

∥∥∥
C[0,L]h

 .
Proof. For the solution of difference scheme (11), we consider substitution

ukn,m = ηkqn,m + wkn,m, (12)
where

qn,m = q (xn, ym) ,

and ηk is the grid function determined by

ηk =
k∑
i=1

pi τ, η
0 = 0, pk =

ηk − ηk−1

τ
, 0 ≤ k ≤ N.

It is easy to see that grid function
{{
wkn,m

}N
k=1

}M
n,m=0

is the solution of difference scheme

wkn,m−w
k−1
n,m

τ =
wkn+1,m+1−wkn,m+1

h +
wkn,m+1−wkn,m

h

+ηk
[
qn+1,m+1−qn,m+1

h +
qn,m+1−qn,m

h

]
+ f (tk,xn,ym) ,

fkn,m = f (tk,xn,ym) , qn,m = q (xn, ym) , xn = nh, ym = mh,

tk = kτ, 1 ≤ k ≤ N, 1 ≤ n,m ≤M − 1, Mh = L, Nτ = T,

w0
n,m = ϕ (xn, ym) , 0 ≤ n,m ≤M,

wk0,m = 0, ukn,0 = 0, 0 ≤ k ≤ N, 0 ≤ n,m ≤M,

wks,m = α (tk, ym) , 0 ≤ k ≤ N, 0 ≤ m ≤M, s =
⌊
l
h

⌋
.

(13)
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Difference derivative of (12) can be written as

ukn,m − uk−1n,m

τ
=
ηk − ηk−1

τ
qn,m +

wkn,m − wk−1n,m

τ
= pkqn,m +

wkn,m − wk−1n,m

τ
. (14)

Hence,

pk =

ukn,m−u
k−1
n,m

τ − wkn,m−w
k−1
n,m

τ

qn,m
(15)

for n,m and k, 1 ≤ n,m ≤ M − 1 and 1 ≤ k ≤ N. Applying the overdetermined condition uks,m in
(15), we obtain that

pk =

uks,m−u
k−1
s,m

τ − wks,m−w
k−1
s,m

τ

qs,m
.

Using the triangle inequality, we obtain

|pk| ≤M7 (q)

[∣∣∣∣∣uks,m − uk−1s,m

τ

∣∣∣∣∣+
∣∣∣∣∣wks,m − wk−1s,m

τ

∣∣∣∣∣
]

for all 0 ≤ k ≤ N. From that it follows,

∥∥∥{pk}Nk=1

∥∥∥
C[0,T ]τ

≤M7 (q)

∥∥∥∥∥
{
uks,m−u

k−1
s,m

τ

}N
k=1

∥∥∥∥∥
C[0,T ]τ

+

+

∥∥∥∥∥
{
wks,m−w

k−1
s,m

τ

}N
k=1

∥∥∥∥∥
Cτ(C([0,L]h×[0,L]h, E))

 . (16)

Now using substitution (14) we get

ukn,m − uk−1n,m

τ
=
wkn,m − wk−1n,m

τ
+ pkqn,m.

Applying the triangle inequality, we obtain∥∥∥∥∥
{
ukn,m−u

k−1
n,m

τ

}N
k=1

∥∥∥∥∥
C[0,T ]τ

≤

∥∥∥∥∥
{
wkn,m−w

k−1
n,m

τ

}N
k=1

∥∥∥∥∥
Cτ(C([0,L]h×[0,L]h))

+

+
∥∥∥{pk}Nk=1

∥∥∥
C[0,T ]τ

∥∥∥∥{{qn,m}Mn=1

}M
m=1

∥∥∥∥
C([0,L]h×[0,L]h)

(17)

for all 0 ≤ k ≤ N. We can rewrite difference scheme (13) in the abstract form as
wkh−w

k−1
h

τ +Ahw
k
h + ηkAq = fh (tk) ,

w0
h = ϕh, η0 = 0, tk = kτ, 1 ≤ k ≤ N, Nτ = T

(18)

in a Banach space Cτ (E) = C ([0, T ]τ , E) with the positive operator Ah defined by

Ahuh = −
{
un+1,m+1 − un,m+1

h
+
un,m+1 − un,m

h

}M−1
n,m=1

,
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acting on grid functions uh such that satisfies the condition uh = {un,m}Mn,m=1 , u0,m = 0, un,0 = 0,
0 ≤ n,m ≤M.

For equation (18) we have that

wkh = Rwk−1h +Rτ

(
Aq

α (tk)− wks
qs

+ fh (tk)

)
,

for all k, 1 ≤ k ≤ N, where R = (I + τAh)
−1 . By recurrence relations, we get

wkh = Rkϕh +
k∑
i=1

Rk−i+1 τ
qs
α (ti)Aq −

k∑
i=1

Rk−i+1 τ
qs
wisAq +

k∑
i=1

Rk−i+1τfh (ti)

for any k, 1 ≤ k ≤ N. Taking the difference derivative of both sides, we obtain that

wkh−w
k−1
h

τ = Rk−Rk−1

τ ϕh + 1
qs
α (tk)Aq +

k∑
i=1

(
Rk−i+1 −Rk−i

)
1
qs
α (ti)Aq−

− 1
qs
wksAq −

k∑
i=1

(
Rk−i+1 −Rk−i

)
1
qs
wisAq + fh (tk) +

k∑
i=1

(
Rk−i+1 −Rk−i

)
fh (ti) .

Applying the formula,

k∑
i=1

(
Rk−i+1 −Rk−i

)
wis =

k∑
i=1

(
Rk−i+1 −Rk−i

)
ϕ (xs, ym)+

+
k∑
i=1

(
Rk−i+1 −Rk−i

) i∑
j=1

wjs−wj−1
s

τ τ

and changing the order of summation, we get

k∑
i=1

(
Rk−i+1 −Rk−i

)
wis =

k∑
i=1

(
Rk−i+1 −Rk−i

)
ϕ (xs, ym)+

+
k∑
j=1

k∑
i=j

(
Rk−i+1 −Rk−i

)
wjs−wj−1

s
τ τ.

Consequently, we obtain the following presentation for the solution of equation (13)

wkh−w
k−1
h

τ = Rk−Rk−1

τ ϕh + 1
qs
α (tk)Aq +

k∑
i=1

(
Rk−i+1 −Rk−i

)
1
qs
α (ti)Aq−

− 1
qs
wksAq −

k∑
i=1

(
Rk−i+1 −Rk−i

)
1
qs
Aqϕh(xs,ym)−

k∑
j=1

k∑
i=j

(
Rk−i+1 −Rk−i

)
wjs−wj−1

s
τ τ+

+fh (tk) +
k∑
i=1

(
Rk−i+1 −Rk−i

)
fh (ti) .

Applying the definition of norm of the spaces Cτ (E) = C ([0, T ]τ , E) and methods of monograph [20],
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we can write,

∥∥∥∥∥
{
wkn,m−w

k−1
n,m

τ

}N
k=1

∥∥∥∥∥
Cτ(C([0,L]h×[0,L]h))

≤M8 (q)

‖ϕh‖C(1)
h

+

∥∥∥∥∥∥
{{

fk
n,m
−fk−1

n,m

τ

}N
k=2

}M
n,m=0

∥∥∥∥∥∥
Cτ (Ch)

+

+
∥∥f1,h∥∥

Ch
+

∥∥∥∥∥∥
{{

αk
s,m
−αk−1

s,m

τ

}N
k=2

}M
m=0

∥∥∥∥∥∥
Cτ(C[0,L]h)

+
∥∥∥{α1

m

}M
m=0

∥∥∥
C[0,L]h

 .
(19)

Finally, combining estimates (16), (17), and (19), it completes the proof of Theorem 2.

3 Numerical experiments

In this section, we study the numerical solution of the neutron transport identification problem
with initial condition

∂u(t,x,y)
∂t = ∂u(t,x,y)

∂x + ∂u(t,x,y)
∂y + p (t) sinπx sinπy + f (t, x, y) ,

f (t, x, y) = −e−2t(3 sinπx sinπy + π cosπx sinπy + π sinπx cosπy),

t ∈ (0, 1] , x, y ∈ (0, 1] ,

u (0, x, y) = sinπx sinπy, x, y ∈ [0, 1] ,

u (t, 0, y) = 0, t ∈ [0, 1] , y ∈ [0, 1] ,

u (t, x, 0) = 0, t ∈ [0, 1] , x ∈ [0, 1] ,

u(t, 12 , y) = e−2t sinπy, t ∈ [0, 1] , y ∈ [0, 1] .

(20)

The exact solution of problem is u(t, x, y) = e−2t sinπx sinπy and for the control parameter
p (t) = e−2t.

For the approximate solution of problem (20), we get the following first order of accuracy difference
scheme 

ukn,m−u
k−1
n,m

τ =
ukn+1,m+1−ukn,m+1

h +
ukn,m+1−ukn,m

h + pkqn,m + fkn,m,

fkn,m = −e−2tk(3 sinπxn sinπym + π cosπxn sinπym + π sinπxn cosπym),

qn,m = sinπxn sinπym, xn = nh, ym = mh, tk = kτ,

1 ≤ k ≤ N, 0 ≤ n,m ≤M − 1, Mh = 1, Nτ = 1,

u0n,m = sinπxn sinπym, 0 ≤ n,m ≤M,

uk0,m = 0, ukn,0 = 0, 0 ≤ k ≤ N, 0 ≤ n,m ≤M,

uks,m = e−2tk sinπym, 0 ≤ k ≤ N, 0 ≤ m ≤M, s =
⌊
M
2

⌋
.

(21)
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For the solution of difference scheme (21), we consider the substitution

ukn,m = ηkqn,m + wkn,m, (22)

where

ηk =

k∑
i=1

pi τ, η
0 = 0, (23)

wkn,m is the solution of difference scheme

wkn,m−w
k−1
n,m

τ =
wkn+1,m+1−wkn,m+1

h +
wkn,m+1−wkn,m

h +

+ηk
[
qn+1,m+1−qn,m+1

h +
qn,m+1−qn,m

h

]
+ fkn,m,

1 ≤ k ≤ N, 1 ≤ n,m ≤M,

w0
n,m = sinπxn sinπym, 0 ≤ n,m ≤M,

wk0,m = 0, wkn,0 = 0, 0 ≤ k ≤ N, 0 ≤ n,m ≤M.

(24)

Applying (21) and formulas (22), (23), we get

ηk =
uks,m − wks,m

qs,m
=
e−2tk sinπym − wks,m

qs,m
, (25)

pk =
1

τ

[
(e−2tk − e−2tk−1) sinπym − (wks,m − wk−1s,m )

sinπxs sinπym

]
(26)

for any k, 1 ≤ k ≤ N.
It is easy to see that (24) and (25) can be written in the matrix form

A wk +B wk−1 = ϕk, 1 ≤ k ≤ N, w0 = {sinπxn sinπym}Mn,m=0 ,

where 
ϕkn,m = e−2tk

[
sinπxn+1 sinπym+1−sinπxn sinπym+1

h + sinπxn sinπym+1−sinπxn sinπym
h

]
−

−e−2tk(3 sinπxn sinπym + π cosπxn sinπym + π sinπxn cosπym),

1 ≤ n,m ≤M, ϕk0,m = 0, ϕkn,0 = 0, 1 ≤ n,m ≤M.

Here A and B are (M +1)× (M +1)× (N +1) square matrices, wk and ϕk are (M +1)× (M +1)× 1
column matrices. First, we obtain wk by formula

wk = −A−1Bwk−1 +A−1ϕk, 1 ≤ k ≤ N,w0 = {sinπxn sinπym}Mn,m=0 .

Second, applying formulas (22) and (26), we get pk and uk.
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4 Error analysis

Now, we will give the results of the numerical analysis. In order to get the solution of (21), we used
MATLAB program. The errors are computed by

ENMu = max
0≤k≤N

max
0≤n,m≤M

∣∣∣u(tk, xn, ym)− ukn,m∣∣∣ , ENp = max
1≤k≤N

∣∣∣p(tk)− pk∣∣∣
of the numerical solutions for different values of M and N, where u(tk, xn, ym) represents the exact
solution, ukn,m represents the numerical solution at (tk, xn, ym), p(tk) represents the exact solution, and
pk represents the numerical solution at tk. Now, let us give the obtained numerical results (Table).

T a b l e

Error analysis of first order DS

Error N = M = 10 N = M = 20 N = M = 40 N = M = 80

EN
Mu 0.1813 0.0952 0.0488 0.0247

ENp 0.0698 0.0481 0.0264 0.0137

The obtained results indicate that when the numerical parameters N and M are multiplied by two,
the errors in the solution for first order difference scheme (21) decrease by approximately half.

Conclusion

In this study, we consider an inverse problem related to the two-dimensional neutron transport
equation with a time-dependent source control parameter. For the approximate solution of this prob-
lem, a first-order accuracy difference scheme is constructed. A finite difference scheme is presented for
identifying the control parameter. Stability inequalities for the solution of this problem are established.
The results of a numerical experiment are presented, and the accuracy of the solution for this inverse
problem is discussed.
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In the article the spectrum and resolvent of the so-called multichannel systems with nonzero internal
energies were investigated. The spectrum and resolvent of multichannel Sturm-Liouville systems with non-
zero internal energies m2

i and general boundary conditions were investigated. These systems describe the
propagation of partial waves in the theory of quantum physics. The importance of studying the spectral
characteristics of these systems is presented in the well-known books of the theory of quantum physics. The
finiteness of the number of eigenvalues was proved, the multiplicity of positive eigenvalues was investigated,
and as well as the resolvent kernel of the system was found.

Keywords: operator, eigenvalues, edge problem, Wronskian, transformation operator, asymptotics, contin-
uous spectrum, resolvent, multi-channel systems, internal energy, quantum physics.

2020 Mathematics Subject Classification: 34B24.

Introduction

The spectrum and resolvent of 0 = m2
1 ≤ m2

2 ≤ . . . ≤ m2
n = m2 multilayer systems with non-zero

internal energies are studied in the present article. These kinds of systems are described by differential
equations

−y′′i +
n∑
j=1

qij(x)yj +m2
i yi = λ2yi, i = 1, n, 0 ≤ x <∞

and boundary conditions

y
′
i (0)−

n∑
j=1

hij yj (0) = 0, i = 1, n.

This system can be rewritten in the next form

− y′′ +Q(x)y +My = λ2y, 0 ≤ x < +∞, (1)

y
′
(0)−Hy (0) = 0, (2)

where Q(x) = {qij(x)} (i, j = 1, n, 0≤x < +∞) is a semi-continuous matrix-function, M = {δijm2
i }n1

is diagonally constant matrix, H is a self-constructed constant matrix, y(x) is a column vector-function.
Assume that the Euclidean norm of the matrix function Q(x) satisfies the following condition∫ +∞

0
xemx ‖Q (x)‖ dx < +∞. (3)

Boundary value problem (1)-(2) occurs in the theory of dispersion multichannel particles with nonzero
inner energy m2

i , i = 1, n and it describes the spread of partial waves.
∗Corresponding author. E-mail: huseynov.eldar@oyu.edu.az
Received: 29 November 2023; Accepted: 06 May 2024.
c© 2024 The Authors. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
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Notice that for the condition y(0) = 0 this problem was investigated in the works [1], [2]. In recent
years, many studies have been conducted on this issue [3–7].

Let us consider the diagonal matrix

K (λ) =
(
λ2I −M

) 1
2 = {δijKj(λ)} ,Kj (λ) =

√
λ2 −m2

j ,

where δii = 1 and δij = 0 for i 6=j.
Here we define branches so that at ImλKj(λ) > 0, and at Imλ = 0, Kj(λ) = limε→+0 kj(λ+ iε).

Hence, if Imλ > 0, we have

Kj (λ) =


√
m2
j − λ2, if |λ|≤mj ,

λ

√
1− m2

j

λ2
if |λ|≥mj .

(4)

Note that for |λ| ≤ mj the functions Kj (λ) are even, and for |λ| ≥ mj they are odd. It is not
difficult to verify that, when Imλ > 0, i < j

0≤ ImKj (λ)− ImKi (λ)≤
√
m2
j −m2

i≤m.

Therefore,

‖exp(iK (λ)x)‖ = exp (− Imλx) , ‖exp(−iK (λ)x)‖ = exp (ImKn(λ)x) .

Denote by L2((0,∞);En) the Hilbert space of the column vector-functions y (x) = {yi(x)} , i = 1, n
of the quadratic integrable on the semiaxis (0,+∞) of all the components, in which the inner product
is defined by the formula

〈y, z〉 =
n∑
k=1

yk (x) zk(x)dx =

∫ +∞

0
z∗ (x) y (x) dx.

Denote by [y(x), z(x)] the Wronskian of the differentiable matrix functions which is defined by the
formula, where the transposition of the matrix means y (x) and z (x) ,

[y (x) , z (x)] = ỹ (x) z
′
(x)− ỹ′ (x) z (x) ,

where ỹ is the transpose of the matrix y.

1 Solutions at F (x, λ) ,Φ (x, λ) and connections between them at Imλ = 0, |λ| > m

Consider the matrix equation

− y′′ +Q(x)yMy = λ2y, 0≤x<+∞. (5)

In the case of Q(x) = 0, this equation has a solution

e (x, λ) = exp (iK (λ)x) =
{
δαje

ikj(λ)x
}
, α, j = 1, n.

In [1] it is proved that if the condition (3) is satisfied, then the equation (5) will have analytic
solution λ in the upper half-scope Imλ > 0 and the continuous up to the real axis Imλ = 0, and the
solution is F (x, λ) satisfying the condition

lim
x→+∞

e (x, λ)F (x, λ) = I,
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and there is a core K (x, λ) of conversion operator that is

F (x, λ) = e (x, λ) +

∫ +∞

x
K (x, t) e (t, λ) dt. (6)

Further, the following assessments are valid (see [2]):

‖F (x, λ)− exp (iK (x)) ‖ ≤ C1 exp (− (m+ Imλ)x) ,

‖F (x, λ)− exp (iK (λ)x) ‖ ≤ C2

∥∥K−1 (λ)
∥∥ exp (− (m+ Imλ)x) ,

where C1,C2 are constants.
Let us denote by Φ (x, λ) the solution of differential equation (5) satisfying initial conditions

Φ (0, λ) = I,Φ′ (0, λ) = H. (7)

It is known that the solution Φ (x, λ) of the boundary value problem (5)–(7) is an integer function
of the parameter λ. Obviously, Φ (x, λ) is an even function of parameter λ.

If Imλ = 0, |λ|>m, then solutions F (x, λ) and F (x,−λ) of equation (5) are linearly independent
(see [2]) and

[F (x, λ) , F (x,−λ)] = 2iK (λ) .

Then, there are A (λ) , B (λ) matrices which independent of x such that

Φ (x, λ) = F (x, λ)A (λ) + F (x,−λ)B (λ) (8)

at Imλ = 0, |λ|>m. Hence,

[F (x, λ) ,Φ (x, λ)] = −2iK (λ)B (λ) ,

[F (x,−λ) ,Φ (x, λ)] = 2iK (λ)A (λ) .

Since

[F (x, λ) ,Φ (x, λ)] = F̃ (0, λ) Φ′ (0, λ)− F̃ ′ (0, λ) Φ (0, λ) = F̃ (0, λ)H − F̃ ′ (0, λ) ,

we get

A (λ) =
1

2i
K−1 (λ)− W̃ (−λ) , B (λ) = − 1

2i
K−1 (λ)− W̃ (λ) ,

where
W (λ) = HF (0, λ)− F ′(0, λ). (9)

Substituting these expressions for matrices A (λ) and B (λ) into formula (8), we obtain

Φ (x, λ) =
1

2i
(F (x, λ)K−1 (λ) W̃ (−λ)− F (x,−λ)K−1 (λ) W̃ (λ)) (10)

for the case Imλ = 0, |λ| > m.
Lemma 1. If Imλ = 0, |λ| > m then the matrix W (λ) is non-singular.
Proof. From the condition Φ(0, λ) = 0 and equality (10), it follows that

F (0, λ) K−1 (λ) W̃ (−λ)− F (0,−λ)K−1 (λ) W̃ (λ) = 2iI. (11)

Due to (4) we have e(x,−λ) = e(x, λ). Similarly, from the equations (6) and (9) we have
W (−λ) = W (−λ). Assume that there is a vector ~a , such that W̃ (λ)~a = 0. Then, W̃ (−λ)~a = 0
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and from (11) it follows that 2i I ~a = 0, ~a = 0. The matrix is consistent W̃ (λ) and it means that
W (λ) is not singular.

From formula (10) and boundary conditions (7) it follows that

F (0, λ)K−1 (λ) W̃ (−λ)− F (0,−λ)K−1 (λ) W̃ (λ) = 2iI,

F
′
(0, λ)K−1 (λ) W̃ (−λ)− F ′ (0,−λ)K−1 (λ) W̃ (λ) = 2i.

Multiplying the first equation by H and subtracting the second equation, we obtain the next
formula

W (λ)K−1 (λ) W̃ (−λ) = W (−λ)K−1 (λ) W̃ (λ) . (12)

Multiplying equation (12) by W−1 (λ) from the left and by W̃−1 (−λ) from the right, we get the
formula

W−1 (−λ)W (λ)K−1 (λ) = K−1 (λ) W̃ (λ) W̃−1 (−λ) . (13)

Under conditions Imλ = 0, |λ| > m, by using equations (10) and (13), the solution Φ (x, λ) is
presented as follows

Φ (x, λ) = 1
2i(F (x, λ)K−1 (λ)− F (x,−λ)K−1 (λ) W̃ (λ) W̃−1 (−λ))W̃ (−λ)

= 1
2i

(
F (x, λ)K−1 (λ)− F (x,−λ)W−1 (−λ)W (λ)K−1 (λ)

)
W̃ (−λ) ,

or
Φ (x, λ) =

1

2i

(
F (x, λ)− F (x,−λ)W−1 (−λ)W (λ)

)
K−1 (λ) W̃ (−λ) .

In the future, we will need asymptotic behavior of solution Φ(x, λ), when λ→∞ in the case Imλ≥0.
Denote by E (x, λ) , the solution of equation (5) whose asymptotic, when λ→∞. In the case Imλ≥0
it is derived by (see [2])

E (x, λ) = exp (−iK(x)λ) (I +O(1)) .

Since
[F (x, λ) , E (x, λ)] = lim

x→∞
[c] = −2iK (λ) ,

the solutions F (x, λ) and E (x, λ) are linearly independent in the case Imλ ≥ 0, λ 6= m2
j , j = 1, n.

Thus it is easy to get
Φ (x, λ) = F (x, λ)A+ E (x, λ)B, (14)

where
A =

1

2i
K−1 (λ)

(
Ẽ (0, λ)H − Ẽ′ (0, λ)

)
, B =

1

2i
K−1 (λ) W̃ (λ)

with
Ẽ (0, λ)H − Ẽ′ (0, λ) = {Cij (λ)} , i, j = 1, n, W̃ (λ) = {wij (λ)} , i, j = 1, n.

Using asymptotic formula (14) for solutions F (x, λ) and E (x, λ) when x→∞, we obtain the following
asymptotic formulas

ϕαj (x, λ) =
1

2iKα (λ)

(
Cjα (λ) eiKα(λ)x − wjα (λ) e−iKα(λ)x

)
+O(1) (15)

for elements of the matrix Φ (x, λ) = {ϕαj (x, λ)} , when x→∞.
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2 On the resolvent of problem (1),(2)

In the space L2(0,∞;En), the boundary value problem (1), (2) defines the differential operator by

l(y) = −y′′ +Q(x)y +My, 0 ≤ x < +∞

for y which satisfies the condition
y′(0)−Hy(0) = 0.

The domain DL of the operator L contains vector-functions y(x) ∈ L2(0,∞;En), satisfying the follow-
ing conditions:

1. y′(x) exists and absolutely continuous at finite interval [0, a],
2. y′(0)−Hy(0) = 0,
3. l(y) ∈ L2((0,∞);En).

It is not difficult to verify that the operator L self adjoint. Let us define the core Rz(x, t) of
resolvent Rz = (L− ZI)−1 . Let us solve the boundary value problem

− y′′ +Q(x)y +My = λ2y + f(x), (16)

y′(0)−Hy(0) = 0, (17)

where f(x) is an arbitrary vector functions in L2((0,∞);En).
If

[F (x, λ) ,Φ (x, λ)] = [F (x, λ) ,Φ (x, λ)]x=0 = F̃ (0, λ)H − F̃ ′ (0, λ) = W̃ (λ) ,

then the solutions of the homogeneous equation (1) are linearly independent in the case W (λ) 6= 0.
We seek the solution y (x, λ) of the problem (16), (17) in the form

y (x, λ) = F (x, λ)C1 (x, λ) + Φ (x, λ)C2 (x, λ) , (18)

where C1 (x, λ) and C2 (x, λ) are some vector-functions. Applying constant variation method, we get
a system of equations

F (x, λ)C ′1 (x, λ) + Φ (x, λ)C ′2 (x, λ) = 0,

F ′ (x, λ)C ′1 (x, λ) + Φ′ (x, λ)C ′2 (x, λ) = −f(x).

Solving it, we have
C ′1 (x, λ) = W (λ) Φ̃ (x, λ) f(x), (19)

C ′2 (x, λ) = −W̃−1 (λ) F̃ (x, λ) f(x). (20)

From the asympotic equation (15) it follows that the elements of the matrix function Φ (x, λ) do not
belong to space L2(0,∞). Consequently, from condition y (x, λ) ∈ L2((0,∞);En) and equality (20)
follows that

C2 (+∞, λ) = lim
x→+∞

C2 (x, λ) = 0.

Since
y′ (x, λ) = F ′ (x, λ)C1 (x, λ) + Φ′ (x, λ)C2 (x, λ) ,

by using condition (19), we have[
F ′ (0, λ)−HF (0, λ)

]
C1 (0, λ) = 0.

So W (λ)C1 (0, λ) = 0. Since detW (λ) 6= 0, we obtain C1 (x, λ) = 0. Now, by integrating equality (19)
from 0 to x, we get
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C1 (x, λ) = W−1 (λ)

x∫
0

Φ̃ (t, λ) f(t)dt.

By using (20), we get

C2 (x, λ) = W−1 (λ)

+∞∫
x

F̃ (t, λ) f(t)dt.

Substituting these expressions in equality (18), we have

y (x, λ) = RZf =

+∞∫
0

Rz (x, λ) f(t)dt, Z = λ2,

where

Rz (x, λ) =


F (x, λ)W−1 (λ) Φ̃ (t, λ) , t ≤ x,

Φ (x, λ) W̃−1 (λ) F̃ (t, λ) , t ≥ x.
(21)

This is the resolvent of operator L.

3 Spectrum of boundary value problem (1),(2)

Since boundary value problem (1),(2) is self-adjoint, from the expression (21) of the kernel Rz(x,t)
the resolvents follow that the eigenvalues of the problem are squares of the scalar function
ω (λ) = detw (λ) and has no other eigenvalues. Since the eigenvalues of the problem (1),(2) are real,
the function, ω (λ) = detw (λ) can only be zeros on the real and the imaginary axis of the complex
plane.

Theorem 1. The boundary value problem (1), (2) has
a) only the finite number of simple negative eigenvalues −κ2

1 ,−κ2
2, . . . − κ2

q ,

b) the finite number of positive eigenvalues λ21, λ22, . . . λ2r from the interval
[
0,m2

]
, the multiplicity

of eigenvalue λ2j from the interval
(
m2
p,m

2
p+1

)
, p = 1, n, is not greater than n− p and coincides

with the rank of the matrix W (λ, j).

Boundary value problem (1), (2) does not have its own values Z > m2 and the continuous spectrum
fills the semi-axiss.

Proof. Let λ2k, = −κ2
k be the eigenvalue of problem (1), (2) , i.e. ω(κk) = detW (iκk) = 0. Then,

it has a vector such that

W (iκk)−→a (k) = HF (0, iκk)−→a (k) − F ′(0, iκk)−→a (k) = 0.

From that it follows that the vector function yk (x) = F (x, iκk)−→a (k) is a solution of problem
(1)-(2). On the other hand, the elements of the matrix function F (iκk) belong to space L2(0,+∞).
Therefore, the vector-function yk (x) is the eigenfunction of the edge problem (1)-(2) corresponding to
the eigenvalue −κ2

k . Without loss of generality, we will assume that the first component of −→a (k)equals
to one and mi 6=mj for i 6=j. From the asymptotic solution F (x, λ), when x→ +∞, it follows that

yk (x) = e−κkxωk (x) , lim
x→+∞

ωk (x) = (1, 0, . . . ., 0) (22)

uniformly along k.

Mathematics Series. No. 3(115)/2024 155



A.A. Valiyev, M.B. Valiyev, E.H. Huseynov

Denoting by δ an exact lower bound of distances between two neighboring negative eigenvalues
and we will prove that δ > 0. Let us δ = 0. Then, we can isolate the sequence of negative eigenvalues{
−κ2

k

}
and

{
−κ̂2

k

}
such that lim

k→+∞
(κ̂k − κk) = 0, Ĥk > Hk≥0. Asymptotics F (x, λ), implies that

the set of zeros of the function ω(λ) is bounded. So maxk {κk} < A. Later∫ +∞

x
yk (t) ŷk (t) dt =

∫ +∞

x
ω̃k (t) ω̂k (t) e−(κk+κ̂k)dt, (23)

where ŷk (x) = F (x, iκ̂k)
−→
b (k) the eigenfunction of the boundary problem (1),(2) is corresponding to

the eigenvalue −κ̂2
k and ŷk (x) = e−κ̂kx x ω̂k (x) . The condition (21) implies that, if x > xo is sufficient

uniformly along k, then ωk (x) ω̂k (x) > 1
2 . Now, from (21) it follows that∫ +∞

x
yk (t) ŷk (t) dt >

1

2

∫ +∞

x0

e−(κk+κ̂k)dt =
e−(κk+κ̂k)x0
2 (κk + κ̂k)

>
e−Ax0

4A
.

Since the boundary value problem (1)-(2) is self-adjoint, the vector-functions yk (x) and ŷk (x) .
Moreover

0 =
∫ +∞
x yk (t) ŷk (t) dt =

∫ x0
0 ((yk (t) − ŷk (t))ŷk (t) dt +

∫ x0
0 yk (t) ŷk (t) dt +

∫ +∞
x yk (t) ŷk (t) dt.

Passing to limit to the limit k → +∞, we find

0 = lim
k→+∞

∫ x0

0
yk (t) ŷk (t) dt+ lim

k→+∞

∫ +∞

x0

yk (t) ŷk (t) dt.

Thus,

lim
k→+∞

∫ +∞

x0

yk (t) , ŷk (t) dt≤0.

Inequalities (22) and (23) lead to contradiction. Hence, δ > 0, and it means, that the number of
negative eigenvalues are finite. Now, let λ2∈(m2

p,m
2
p+1) be the eigenvalue of problem (1), (2). The

corresponding eigenfunction has the form ϕ (λ) = F (x, λ)−→a , −→a 6=a. For λ2∈(m2
p,m

2
p+1) from formula

(4) it follows that

ikj(λ) =

 iλ

√
1− m2

j

λ2
, if j = 1, 2, . . . , p,

−
√
m2
j − λ2, if j = p+ 1, . . . , n.

Therefore, the elements of the first columns of the matrix function F (x, λ) do not belong to space
L2 (0,∞) and elements of the last n − p columns belong to the space L2 (0,+∞) . It is, because the
eigenfunctions ϕ (x) εL2 ((0,+∞);En) of the first p coordinates of the vector −̃→a = (a1, a2, . . . , an ) are
zero, i.e. a1 = a2 = . . . = ap = 0. On the other hand, the eigenvector function ϕ (x) = F (x, λ)−→a
satisfies the condition (2). Therefore, we have

ap+1ωj(p+1) (λ) + . . . + anωjn (λ) = 0, j = 1, 2, . . . , n,

where at least one of the numbers ap+1, . . . , an is not zero. Therefore, the last n − r columns of
the matrix W (λ) = {ωij (λ)}n1 are linearly independent, and therefore the multiplicity of eigenvalues
λ2ε(m2

p,m
2
p+1) coincides with the rank of the matrix W (λ). The finiteness of the number of eigen-

values from the interval
[
0,m2

]
is proved similarly to the case of negative eigenvalues. According to

λ2ε(m2
1,+∞) by Lemma 1 we get detW (λ) 6=0. (1)-(2) does not have eigenvalues (m2

1,+∞) from the
interval. In the complex plane Z, the cut along the positive part of the real axis is a feature of the
matrix function W (

√
z) and means the resolvent Rz by the formula (21). Hence, the half-axis [0,+∞]

is the continuous spectrum of the boundary value problem (1)-(2).
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